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I. INTRODUCTION 

Microwave/millimeter wave bandpass filters (BPFs) with 

multifunctional capabilities are highly desirable for their potential 

to reduce circuit size and reduce the cost of next-generation 

wireless communication systems [1, 2]. So far, many designs 

have been proposed for tunable BPFs that employ different tuning 

elements such as varactor diodes, RF microelectromechanical 

systems (MEMS), or PIN diodes [3–5]. Among these, varactor-

diode based planar tunable BPFs are of particular interest for 

their ease of easy integration into microwave communication 

systems. Previous studies have proposed various planar tunable 

BPF designs, each with a different topology and functionality, 

including bandpass to bandstop switchable, multi-band, and 

bandwidth (BW) control [6–13]. A planar tunable BPF that 

used a switched varactor diode resonator over a wide frequency 

tuning range (FTR) was presented in [14], however, this BPF 

had poor frequency selectivity characteristics. In [15], a two-pole 

tunable BPF was presented over a wide FTR, however, this design 

required numerous tuning elements and dc-bias voltage control 

elements. 

Recently, tunable BPFs based on multi-mode resonators have 

attracted attention for their potential to reduce circuit size [16–

19]. In [20], a tunable BPF based on a synchronously tuned 

dual-mode resonator was tested. In addition, an electronically 

tunable planar BPF using a nonuniform Q-factor of dual-mode 

resonators was presented in [21] to enhance passband flatness. 

In [22], a wideband tunable BPF was designed with a multi- 
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Abstract 
 

This paper presents a design for a compact arbitrarily terminated port impedance tunable bandpass filter (BPF) with transmission zeros 

(TZs) that employs a dual-mode resonator. The proposed dual-mode resonator comprises two varactors along with series transmission 

lines and a shunt short-circuited stub. The resonant frequency separation of the dual-mode resonator can be adjusted by changing the 

length or characteristic impedance of the short-circuited stub. To achieve arbitrarily terminated port impedances, the coupling between 

the source/load and the dual-resonator is modified from the originally designed 50-to-50 Ω termination filter. Frequency selective charac-

teristics are achieved by generating two TZs at the lower and upper frequencies of the passband. The location of the TZs can be changed 

by controlling the source-load coupling. To experimentally validate the proposed tunable BPF, three prototypes (50-to-50 Ω BPF, 25-to-

50 Ω BPF, and 20 + j10-to-50 Ω BPFs) are designed and fabricated. The measurement results revealed that the center frequency can be 

tuned from 2.10 GHz to 3.02 GHz (920 MHz tunability), where the insertion loss varies from 1.50 to 2.5 dB. 
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mode step-impedance resonator (SIR), however, this design 

exhibited poor frequency selectivity characteristics. Similarly, a 

second-order quasi-elliptic tunable BPF with a constant 3-dB 

BW using varactor-tuned dual-mode resonators was presented 

in [23]. In [24], a tunable BPF based on an element-variable 

coupling matrix and dual-mode resonators was demonstrated; 

however, this design required numerous tuning elements and a 

dc-bias control voltage element. The wideband tunable BPF 

based on a tunable external Q-factor and the multi-mode reso-

nators presented in [25] also suffered same issues. In [26], a tuna-

ble BPF with a single dc-bias control was presented; however, 

this design exhibited high insertion loss and poor frequency 

selectivity characteristics. 

In recent years, various BPFs with arbitrarily terminated port 

impedances have been reported [27–30]. However, these arbi-

trarily terminated port impedances BPFs were reported at a 

fixed center frequency. Meanwhile, conventional tunable BPFs 

are limited to a 50-to-50 Ω (RS = RL = 50 Ω) termination im-

pedance design. Thus, designing a frequency-selective BPF 

capable of center frequency tuning and arbitrary termination 

impedance is an important step in the miniaturization of 

emerging next-generation wireless communication systems.  

This paper proposes a frequency selective tunable BPF with 

arbitrarily terminated port impedances based on a dual-mode 

tunable resonator. In this design, frequency selectivity is achieved 

by generating transmission zeros (TZs) located at the lower and 

upper frequencies of the passband. The proposed dual-mode 

tunable BPF with arbitrary port termination impedance is 

designed by modifying the coupling matrix of a 50-to-50 Ω 

frequency-fixed filter. 

