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Abstract — This paper presents an integrated design of 
substrate integrated waveguide (SIW) bandpass filter (BPF) with 
a discrete low noise amplifier (DLNA). The SIW BPF was designed 

to match the complex source impedance of the low noise transistor 
(LNTR) and acted as the input matching network (IMN). For 
validation, a DLNA was designed for X-band application with the 

center frequency (f0) of 10 GHz. At f0, the measured small-signal 
gain and noise figure of the proposed DLNA with SIW BPF IMN 
are 12.85 dB and 2.15 dB, respectively. The proposed DLNA 

provides high out-of-band signal suppression. 
Index Terms — bandpass filter, low noise amplifier, subsrtate 

integrated waveguide. 

I. INTRODUCTION

Low noise amplifiers (LNAs), and bandpass filters (BPFs) 

are essential components in radio frequency (RF) front-end 

receiver systems. The LNA is generally used to enhance the 

power of the RF receiving signal with minimizing noise as 

small as possible, and it is usually cascaded with BPFs for 

harmonics rejection or frequency selection [1]-[2]. Typically, 

the BPFs and LNAs are designed individually with a system 

impedance that is usually 50 Ω. With the increasing demand for 

wireless communication systems, the integration designs of 

BPFs with LNAs were investigated in the literatures. To fulfill 

this requirement, the BPFs were designed to match the arbitrary 

real and/or complex termination impedances and acted as the 

matching networks (MNs). In [3]-[4], the designs of BPF MN 

based on the coupling matrix technique were realized using 

coupled waveguide cavities, while the bias circuits and 

transistor connection pads were realized on microstrip lines 

(MLs). Similarly, the integration designs of BPF with amplifier 

using substrate integrated waveguide (SIW) MNs were 

presented in [5]-[6]. In [5], the design method was based on 

active coupling matrix. In [6], a power amplifier (PA) was 

designed with SIW BPF output MN (OMN). Its electrical 

performances were compared to the electrical performances of 

conventional BPF cascaded with conventional PA which were 

designed separately with the termination impedance of 50 Ω. 
By using the integration design method, better electrical 

performances with smaller circuit sizes could be obtained. 

In this paper, an integration design of DLNA with BPF IMN 

is presented. The design parameters of the proposed BPF IMN 

can be obtained easily by using admittance inverters cascaded  

Fig. 1. Structure of arbitrary termination impedances BPF: (a) J-
inverters with LC-resonators and (b) its equivalent structure.

with LC-resonators. The proposed BPF IMN is realized from 

SIW cavities. By using the integration design DLNA with SIW 

BPF IMN, a good frequency selectivity with high out-of-band 

signal suppression is obtained.  

II. DESIGN METHODS

The structures of arbitrary termination impedances (ATI) 

BPF is presented in Fig. 1. The source and load admittances are 

YS = GS ± jBS and YL = GL ± jBL, respectively. Typically, YS = 

1/ZS and YL = 1/ZL where ZS = RS ± jXS and ZL = RL ± jXL. The 

complex admittances cannot directly match the adjacent J-

inverters. Therefore, the admittances Y01 and YnL are still in 

complex forms. According to the structure in Fig. 1(a), Y01 = 

G01 ± jB01 = J2
01/YS = J2

01(RS ± jXS) and YnL = GnL ± jBnL = J2
nL/YL 

= J2
n,n+1(RL ± jXL)  can be obtained. The susceptances of Y01 and 

YnL are combined with the susceptances of the first and the last 

LC-resonators, respectively, as shown in Fig. 1(b). The new 

susceptances, jB1׳(ω) = jB01(ω) + jB1(ω) is used to calculate the 

slope parameter for the first LC-resonator while jB׳n(ω) = 

jBn(ω)  + jBnL(ω) is used to calculate the slope parameter for the 

last LC-resonator. To match the imaginary parts of termination 

admittances, the resonant frequencies of the first and the last 

resonators must be detuned and can be calculated from (1) [7]. 

2

, ,

1, 0

, 0, 1, 1 , 0, 1, 1

FBW FBW
1

2 2

S L S L

S nL

S L n n S L n n

G G
f f

B g g B g g 

           

,           (1) 

where fS1 and fnL are the new resonant frequencies of the first 

and the last resonators, respectively; g0, g1, gn, and gn+1 are the 

element values of the low-pass prototype. The intermediate  

J0,1 J1,2 Jn,n+1Jn-1,nGS

BS

GL

BL

Y01 YnL(a)

J0,1 J1,2 Jn,n+1B1(w) B2(w) Jn-1,n Bn(w)GS GLB01(w) BnL(w)

B’1(w) B’n(w)
(b)

L1 C1 L2 C2 Ln Cn
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Fig. 2. Extracted QeS,eL and K12 of SIW cavities: K12 versus W1 and 
QeS,eL versus L1. 

 

Fig. 3. Layout with dimension of proposed SIW BPF IMN.  

resonators are not affected by complex impedance. When the 

imaginary parts of ZS and ZL are zeros, fS1 = fnL = f0 is obtained. 

By arbitrarily choosing inductor Li (i = 1, 2, 3, ∙∙∙, n-1), the 

capacitance of the parallel resonator can be obtained from Ci = 

1/ω2Li. The slope parameters of the first, intermediate, and last 

resonators can be found with b1 = 2πfS1, bi+1 = 2πf0, and bn = 

2πfnL, respectively. The values of J-inverters cab be calculated 

from the following equations. 

