SIX DAYS

THREE FORUMS

EUROPEAN MICROWAVE WEEK 2021 **CONFERENCE PROBABILITY OF A CONFERENCE PROPE'S PREMIER MICROWAVE,** RF, WIRELESS AND RADAR EVENT

UNITED IN MICROWAVES

Register online at: www.eumw2021.com

			ready by 13:40.	
Exhibition Hall EuMIC/EuMCO4 EuMIC/EuMC Posters			Presenters will be around their stands at 13:50 – 14:20 and	
Chair: Mustafa Bakr' 'University of Oxford				
EuMIC/EuMCO4-1 Microwave sensing using metal- insulator-metal diodes based on 4-nm-thick Mafnium oxide Martino Adrigo". Mircea Dragorani, Sergiu lorda- nescu, Mazen Al Smanavari, Gerge Delgeorgs" "Mational Instituce To Research and Development in Microtechnologies (IMT). 'University of Bologna, "ROTH"	EuMIC/EuMCO4-5 Towards an Excitable Microwave Spike Generator for Future Neuromorphic Computing Ossy Raghib Al Al-Kaif, Ravan Morarii , Joe Wang, Andulah Al-Kaif, Ravan Morarii , Joe Wang, Andulah Al-Kaif, Ravan Morarii , Joe Wang, Andulah Al-Kaif, Ravan Morarii , Joe Wang, Lagaba , Marana Marana Ramata, Joe Japando, Kaada Wasae	EuMIC/EuMCO4-9 Doherty Load Modulation Based on Non-Reciprocity Paul Saaf, Han Zhori, Jose Rarron Perez-Gisnerse, Roi Hou, Christian Fager; Do Berglund' 'Ericsson AB, 'Chalmers University of Technology	EuMIC/EuMCO4-13 Effect of Switch Figure of Merit on Frequency-Reconfigurable Power Amplifier Performance Adam Der', William Sear, Taylor Batton' 'University of Colorado, Boulder	
EuMIC/EuMCO4-2 Automatic Nonlinear Nonquasi- Static Diode Model Extraction from Large-Signal Measurements Aarón Garcia-Lunge, Teres M. Marin-Guerrero, Ambero Santaell', Calos Lamache-Hababa' 'Universidad de Malaga, Andalucía Tech, 'Univer- sità di Bologna	EuMIC/EuMCO4-6 Numerical and Experimental Investigations of Selfmixing Effect of a Planar Gunn Diode Oscillator ^{Mingyan Ziong} ^{University of Glasgow}	EuMIC/EuMCO4-10 Adopting Supercapacitors in a Single-Stage Marx-Type Multi- level Supply Modulator Lukas Hüsseri, Konato Negrai 'HFE RWTH-Aachen	EuMIC/EuMCO4-14 Practical Work for Master2 Students: MMIC Distributed Amplifier Design for High Data Rate Receiver on GaAs-UMS Technology Catherine Algari. Eric Lederc' 'Le Cnam, 'UMS	
EuMIC/EuMCO4-3 Compact GaN RF-Switches for Power Applications Smira Drivit, Charles Toysander, Laurent Callér, Christopic Chargi, Laurent Krundi, Benoit Lambert, Hermann Steglauer, Valeria Brundi 'United Monelchin Semiconductors SAS, 'United Monelchin Semiconductors GmbH	EuMIC/EuMC04-7 An Ultra-Wideband Microstrip- to-WR15 Waveguide Transition for MMIC Applications Bent Walther', Marcel van Dekler', Thomas Musch' "Ruhe-University Bochum	EuMIC/EuMC04-11 A 30-W GaN Quasi-MMIC Doherty Power Amplifier Based on AII-Distributed Inductors Load Network Rui-Jie Lui, Xia-Wei Zhu, Jing Xia ¹ , Peng Chen ¹ , Chan Vu, Li Zhu, Zhang Xia ¹ , Peng Chen ¹ , Chan Vu, Li Zhu, Zhang Xia ¹ , Peng Chen ¹ , Chan Vu, Li Zhu, Zhang Xia ¹ , Peng Chen ¹ , Southeast University, Tiangeu University, Taubo Electronics Corporation		
EuMIC/EuMCO4-4 Analysis of RF Stress Influence on Large-Signal Performance of 22nm FDS01 CM0S Transistors utilizing Waveform Measurement Dang Khoa Hyori, Joang Hyu Le, Saffen Lehmanr, Zhixing Zheo, Cerman Bosari, Wafa Ardaro, Gel Wang, Thomas Kämple', Matthas Rudghi "Tranhofer Institute for Photonic Microsysters (PMS), Globalloundries, Germany, Brandenburg University of Technology (BTU)	EuMIC/EuMCO4-8 An Integrated Multiphysics Model for Phase-Change Material Switches Piere Blody', Ines Bettoum', Kateryna King- uchna', Olive Fug "Xim - UMR 7252 - UNIE's Universite De Linnoges, "XLM-HAR KUST 7252 - Universite De Linnoges, "Carrier National d'Etudes Spatiales (CNES)	EuMIC/EuMCO4-12 A Digital Power Amplifier for 32-QAM Gavin Wakins ¹ Techiba Europe Limited		