II. DESIGN METHOD 

Fig. 1(a) depicts the proposed structure of a tunable BPF 

where the source and load ports are arbitrarily terminated with 

RS ±  jXS and RL  ±  jXL impedances, respectively. The proposed 

tunable BPF comprises a dual-mode resonator that provides the 

even- and odd-mode resonant frequencies. Fig. 1(b) presents 

the coupling diagram of the proposed BPF, where each node 

represents even-and odd-mode resonant frequencies. In this 

figure, the solid and dashed lines illustrate the direct coupling 

and cross-coupling paths, respectively. Using a lossless (N + 2) 

× (N + 2) filter model, the coupling matrix of the proposed 

tunable BPF is given as (1), where the source and load ports are 

normalized to 1 Ω. 
 

𝑀 = 0 𝑀 𝑀 𝑀𝑀 𝑀 + 𝑥 0 𝑀𝑀 0 𝑀 + 𝑥 𝑀𝑀 𝑀 𝑀 0 . 

(1)
 

The diagonal elements of the coupling matrix have nonzero 

values, which represent the susceptance of a dual-mode resona-

tor. The self-resonant frequencies (𝑓 , even-mode; 𝑓 , odd-

mode) of a dual-mode resonator can be calculated by as follows: 
 𝑓 / = 4 + 𝑀 / + 𝑥 𝛥 − 𝑀 / + 𝑥 𝛥 , (2)
 

where 𝑓 , Δ, and x indicate the center frequency, fractional BW, 

and tuning element of the filter, respectively. 

For a tunable BPF with a normalized arbitrary source im-

pedance (rS±jxs) and load impedance (rL ± jxL), the (N + 2) × 

(N + 2) coupling matrix of filter is evaluated as follows:  
 

𝑀 = ⎣⎢⎢
⎡ 0 𝑀 𝑀 𝑀𝑀 𝑀 + 𝑥 0 𝑀𝑀 0 𝑀 + 𝑥 𝑀𝑀 𝑀 𝑀 0 ⎦⎥⎥

⎤
, 

(3)
 

where 
 𝑀 = 𝑀𝑟 − 𝑥𝑟 𝑀 ,  𝑀 = 𝑀𝑟 + 𝑥𝑟 𝑀  

(4a)𝑀 = 𝑀√𝑟 + 𝑥𝑟 𝑀 ,  𝑀 = 𝑀√𝑟 + 𝑥𝑟 𝑀  (4b)𝑀 = 𝑀 − 𝑥𝑟 𝑀 ,  𝑀 = 𝑀 − 𝑥𝑟 𝑀  (4c)𝑀 = 𝑀𝑟 𝑟 , 𝑟 = 𝑅50 , 𝑥 = 𝑋50 , 𝑟 = 𝑅50 , 𝑥 = 𝑋50 
(4d)

 

Similarly, RS and RL are the real parts and XS and XL are the 

imaginary parts of the source and load port impedances, respec-

tively, which are normalized with reference to 50 Ω. The S-

parameters of an arbitrary impedance terminated BPF can be 

obtained as.  
  𝑆 = 1 + 𝐴 , , 𝑆 = − 𝐴 , , (5)

where 𝐴 = 𝑀 − 𝑗𝑅 + 𝜔𝑊  (6a)

 
         (a)                         (b) 

Fig. 1. Structure of the proposed tunable BPF with arbitrarily ter-

minated port impedance: (a) proposed BPF and (b) coupling 

diagram. 
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𝜔 = 𝑓𝑓 − 𝑓𝑓𝛥  (6b)
 

[R] is the (N + 2) × (N + 2) is zero matrix, except for the non-

zeros entries of 𝑅 = 1 𝑟⁄  and 𝑅 , = 1 𝑟⁄ . Similarly, 

[𝑊 ] is the (N + 2) × (N + 2) identity matrix except for  𝑊 = 0 and 𝑊 , = 0. 

