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Abstract: Here, we report the synthesis of the WSz nanorods (NRs) using an eco-friendly and facile
hydrothermal method for an acetone-sensing application. This study explores the acetone gas-sens-
ing characteristics of the WSz nanorod sensor for 5, 10, and 15 ppm concentrations at 25 °C, 50 °C,
75 °C, and 100 °C. The WS2 nanorod sensor shows the highest sensitivity of 94.5% at 100 °C for the
15 ppm acetone concentration. The WSz nanorod sensor also reveals the outstanding selectivity of
acetone compared to other gases, such as ammonia, ethanol, acetaldehyde, methanol, and xylene at
100 °C with a 15 ppm concentration. The estimated selectivity coefficient indicates that the selectiv-
ity of the WSz nanorod acetone sensor is 7.1, 4.5, 3.7, 2.9, and 2.0 times higher than xylene, acetalde-
hyde, ammonia, methanol, and ethanol, respectively. In addition, the WSz nanorod sensor also di-
vulges remarkable stability of 98.5% during the 20 days of study. Therefore, it is concluded that the
WSz nanorod can be an excellent nanomaterial for developing acetone sensors for monitoring
work/public places.

Keywords: WSz nanorods; gas sensors; acetone sensing; selective nature; durability; acetone sensing
mechanism

1. Introduction

The rapidly increasing industrial evolutions in the fields of agriculture, automobiles,
biomedical, and food packaging have introduced significant concerns about environmen-
tal monitoring technologies, leading to the development of reliable and durable gas sen-
sors [1]. The human exhaled breath contains numerous types of gases, such as ketones,
nitric oxide, aldehydes, volatile organic compounds, acids, and hydrogen sulfide [2,3].
Therefore, exhaled human breath is a significant and rousing issue from the outlook of
biomedical applications to inspect different diseases. Interestingly, the exhaled human
breath contains nearly 870 volatile organic compound types, indicating exclusive evi-
dence regarding metabolic disorders [4]. Therefore, studying exhaled human breath can
provide insights into crucial results of humans’ normal or abnormal metabolic states aris-
ing from psychological stress [5]. Acetone molecules have been considered hazardous to
human health and the environment. Acetone is a member of a family of volatile organic
compounds that can influence the human nervous system and other organs under exces-
sive exposure to concentrations of nearly 173 ppm [6]. Acetone is a vital aspect of the
human metabolic system and can be examined through blood, breath, and urine [7,8]. It
has been found to be a precise biomarker to recognize individuals with diabetes type-I
due to the presence of high acetone vapor in the exhaled breath compared to healthy hu-
mans [9]. Various sensors, such as electrochemical, colorimetric, and resistive chemical
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gas, have been studied to detect acetone [10-12]. The colorimetric sensor provides low
accuracy and requires additional setups such as airbags and pumps, which makes it very
expensive [11]. However, the resistive chemical gas sensor offers high sensitivity, stability,
fast responses, portability, and recovery, which makes it a cheap gas-sensing setup with
low-cost sensor fabrication [12].