MONDAY 14:20 - 16:00

PROGRAMME

ROOM	Room 1	Room 6	Room 13	Room 14	
	EuMCO2 Innovative Microwave Circula- tors and Phase Shifters Chair: Bart Nauvelaers' Co-Chair: Marco Pasian ² 'KU Leuven, ² University of Pavia	EuMCO3 Non-planar Filters I Chair: Giuseppe Macchiarella' Co-Chair: Vicente E. Boria' 'Politecnico di Milano', Universitat Politecnica de Valencia	EuMCO4 Active Antennas and Architec- tures Chair: Nils Pohl! Co-Chair: Kevin Morris ⁴ 'Ruhr University Bochum, ² University of Bristol	EuMIC/EuMCO3 MMIC Power Amplifiers and Supply Modulation Chair:Jeff Powell' Co-Chair: Markus Mayer' 'Teratech Components, 'Arelis	
14:20 14:40	EuMCO2-1 Microwave Ferrite Components - an Industry Perspective Jinn Ascrot ¹ INDUSTRIAL KEYNOTE ¹ Honeywell	EuMCO3-1 The Extracted Zero Technique Simore Bastiol ⁱ INDUSTRIAL KEYNOTE 'RS Microwave	EuMCO4-1 7.5 GHz-Band Digital Beamforming Using 1-bit Direct Digital RF Trans- mitter with 10GbE Optical Module Ryo Tamura', Mizuki Motoyoshi', Suguru Kameda', Norharu Suematsu "Research Instituto of Electrical Communication, Tohoku University	EuMIC/EuMCO3-1 A 6-18 GHz 13 W and 22% PAE GaN Power Chipset MethEDINARI: Benoit MALLEFGUY', Wes Mancuso' INDUSTRIAL KEYNOTE 'Thales DMS France, 'Thales Defence Mission Systems (TDMS)	
14:40 15:00	EuMCO2-2 Broadband Ku- and Ka-Band Circulators in LTCC Using Sintered Bulk Ferrites Carsten Weil', Tim Hauck', Johannes Schur', Jens Miller 'AFT microwave GmbH, 'TU Ilmenau	EuMCO3-2 Dielectric-loaded Ku-Band Filter for High-power Space Applica- tions based on Barrel-shaped cavities Peals Valleronds' Fahriaio Caccianani', Luca Pelicia', Francesco Aquiro', Cristiano Tomas- son', Perrolio Martin-Jelsasa', Vittorio Tomeill di Crestvolant' 'R' Microach 2.17 University of Perruga, "R' Micro- tech s.21, "University of Perruga, "SA/ESTEC	ICO3-2 Stric-loaded Ku-Band Filter ligh-power Space Applica- is based on Barrel-shaped Iles Wierodraf: Fakrizio Carciamari, Luca Arranesso Aquiro, Cristano Tomati di dard Ziromesiy A deman, Star (STR) Timber Le Galf, Antonya Bond Luca, Schemer Mine Timber Des France, Bordeaux INP, IMS Laboratory Timber Des France, Bord		