Let us consider a case in which 𝑓  and Δ are 2.50 GHz and 

4.40%, respectively, for a Chebyshev filter with a ripple of 0.043 

dB. The synthesized (N + 2) × (N + 2) coupling matrix of the 

proposed tunable BPF with source and load ports of 1 Ω can be 

determined as.  
 𝑀 = 0 −0.8597 0.8146 0.0630−0.8597 1.6619 + 𝑥 0 0.85970.8146 0 −1.6675 + 𝑥 0.81460.0630 0.8597 0.8146 0 .

(7)
 

The (N + 2) × (N + 2) coupling matrix of the arbitrarily 

terminated BPF can be calculated using (3) and (7).   

Fig. 2 shows the synthesis result of a tunable BPFs using a 

coupling matrix. The center frequency is tuned from 2.10 GHz 

to 3 GHz by varying x from -8.2 to 8.2. The TZs are located at 

the lower and higher frequencies of the passband. The location 

of the TZs can be controlled by changing the source-load 

coupling (MSL). Similarly, the TZs are also moved while tuning 

the center frequencies. These results indicated that even though 

the source and load termination impedances (RS and RL) of 

BPF are chosen arbitrarily, the response remans identical.      

 

1. Proposed Dual-Mode Resonator 

Fig. 3 shows the structure of the proposed dual-mode resona-

tor, which comprises of series transmission lines (TLs) with 

characteristics impedance of Z2 and Z1, electrical lengths of θ2, 

θ1, and θ0; and a shunt short-circuited stub with a characteristic 

impedance of Zk and an electrical length of θk. Fig. 3(b) and 3(c) 

depict the even- and odd-mode equivalent circuits. Using these 

circuits, the even- and odd-mode input admittances are derived as 

follows: 
 𝑌 = 𝑗𝑌 𝑌 + 𝑌 𝑡𝑎𝑛 𝛽 𝐿𝑌 − 𝑌 𝑡𝑎𝑛 𝛽 𝐿  

(8a)𝑌 = 𝑗𝑌 𝑌 + 𝑌 𝑡𝑎𝑛 𝛽 𝐿𝑌 − 𝑌 𝑡𝑎𝑛 𝛽 𝐿  
(8b)

 

where 
 𝑌 = 𝑌 , 𝑌 = 𝑌  (9a)𝑌 = 𝜔𝐶 𝐴𝜔𝐶 2𝑌 + 𝑌 𝑐𝑜𝑡 𝛽 𝐿 𝑡𝑎𝑛 𝛽 𝐿 + 𝐴  (9b)𝐴 = 2𝑌 𝑡𝑎𝑛 𝛽 𝐿 − 𝑌 𝑌 𝑐𝑜𝑡 𝛽 𝐿 , 𝑌 = . (9c)

 

The even- and odd-mode resonant frequencies (𝑓  and 𝑓 ) 

can be calculated by equating 𝑖𝑚 𝑌 = 0 and 𝑖𝑚 𝑌 = 0.  

Fig. 4(a) shows the calculated resonant frequencies for differ-

ent values of Cv. The frequencies 𝑓  and 𝑓  are tuned by 

changing the varactor diode capacitance from 1 pF to 20 pF. 

Similarly, Fig. 4(b) shows the simulated resonant frequencies for 

different values of Lk. Here, the value of Cv is maintained at 1 pF. 

As highlighted in this figure, the even-mode resonant frequency 

moves lower as the Lk increases, however, the odd-mode reso-

nant frequency remains constant. These results confirm that the 

separation between the even- and odd-mode resonant frequencies 

can be controlled by Lk. 

 
2. External Quality Factors 

Fig. 5 shows the configuration of even- and odd-mode external 

Q-factors that are controlled by the series TL physical parameters 

Ws and Ls, as well as the coupled line physical parameter g2. 

The external Q-factors can be extracted using the method 

 
Fig. 2. Synthesis results of a tunable BPF using a coupling matrix 

with Δ = 4.4% and fc = 2.50 GHz. 

 
(a) 

 

 
   (b)    (c) 

Fig. 3. (a) Proposed structure of the dual-mode resonator, (b) even-

mode equivalent circuit, and (c) odd-mode equivalent circuit. 
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proposed in [20] as follows: 
 𝑄 = , 𝑄 = , (10)
 

where 𝑄  and 𝑄  indicate for even and odd-mode external 

Q-factors, respectively. Similarly, 𝜏  is the group delay at 𝑓  

and 𝑓 . 