1 1

01 , 1 , 1

0 1 1 1

FBW FBW
, FBW ,S i i L n

i i n n

i i n n

G b b b G b
J J J

g g g g g g


 

 

   ,  (2) 

where FBW is the fractional bandwidth of the BPF. The 

coupling coefficient (Ki,i+1) of the resonator and the external 

quality factors (QeS,Ln) can be defined as follows [2]. 

, 1 1

, 1 1 2 2

01 , 11

, , ,
i i S L n

i i S Ln

n ni i

J G b G b
K Q Q

J Jb b






              (3) 

Further, QeS,Ln and Ki,i+1 can be extracted from 

electromagnetic (EM) simulation by using the following 

equations. 
2 2

1,

, 1 _ , _2 2

3dB

,
S LnH L

i i eS EM eL EM

H L

ff f
K Q

f f f





  

 
,           (4) 

where ∆f±3dB is the 3 dB-bandwidth while fH and fL are denoted 

the higher and lower resonant frequencies, respectively. 

Fig. 2 shows the extracted QeS,Ln and Ki,i+1 from SIW 

cavities. The QeS,eL can be controlled by moving the tap position 

from the short-circuit of the via-hole. The QeS,eL is decreased as 

the tap position from via-hole (L1) increases. Similarly, the 

value of K12 has increased as the width of the iris window (W1) 

increases. The BW of the SIW BPF can be controlled by 

adjusting the coupling iris window. 

 
(a) 

 
(b) 

Fig. 4. The comparison between EM simulation and measurement 

results: (a) impedance points on Smith chart and (b) S-parameters. 

III. INTEGRATED DESIGN OF DLNA WITH SIW BPF IMN 

For experimental validation, the proposed DLNA with SIW 

BPF IMN was designed by using NE32684A LNTR from NEC. 

Under the bias conditions of VGS = –0.325 V and VDS = 2 V, ZS 

= 11.45 – j3.2 Ω and ZL = 17.24 – j14 Ω were extracted at f0. ZS 

was transformed to Zin by the bias circuit and a dc-block. From 

electrical simulation with ADS software, Zin = 15 - j25 Ω was 
obtained. The BPF IMN was designed with FBW, resonator 

order (n), and input return loss (|S11|) of 5%, 3, and 20 dB, 

respectively, with Chebyshev response.  From (1), fnL was 

calculated and detuned to 10.5 GHz. By choosing Li = 2 nH, C1 

= Ci = 1.2665 pF and Cn = 1.1487 pF were calculated. Similarly, 

J01 = 0.003053, J12 = 0.000409, J23 = 0.000433, and J34 = 

0.00544 were calculated by using (2). K12 = K23 = 0.05151 while 

QeS = 17 and QeL = 17.12 were calculated from (3). The output 

MN (OMN) was realized using MLs. 

IV. SIMULATION AND MEASUREMENT RESULTS 

The proposed DLNA was implemented on RT/Duriod 5880 

substrate with εr = 2.2 and h = 0.508 mm. The layout with 

dimensions of proposed SIW BPF IMN was shown in Fig. 3. 

The matching impedances and S-parameter responses obtained 

from EM simulation and measurement results are shown in Fig. 

4(a) and (b), respectively. The target impedance of ZS was 

obtained at f0 with the measured insertion loss of 0.96 dB. 

Photograph of the fabricated DLNA with SIW BPF IMN 

was shown in Fig. 5. Fig. 6 shows the comparison of 
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Fig. 5. Photograph of fabricated DLNA. 

 
Fig. 6. The comparison of S-parameters between EM simulation 

and measurement results. 

S-parameters obtained from EM simulation and measurement 

within the frequency range from 6 to 14 GHz. The measured S-

parameter response of proposed DLNA was shifted up 

compared to the response obtained from EM simulation. The 

small-signal gain of 12.85 dB was obtained at f0. The minimum 

attenuation of 40.6 dB and 32.4 dB were obtained from 6 to 9.1 

GHz and 11.2 to 14 GHz, respectively. Fig. 7 shows the 

comparison of noise figure (NF) between EM simulation and 

measurement results. At f0, the measured NF is 2.15 dB. For the 

output power test, the continuous-wave (CW) signal was used 

in the measurement. The output power at 1-dB compression 

point (P1dB) of 8.07 dBm was measured at f0 and it was denoted 

in Fig. 8. Similarly, the measured input third-order intercept 

point (IIP3) is approximately 14.2 dBm while the output third-

order intercept point (OIP3) is around 26 dBm. The proposed 

DLNA with SIW BPF IMN was design and implemented on a 

simple ML at X-band, which is a simple and cheap fabrication 

process. 

V. CONCLUSION 

This paper demonstrates a design approach of an integrated 

design between SIW BPF and DLNA. For experimental 

demonstration, the proposed DLNA with SIW BPF IMN was 

fabricated and measured. The measured frequency response of 

proposed DLNA was shifted up compared to the responses 

obtained from EM simulation due to the slightly different 

during the fabrication process. However, the proposed DLNA 

provides good out-of-band signal suppression at the stopbands. 

The proposed DLNA can remove a receiving BPF cascaded 

from the receiving antennas and also reduce the complexity of 

the receiver in the RF front-end systems. With the obtained 

electrical performances, the proposed DLNA design method 

can be applied to RF circuits and RF front-end systems designs. 

 
Fig. 7. The comparison of noise figures between EM simulation 
and measurement results. 

 
Fig. 8. Measured IIP3 and OIP3 of proposed DLNA. 
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