15:00 15:20	EuMCO2-3 Quasi-Reflectionless Differential Phase Shifter with Arbitrary Prescribed Group Delay and Flat Phase Difference Girdiar Chaudray', Deahan Lee', Muhammad A Dhaudry', Yingshae Jahan Lee', Muhammad A Dhaudry', Yingshae Jahan Lee', Muhammad A Dhaudry', Yingshae Jahan Lee', Muhammad A	EuMCO3-3 LTCC based Ka-Band Diplexer for Miniaturized Ground-Segment User Terminals Davide Tradossi', Pado Vallenotorda', Luca Pelliccia', Stefan Mescato', Antonio Traversa', Gandemenio Cannow', Patra De Palol TRF Microtech s.J., TRF Microtech s.d./ University of Perugia, "SIAE Microtech s.d./ University of	EuMCO4-3 Antenna Mutual-Coupling Mitiga- tion With Analogue Compensation Network Roger Green', Tommaso Cappelo', Geoffrey Hilton', Mark Beach' 'University of Bristol	EuMIC/EuMCO3-3 Wideband Phase Modulator MMIC for K-Band Supply-Modulated Power Amplifier Linearization Greger Lasser', Corner Nogales', Maxwell R. Duffy', Zoya Pipovic ''University of Calarado, Boulder, 'Northrop Grum- man Corporation	
15:20 15:40	EuMCO2-4 A Phase Shifter Composed of Reduced-Size Rat-Race Coupler with CRLH Transmission Lines and Resonating Reactance Circuits Masshi Natarugawa', Fusuke Kuntani', Yuya Chiba', Tamani Maruyama' 'National Institute of Technology, Hakodate College	EuMCO3-4 Quadrature-Based Approach Used for Improved Fitting of Filter Measured S-parameters Jedrasi Michalzyk', Jerzy Michalski' SpaceForest	EuMCO4-4 Conformal Antenna with Reconfig- urability of Monopole-like and Broadside Patterns Realized with Polymer-Conductive Textile Composite Rw, B, V, B, Simorangkir', Bahare Mohamadzade', Ali Lablachtr', Sanjeev Karri, John L. Buckky, 'Ioni Borniner', Bunetan O'Flynn 'Tymdal National Institute, 'Nacquarie University, ' 'Tamper University.	EuMIC/EuMCO3-4 Compact Design of a L-Band 40W 40 MHz Envelope Tracking GaN Power Amplifier for Small Cells Olivie Nner, Winic Denentrov, Fredric Phanes', Denis Barataud', Michel Camponecchio' 'Thales Group, "Min-CNRS- Unversite De Limoges	
15:40 16:00	EuMCO2-5 Simultaneous Electric and Magnetic Two-Dimensional Tuning in Nonlinear Magnetic Transmis- sion Line Muhidur Rahman', Ke Wu' 'Polytechnique Montreal	EuMCO3-5 Narrowband Extracted Pole Filters With Mixed Dielectric and Waveguide Resonators in Ku-Band Patrick Boe', Daeiel Mike', Fynn Kanvrath', Kennet Braasch, Michael Mit' "Christian-Albrechts-Universität zu Kiel	EuMCO4-5 Design of a Multi-mode Transmis- sion System Based on Vortex Electromagnetic Wave Jialin Zhang ¹ "Beihang University (BUAA)	EuMIC/EuMCO3-5 A 600-W Enhancement-Mode GaN Multi-Level Dynamic Converter for Supply Modulated PAs Comor Nogales', Zoya Potovic', Gregor Lasser' 'University of Calorado at Boulder	