Fig. 6(a) and (b) show the extracted even- and odd-mode ex-

ternal Q-factors as functions of Ws and g2, respectively. The 

external Q-factors increases with the values of Ws and g2 and 

the desired external Q-factors are therefore obtained by con-

trolling Ws and g2. Similarly, Fig. 6(c) shows the extracted Q-

factor as a function of the center frequency. As indicated in this 

figure, the extracted Q-quality factors are nearly constant across 

a wide range of center frequencies. A summary of the step-by-

step design method for the proposed BPF is provided in Fig. 7.  

To validate the proposed arbitrary port-terminated tunable 

BPF, the simulation results of 50-to-50 Ω, 25-to-50 Ω and 20 

+ j10-to 50 Ω microstrip line BPFs as shown in Figs. 8 and 9, 

are compared with the coupling matrix synthesis results. The 

two TZs located at the lower and upper sides of the passband 

are generated by source-load coupling, which is implemented 

through a coupled line. The simulation results of microstrip line 

BPFs are consistent with the coupling matrix synthesis results.  

 
(a) 

 
(b) 

Fig. 4. Resonant frequencies of the dual-mode resonator with Y1 = 

Yk = 1/70, Y2 = 1/60, L0 = 4.1 mm, L1 = 8.3 mm, L2 = 12.3 

mm and various (a) Cv and (b) Lk. Substrate: Taconic with a 

dielectric constant of 2.2 and thickness of 0.787 mm. 

 

 
 (a)                  (b) 

Fig. 5. External Q-factor implementations: (a) even-mode and (b) 

odd-mode.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. External Q-factors with Ls = 10 mm, L0 = 3.86 mm, L1 = 

8.26 mm, L2 = 12.3 mm, W1 = 1.36 mm, W2 = 1.20 mm, 

Wk = 0.25 mm, and Lk = 2 mm: (a) Ws, (b) g2, and (b) f0. 

Substrate: Taconic with a dielectric constant of 2.2 and 

thickness of 0.787 mm.  

 

 
Fig. 7. Design flow chart of the proposed tunable BPF with arbi-

trarily terminated port impedances. 
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(a) 

 
(b) 

Fig. 8. Simulation results of the tunable BPFs: (a) 50-to-50 Ω BPF 

and (b) 25-to-50 Ω BPF. Solid line indicates coupling matrix 

and dashed line indicates transmission line circuit simulation. 

 

 
Fig. 9. Simulation results of tunable 20 + j10-to-50 Ω BPFs. Solid 

line indicates coupling matrix and dashed line indicates 

transmission line circuit simulation. 

These results indicate that the tunable BPF with input/output 

complex port impedances can be designed by modifying the 

input/output external quality factors and even-mode resonant 

frequency of the dual-mode resonator. The center frequency is 

tuned from 2.08 GHz to 3 GHz by varying the value of Cv 

from 1.16 pF to 60 pF. Moreover, the two TZs are also tuned 

as the center frequency is tuned. 

To investigate the effect of source-load coupling, the simula-

tion results obtained with a different gap (gc) between the coupled 

lines, as shown in Fig. 10, are analyzed. As shown in the figure, 

the TZs move slightly away from the passband as the value of gc 

increases. 

III. SIMULATION AND MEASUREMENT RESULTS 

To experimentally validate the proposed BPF, three tunable 

BPF prototypes (50-to-50 Ω, 25-to-50 Ω and 20 + j10-to-50 Ω) 

are fabricated and measured using the Taconic substrate (die-

lectric constant εr = 2.20 and thickness h = 0.787 mm, and loss 

tangent tanδ = 0.0009). Each tunable BPF was designed using 

a Chebyshev response with a passband return loss of 20 dB for 

an FTR between 2.10 GHz and 3 GHz. Variable capacitances 

are implemented using varactor diode SMV 1233-079LF 

(Skyworks Corporation), which provides diode capacitance be-

tween 1.1 pF and 60 pF at 2 GHz by varying the reverse bias-

voltage between 15 and 0 V. The physical dimensions of the 

fabricated the BPFs are shown in Table 1. 