Quasi-Reflectionless Differential Phase Shifter with Arbitrary Prescribed Group Delay and Flat Phase Difference

Girdhari Chaudhary[#], Daehan Lee[#], Muhammad A. Chaudary^{*}, Yongchae Jeong[#]

[#]Division of Electronics Engineering, Jeonbuk National University, Republic of Korea ^{*}Department of Electrical and Computer Engineering, Ajman University, UAE girdharic@jbnu.ac.kr, ycjeong@jbnu.ac.kr

Abstract — This paper presents a design of a quasireflectionless differential phase shifter, which can provide arbitrarily prescribed group delay (GD) and flat phase difference. The proposed quasi-reflectionless differential phase shifter consists of quarter-wavelength coupled lines and series resistor-connected open-circuited half-wavelength stubs in the main and references branches. Closed-form design equations are derived to achieve arbitrary prescribed flat phase difference and GD. For flat phase difference within passband, the GD of the main and reference branches must be the same. In addition, the GD and phase difference flatness in passband are controlled by a series-connected resistor. For experimental validation, a microstrip line 90° quasi-reflectionless differential phase shifter with GD of 1.90 ns at a center frequency of 3.50 GHz is designed and fabricated. The measurement results are well agreed with simulation and theoretical predicted results.

Keywords — Arbitrary group delay, differential phase shifter, microstrip line, quasi-reflectionless.

I. INTRODUCTION

Differential phase shifter are indispensable components for phased array antennas, beamforming networks, and antenna feeding networks for modern wireless communication [1]. For realizing flat phase difference over the wideband between two output ports, different configurations of conventional differential phase shifters have developed by employing phase-adjusting line and uniform transmission line [3]-[7]. As a classical type, the Schiffman phase shifter is widely used, which have utilized an edge-coupled section in main branch as phase-adjusting technique for achieving flat phase difference [3]. To realize ultra-wideband differential phase shifter, multilayer structures have been adopted, which increases cost and complexity in fabrication [4]. To improve selectivity, filtering differential phase shifters have proposed by controlling fractional bandwidth of bandpass filter (BPF) between main and reference branch [5], [6]. Unfortunately, the conventional differential phase shifters have a reflective in nature in stopband.

In recent years, reflectionless BPF and power dividers have become attractive to prevent interblock signal interference from unwanted RF signal power reflections and improve the stability of adjacent RF active circuits in RF front-end [7], [8]. Different topologies of reflectionless BPFs

Fig. 1. Proposed structure of quasi-reflectionless differential phase shifter (a) main branch and (b) reference branch.

have investigated in literature, however, these reflectionless circuits are limited to filter design or power divider and suffer from arbitrary prescribed GD analysis. Microwave circuits with arbitrarily prescribed GD response with respect to frequency have various applications in communication systems such as real-time analog radio-signal processing (R-ASP), phased array antenna, RF self-interference cancellation in-band full-duplex radio, and signal cancellation in the feed-forward amplifier [9], [10].

In this paper, we propose a quasi-reflectionless differential phase shifter using coupled lines and series resistor-connected stubs. An analytical design method has been developed to design a quasi-reflectionless filtering differential phase shifter with arbitrarily prescribed GD and flat phase difference. The arbitrarily prescribed GD and filtering response are realized by controlling a coupled line section and stubs. The halfwavelength open-circuited stubs contribute to the quasireflectionless characteristics at out-of-band signals. In addition, series resistors connected to the subs for achieving a flat GD response as well as the flat phase difference between the main and reference branch.

Fig. 2. Simulated results of quasi-reflectionless differential phase shifter with arbitrarily prescribed group delay of 1.50 ns at $f_0 = 3.50$ GHz.