Fig. 11 shows the simulated and measured results of the 50-

to-50 Ω (RS = RL = 50 Ω, Xs = XL = 0 Ω) tunable BPF. The 

measurement results are consistent with those of the simulation 

results, confirming that the center frequency is tuned from 2.1 

GHz to 3.02 GHz (920 MHz or an FTR of 35.94%), while the 

insertion loss varies from 2.82 dB to 1.66 dB and the 3-dB BW 

varies from 238 to 265 MHz. Similarly, the measured return 

losses are better than 12.5 dB in the overall FTR.  

Fig. 12 shows the simulation and measurement results of the 

25-to-50 Ω (RS = 25 Ω, RL = 50 Ω and Xs = XL = 0 Ω) tunable 

BPF. The measured center frequency is tuned from 2.2 GHz to 

3.02 GHz (820 MHz) with an FTR of 31.42%. Similarly, the 

 
Fig. 10. Simulation results with different transmission zero (TZ) 

locations according to gc. 
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Table 1. Physical dimensions of fabricated BPFs 

50-to-50 Ω BPF (RS = 50 Ω, RL = 50 Ω, XS = XL = 0 Ω) 

Ws Ls W2 L2 g2 W1

1.50 5 1.32 12 0.13 1.50

L1 L0 Wk Lk W3 L3

9 1.5 1.36 1.58 1.32 12

g3 WL LL WsL gsL LsL

0.13 1.2 5 0.6 0.13 4.8

25-to-50 Ω BPF (RS = 25 Ω, RL = 50 Ω, XS = XL = 0 Ω)

Ws Ls W2 L2 g2 W1

1.80 10 1.34 12 0.27 1.50

L1 L0 Wk Lk W3 L3

9 1.5 1.36 1.62 1.32 12

g3 WL LL WsL gsL LsL

0.14 1.20 5 0.4 0.13 4.8

20 + j10-to-50 Ω BPF (RS = 20 Ω, RL = 50 Ω, XS = 10 Ω, XL = 0 Ω)

Ws Ls W2 L2 g2 W1

2.1 8 1.30 12 0.30 1.50

L1 L0 Wk Lk W3 L3

9 1.5 1.36 1.62 1.32 12

g3 WL LL WsL gsL LsL

0.14 1.20 5 0.4 0.13 4.8

The dimensions are in millimeters. 

 

 
(a) 

 
(b) 

Fig. 11. Simulation and measurement results of the 50-to-50 Ω 

BPF: (a) S-parameters, and (b) measured insertion loss 

and 3-dB bandwidth. 

 
(a) 

 
(b) 

Fig. 12. Simulation and measurement results of 25-to-50 Ω BPF: 

(a) S-parameters, and (b) measured insertion loss and 3-dB 

bandwidth. 

 

 
(a) 

 
(b) 

Fig. 13. Simulation and measurement results of 20 + j10-to-50 Ω 

BPF: (a) S-parameters, and (b) measured insertion loss and 

3-dB bandwidth. 

 

measured insertion loss varies from 2.4 dB to 1.67 dB whereas 

the 3-dB BW varies from 249 to 277 MHz. The measured 

return losses in the overall FTR are better than 12.5 dB.  

Fig. 13 shows the simulation and measurement results of the 

20 + j10-to-50 Ω (RS = 20 Ω, Xs = 10 Ω and RL = 50 Ω, XL = 

0 Ω) tunable BPF. The center frequency is tuned from 2.10 GHz 
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to 3.01 GHz (910 MHz) with an FTR of 35.62%. Similarly, 

the measured insertion loss varies from 2.55 dB to 1.76 dB 

whereas 3-dB BW varies from 242 to 282 MHz. The measured 

return losses in the overall FTR are better than 12 dB. Photo-

graphs of the fabricated filters are shown in Fig. 14. 