Fig. 3. Simulated results of quasi-reflectionless differential phase shifter with a phase difference of 90° and different arbitrarily prescribed group delays.

Table 1: Circuit parameters for different phase difference

$Z_{ot1} = Z_{ot2} = 25 \ \Omega, \ \theta_{ref} = 45^{\circ}, \text{ and } \text{GD} = 1.5 \text{ ns at } f_0 = 3.50 \text{ GHz}$					
Branch	$\Delta \varphi$	$Z_{0ei}(\Omega)$	$Z_{0oi}(\Omega)$	$R_{\rm i}(\Omega)$	θ_{main}
Reference		110.67	63.73	50	
Main	150°	107.44	59.77	30	120°
	120°	108.16	60.59	30	105°
	90°	108.83	61.40	30	90°
	60°	109.48	62.19	30	75°

II. DESIGN METHOD

Fig. 1 shows the proposed structure of a quasireflectionless differential phase shifter. The proposed circuit consists of the main branch and its respective reference branch. Each branch comprises of $\lambda/4$ coupled lines (Y_{0ei} , Y_{0oi}) terminated with a series resistor (R_i) connected $\lambda/2$ opencircuit stubs (Y_{oti}). Since the structure is symmetrical, the *S*parameters of each branch is expressed as (1) by using even and odd-mode analysis.

$$S_{ii}^{r} = S_{ii}^{r} = \frac{Y_{0}^{2} - Y_{even}^{r} Y_{odd}^{r}}{\left(Y_{0} + Y_{even}^{r}\right)\left(Y_{0} + Y_{even}^{r}\right)}, i = 1, 2$$
(1a)

$$S_{ij}^{r} = \frac{\left(Y_{odd}^{r} - Y_{even}^{r}\right)Y_{0}}{\left(Y_{0} + Y_{even}^{r}\right)\left(Y_{0} + Y_{even}^{r}\right)}, \ j = 1, 2 \text{ and } i \neq j \quad (1b)$$

where *r* represents the main and reference branches. Similarly, $Z_0 = 1/Y_0$ is a port impedance. The detailed derivation of evenand odd-mode admittances (Y_{even}^r, Y_{odd}^r) of main and reference branch are given in [11]. The values of Y_{even}^r , Y_{odd}^r are expressed as (2).

Table 2: Circuit parameters for different group delay

$\theta_{main} = 90^\circ$, $\theta_{ref} = 45^\circ$, and $\Delta \varphi = 90^\circ$					
Branch	GD (ns)	$Z_{0ei}(\Omega)$	$Z_{0oi}(\Omega)$	$R_{\rm i}\left(\Omega\right)$	$Z_{oti}(\Omega)$
Reference	1	127.71	66.34	50	50
	1.5	110.67	63.73	50	25
Main	1	125.78	62.65	15	50
	1.5	108.83	61.40	30	25

$$Y_{even}^{r} = Y_{0} \frac{Y_{aa} Y_{bb} - Y_{ab}^{2} + j Y_{0} Y_{bb} \tan(\theta_{r} f / f_{0})}{Y_{0} Y_{bb} + j (Y_{aa} Y_{bb} - Y_{ab}^{2}) \tan(\theta_{r} f / f_{0})}$$
(2a)

$$Y_{odd}^{r} = Y_0 \frac{Y_{aa} + jY_0 \tan\left(\theta_r f / f_0\right)}{Y_o + jY_{aa} \tan\left(\theta_r f / f_0\right)}$$
(2b)

where

$$Y_{aa} = \frac{n_1 Y_{0oi}^2}{m_1 \left(1 + k_i\right)^2} - j \frac{Y_{0oi}}{1 + k_i} \left\{ \cot \frac{\pi f}{2f_0} - \frac{n_2 Y_{0oi}}{m_1 \left(1 + k_i\right)} \right\}$$
(3a)

$$Y_{ab} = \frac{n_1 k Y_{0oi}^2}{m_1 \left(1 + k_i\right)^2} - j \frac{k_i Y_{0oi}}{1 + k_i} \left\{ \cot \frac{\pi f}{2f_0} - \frac{n_2 Y_{0oi}}{m_1 \left(1 + k_i\right)} \right\}$$
(3b)

$$Y_{bb} = \frac{n_1 k_i^2 Y_{0oi}^2}{m_1 \left(1 + k_i\right)^2} - j \frac{Y_{0o}}{1 + k_i} \left\{ \cot \frac{\pi f}{2f_0} - \frac{n_2 k_i^2 Y_{0oi}}{m_1 \left(1 + k_i\right)} \right\}$$
(3c)

Fig. 4. Simulated results of quasi-reflectionless differential phase shifter with a phase difference of 90° and different arbitrarily prescribed group delay.

$$m_{1} = \left(\frac{1}{Z_{\lambda i}} + \frac{Y_{0oi}}{1+k_{i}}\cot\frac{\pi f}{2f_{0}}\right)^{2} + \frac{R_{i}^{2}Y_{0oi}^{2}}{Z_{\lambda i}^{2}\left(1+k_{i}\right)^{2}}\cot^{2}\frac{\pi f}{2f_{0}}$$
(3d)

$$n_1 = \frac{R_i}{Z_{_{\lambda i}}^2} \csc^2 \frac{\pi f}{2f_0}, \ Z_{_{\lambda i}} = -\frac{1}{Y_{_{oti}}} \cot \frac{\pi f}{f_0}$$
 (3e)

$$n_{2} = \left\{ \frac{1}{Z_{\lambda i}} + \frac{R_{i}^{2} Y_{0oi}}{Z_{\lambda i}^{2} \left(1 + k_{i}\right)} \cot \frac{\pi f}{2f_{0}} + \frac{Y_{0oi}}{1 + k_{i}} \cot \frac{\pi f}{2f_{0}} \right\} \csc^{2} \frac{\pi f}{2f_{0}} \quad (3f)$$

$$Y_{0ei} = \frac{1 - k_i}{1 + k_i} Y_{0oi}$$
(3g)

and i = 1, 2. The phase difference between the main and reference branch is determined as (4).

$$\Delta \varphi = \angle S_{21}^{main} - \angle S_{21}^{ref} = 2\left(\theta_{main} - \theta_{ref}\right) \tag{4}$$

Using phase of S_{21} in (1b), the GD of main and reference branch are determined as (5).

$$\tau\Big|_{f=f_0}^{main} = \frac{a_1 Y_{001}^3 + Y_{001} c_1 + d_1}{4 f_0 b Y_{001}^2} + \frac{\theta_{main}}{\pi f_0}$$
(5a)

$$\tau\Big|_{f=f_0}^{ref} = \frac{a_2 Y_{0o2}^3 + Y_{0o2} c_2 + d_2}{4 f_0 b Y_{0o2}^2} + \frac{\theta_{ref}}{\pi f_0},$$
 (5b)

where

$$a_{i} = \frac{1 - k_{i}^{2}}{Y_{0}^{2} (1 + k_{i})^{3}}, \ b_{i} = \frac{k_{i}^{2}}{Y_{0} (1 + k_{i})^{2}}, \ i = 1, 2$$
(6a)

$$c_i = \frac{k_i^2}{1+k_i}, \ d_i = 2k_i^2 Y_{oti}, \ i = 1,2$$
 (6b)

An arbitrarily specified GD and magnitude response of each branch can be obtained by selecting the appropriate Y_{0oi} and k_i if Y_{oti} are specified by the designer. Therefore, Y_{0oi} in terms of specified GD at f_0 , k_i , and Y_{oti} can be found as (7).

$$a_{i}Y_{0oi}^{3} - 4f_{0}b_{i}\left(\tau\Big|_{f=f_{0}}^{\text{main or ref}} - \frac{\theta_{\text{main or ref}}}{\pi f_{0}}\right)Y_{0oi}^{2} + Y_{0oi}c_{i} + d_{i} = 0$$
(7)

As noted from (7), Y_{0oi} has three roots and one of these roots is the optimum circuit parameter. To achieve flat phase difference, the GD of main and reference branch must be chosen same value.