Table 2 compares the proposed tunable BPF with those de-

scribed in previous studies. As observed from Table 2, the pre-

viously reported tunable BPFs have limited to a 50-to-50 Ω 

termination impedance filter design [11–26]. Similarly, in [27] 

presents a direct coupling matrix synthesis of arbitrary input and 

output port impedances. In [28], a second-order all pole (without 

TZs) BPF with only one port complex impedance is demonstrated 

using substrate-integrated evanescent mode (EVA) cavity reso-

nators. The work in [29] presents an active N + 3 coupling based 

BPF design by incorporating a transistor model for small-signal 

as input conjugately matched input impedance. In [30], the 

arbitrary input and output port complex impedances BPF with-

out any TZs is designed and fabricated using an SIR. However, 

since these previous studies [27–30] have experimentally demon-

strated arbitrarily terminated BPF at a fixed center frequency, 

they might have faced difficulty in the physical realization of 

arbitrary input and output port impedance tunable BPFs. In 

contrast, the present study demonstrates arbitrarily terminated 

port impedance tunable BPFs (real-to-real and real-to-complex 

port impedances BPFs) over a wide FTR as well as two TZs. 

The result shows that the impedance transformer and frequency-

selective tunable BPF can be integrated within a single circuit. 

   
(a)                 (b)               (c) 

Fig. 14. Photographs of the fabricated tunable BPFs: (a) 50-to-50 Ω 

and (b) 25-to-50 Ω BPF, and (c) 20 + j10-to-50 Ω BPF.

Table 2. Performances comparison between the proposed design and those proposed in previous studies 

Study Frequency (GHz) RS/RL (Ω) IL (dB) 3-dB BW (MHz) RL (dB) TZs NVR NCV

Gao and Rebeiz [11] 0.97–1.53 50/50 4.2–2.0 48–92a >10 Yes 7 4

Chiou and Rebeiz [12] 1.5–2.20 50/50 5.1–3.2 50–170a >10 Yes 9 3

Chiou and Rebeiz [13] 1.75–2.25 50/50 7.2–3.2 70–100a >10 Yes 5 2

Jung and Min [14] 0.255–0.455 50/50 1.8–1.40 70–76 >10 No 10 4

Chi et al. [15] 1.7–2.70 50/50 4.9–3.8 50–110 >10 Yes 7 4

Lu et al. [16] 0.70–1.78 50/50 4.5–2.0 70–98a >10 Yes 2 1

Chaudhary et al. [17] 2.36–2.85 50/50 3.52–1.45 NA >12 Yesb 3 2

Tang and Hong [18] 0.60–1.03 50/50 2.2–1.40 80–90 >10 Yesb 4 2

Lu et al. [20] 1.15–2 50/50 3.6–2.40 110–118a >10 Yes 2 1

Guo et al. [21] 1.35–1.60 50/50 4.90–2.30 NA >10 Yes 10 5

Chen et al. [22] 0.77–1.42 50/50 3.10–1.0 184–360 >10 No 6 3

Athukorala and  

Budi mir [23] 

1.45–1.96 50/50 1.6–2.50 210–220 >10 Yes 2 2 

Lu et al. [24] 0.8–1.21 50/50 3.8–1.8 130–140 >10 Yes 10 4

Lim et al. [26] 1.52–2.91 50/50 3.2–1.70 412–878 >10 No 3 1

Chen et al. [28] 3 3 - 5j/50 NA NA >12 No NA NA

Gao et al. [29] 10 NA NA NA >13 No NA NA

Kim and Jeong [30] 2.60 30 + 10j/50 0.89 140 >19.33 No NA NA

This work 2.10–3.02 50/50 2.82–1.66 238–265 >12.5 Yes 2 1

 2.20–3.02 25/50 2.40–1.67 249–277 >12.8 Yes 2 1

 2.10–3.04 20 + j10/50 2.55–1.80 242–285 >12 Yes 2 1

IL = insertion loss, RL = return loss, NVR = number of varactor diode, NCV = number of control voltage. 
a1-dB BW, TZs on both sides of passband frequency. bTZs at only one side of passband frequency.
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IV. CONCLUSION 

In this paper, we demonstrated an arbitrarily terminated port 

impedances tunable BPF with transmission zeros. The proposed 

tunable BPF is based on a coupling matrix and a dual-mode 

tunable resonator. The designed tunable BPF with arbitrary 

termination impedance modified couplings between source/load 

and resonators of a 50-to-50 Ω BPF design. To validate the 

proposed design, three microstrip line tunable BPFs prototypes 

(50-to-50 Ω, 25-to-50 Ω, and 20+j10-to-50 Ω BPF) are de-

signed and fabricated. The measurement results revealed that 

the center frequency is tuned across a wide frequency range. 
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