To validate the analytical analysis, Fig. 2 shows the simulated results with different flat phase difference and arbitrarily prescribed GD of 1.5 ns at center frequency $f_0 = 3.50$ GHz. Table 1 depicts the calculated circuit parameters. The proposed phase shifter provides three reflection zeros and flat phase difference of 150° , 120° , 90° and 60° within passband frequency. Moreover, the GD remains constant at f_0 even though phase difference is changed from 60° to 150° . The return loss (RL) is quasi-reflectionless, where RL is higher than 6 dB in all frequency ranges.

To illustrate the arbitrary prescribed GD, Fig. 3 shows the simulation results. In this design example, the phase difference is chosen as 90° whereas GD is selected as 1 ns and 1.50 ns at f_0 . The calculated circuit parameters are shown in Table 2. As observed from this figure, transmission magnitude 3dB bandwidth as well as flat phase difference bandwidth are decreased while increasing the GD. Therefore, trade-off occurs between flat phase difference bandwidth and GD.

Fig. 4 shows the simulation results for demonstrating the flat GD characteristics. The arbitrarily prescribed flat GD (equiripple GD) in passband can achieved by controlling the series connected resistors. However, the transmission magnitude 3-dB bandwidth and flat phase difference bandwidth are decreased with an increase of GD. In addition, when GD ripple in passband edge is small, the input/output port return losses (RLs) are higher than 11 dB in all frequency range.

III. SIMULATION AND MEASUREMENT RESULTS

For experimental validation, a $\Delta \varphi = 90^{\circ}$ quasireflectionless differential phase shifter with GD of 1.90 ns at f_0 = 3.5 GHz is designed and fabricated on Taconic substrate with dielectric constant of 2.20 and thickness of 0.787 mm. The calculated circuit parameters of are given as main branch: $Z_{0e1}=1/Y_{0e1}=119.38 \Omega$, $Z_{0o1}=1/Y_{0o1}=74.03 \Omega$, $Z_{ot1}=1/Y_{ot1}=$ 25Ω , $R_1 = 30 \Omega$, $\theta_{main} = 90^{\circ}$ and reference branch: $Z_{0e2}=1/Y_{0e2}$ = 119.96 Ω , $Z_{0o2}=1/Y_{0o2}=75.66 \Omega$, $Z_{ot2}=1/Y_{ot2}=25 \Omega$, $R_2=$ 50Ω , $\theta_{ref}=45^{\circ}$. The simulation was performed using ANSYS HFSS 2021.

Fig. 5. Simulated and measurement results: (a) magnitude and (b) phase and group delay.

Fig. 5 shows the simulation and measurement results. The measurement results are well agreed with simulation results. From experiment, the insertion loss of main and reference branch are found to be 1.10 dB and 0.9 dB at $f_0 = 3.50$ GHz, respectively. The measured phase difference is determined as $89.9 \pm 1^{\circ}$ within bandwidth of 350 MHz (3.30 GHz to 3.65 GHz). Similarly, the measured GDs of main and reference branch are 1.92 ns and 1.88 ns at $f_0 = 3.50$ GHz. The measured RL is higher than 18 dB within 350 MHz (3.30 GHz to 3.65 GHz) passband frequency and higher than 6.5 dB in all frequency range. Photograph of fabricated circuits are shown in Fig. 6.

IV. CONCLUSION

This paper demonstrated the quasi-reflectionless differential phase shifter with arbitrarily prescribed group delay and flat phase difference. The proposed phase shifter is designed by using group delay analysis method. The flat phase difference between main and reference branch is achieved by calculating design parameters by equating the group delay of both branches. The passband group delay flatness as well as differential phase shift flatness can be controlled by series connected resistor. The proposed method can be easily extended for higher order by cascading number of 1-stage phase shifter. For experimental demonstration, a 90° phase shifter with group delay of 1.9 ns is designed and measured. The measured results well agreed with simulation and theoretically predicted results.

Fig. 6. Photographs of fabricated quasi-reflectionless differential phase shifter: (a) main branch and (b) reference branch.

ACKNOWLEDGMENT

This research was supported by National Research Foundation of Korea (NRF) grant funded by Korean Government (MSIT) under grant 2020R1A2C2012057 and in part by Basic Science Research Program through the NRF of Korea, funded by Ministry of Education under grant under grant 2019R1A6A1A0903171.

REFERENCES

- H. R. Fang, X. Tang, K. Mouthaan, and R. Guinvarc'h, "Two-octave digital all-pass phase shifters for phased array applications," *in Proc. IEEE Radio Wireless Symp. (RWW)*, pp. 169–171, Jan. 2013,
- [2] K. Wincza and S. Gruszczynski, "Broadband integrated 8 × 8 Butler matrix utilizing quadrature couplers and Schiffman phase shifters for multibeam antennas with broadside beam," *IEEE Trans. Microw. Theory Techn.*, vol. 64, no. 8, pp. 2596–2604, Aug. 2016.
- [3] Y.-X. Guo, Z.-Y. Zhang, and L. C. Ong, "Improved wide-band Schiffman phase shifter," *IEEE Trans. Microw. Theory Techn.*, vol. 54, no. 3, pp. 1196–1200, Mar. 2006.
- [4] M. Sorn, R. Lech, and J. Mazur, "Simulation and experiment of a compact wideband 90° differential phase shifter," *IEEE Trans. Microw. Theory Techn.*, vol. 60, no. 3, pp. 494–501, Mar. 2012.
- [5] Y. P. Lyu, L. Zhu, and C. H. Cheng, "Proposal and synthesis design of differential phase shifters with filtering function," *IEEE Trans. Microwave Theory Techn.*, vol. 65, no. 8, pp. 2906-2917, Aug. 2017.
- [6] Y. P. Lyu, L. Zhu, Q. S. Wu, and C. H. Cheng, "Proposal and synthesis design of wideband phase shifters on multimode resonators," *IEEE Trans. Microwave Theory Techn.*, vol. 64, no. 12, pp. 4211-4220, Dec. 2016.
- [7] B. Mini-Circuits, "Reflectionless filters improve linearity and dynamic range," *Microwave Journal*, vol. 58, no. 8, pp. 42–50, Aug. 2015.
- [8] R. Gomez-Garcia, J.-M. Munoz-Ferreras, and D. Psychogiou, "RF reflectionless filtering power dividers," *IEEE Trans. Circuits Syst. II*, Exp. Briefs, vol. 66, no. 6, pp. 933–937, Jun. 2019.
- [9] C. Caloz, S. Gupta, Q. Zhang, and B. Nikfal, "Analog signal processing: A possible alternative or complement to dominantly digital radio schemes," *IEEE Microw. Mag.*, vol. 14, no. 6, pp. 87-103, Sep. 2013.
 [10] G. Chaudhary and Y. Jeong, "Arbitrary prescribed wideband flat group
- [10] G. Chaudhary and Y. Jeong, "Arbitrary prescribed wideband flat group delay circuits using coupled lines," *IEEE Trans. Microwave Theory Techn.*, vol. 66, no. 4, pp. 1885-1894, Apr. 2018.
- [11] G. Chaudhary and Y. Jeong, "Arbitrary prescribed flat wideband group delay absorptive microstrip bandpass filters", *IEEE Trans. Microwave Theory Techn.*, vol. 69, no. 2, pp. 1404-1414, Feb. 2021.