Among various transition metal dichalcogenides (TMDs), tungsten disulfide (WSz) is
considered the most prominent two-dimensional (2D) nanomaterial for developing novel
applications [13]. 2D layered nanomaterials have been extensively examined because of
their remarkable properties, such as physical, optical, electronic, and mechanical, which
can stimulate their performance in various applications [14]. WSz, a member of the layered
hexagonal family, is a promising nanomaterial with 0.62 nm interlayer spacing composed
of covalently bonded S-W-S atoms, where each layer is weakly bonded by Van der Walls
forces [15,16]. WSz has no dangling bonds, which makes it extremely stable and non-reac-
tive. It can absorb nearly 10% of the incident light due to its high absorption coefficient of
1.5 x 106 cm™ [17]. It offers the desired engineering in the optical bandgap with high pho-
toluminescence yields due to quantum confinements [18]. Interestingly, it exhibits an ex-
clusive property of an engineering optical bandgap from an indirect optical bandgap of
1.4 eV (bulk) to a direct optical bandgap of 2.1 eV (monolayer), which provides a spin—
orbit solid interaction [18,19]. Therefore, the WSz nanostructure has been studied in nu-
merous types of applications, such as monolayer-based field-effect transistors [20], solar
cells [21], monolayer-based light-emitting diodes [22], gas sensors [23], neuromorphic de-
vices [24], biosensors [25], supercapacitors [26], lithium-ion batteries [27], and electrocat-
alytic [28] and photocatalytic water splitting [29]. WSz has been prepared using various
methods, such as hydrothermal [30], solvothermal [31], chemical vapor deposition (CVD)
[32], hot injection [33], thermal evaporation [34], and DC sputtering [35]. WSz has been
explored in various types of morphologies, such as quantum dots [36], heterostructures
[37], nanowire-nanoflake [38], nanorods [39], nanoflowers [40], and nanosheets [41].

Recently, various morphologies of WSz have been investigated for the detection of
different types of gas. Liu et al. discussed the acetone gas-sensing behavior of WS:/WO:s
heterojunctions [42]. The WS2/WOs-4 heterojunctions sensor offers reasonable sensitivity
for acetone at a concentration of 20 ppm at 150 °C, selectivity in the presence of various
hazardous gases, and stability for one month at a 150 °C working temperature for 20 ppm.
Tang et al. inspected the NO: gas-sensing performance of the WS2/IGZO p-n heterojunc-
tion sensor [23]. It shows a response of 230% for 5 ppm NO: gas and 18,170% for 300 ppm
NO: gas. It also suggests that the recovery percentage increases with increasing the gas
concentration. Kim et al. studied the WSz nanosheet-based carbon monoxide gas sensor
[43]. It depicts the CO response of 3 for 50 ppm concentration and the selective response
of 3.75 for 50 ppm CO. It shows the response time of 339 s and recovery time of 567 s for
50 ppm CO. Ahmadvand et al. reported the ethanol sensor using the hybrid structure of
the WSz and graphene oxide nanoribbons (WS2/GONRs) [44]. It is observed that the
WS2/GONRs show responses of 13.5 for 1 ppm and 438.5 for 21 ppm concentrations of
ethanol at room temperature. Guang et al. explored ammonia sensing characteristics us-
ing the Au-coated WS [45]. It shows a good gas response of 452% for 10 ppm of ammonia
at room temperature. It also proposes a response time of 96 and a recovery time of 76 at
room temperature for 10 ppm ammonia. Asres et al. investigated the HaS sensing proper-
ties using the WSz sensor [46]. It shows that the WSz sensor behaves as a robust gas sensor
for a high H>S response. However, very limited reports exist for acetone sensing using the
WS: sensing elements. Therefore, it is concluded that acetone detection using WSz sensors
needs more attention from researchers to develop an extremely selective, responsive, and
long-life gas sensor.

In this study, the WSz nanorods were prepared using the hydrothermal method for
the acetone-sensing application. The WSz nanorod sensor displays outstanding acetone-
sensing properties for 15 ppm concentrations at an operating temperature of 100 °C. It is
observed that the WSz nanorod sensor shows a rapid response and fast recovery time.
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Furthermore, the WSz nanorod sensor displays excellent acetone selectivity compared to
other test gases. Moreover, the WSz nanorod sensor reveals outstanding stability during
its long-term use. Therefore, it is concluded that these unique properties make it a remark-
able acetone sensor for future applications in work/public places.

2. Materials and Methods
2.1. Materials Synthesis

The tungsten(IV) chloride, thioacetamide, ethanol, polyvinylidene fluoride (PVDEF),
hexamethyldisilazane (HMDS), xylene, methanol, N-Methyl-2-pyrrolidone (NMP), am-
monia, and acetaldehyde were purchased from Sigma-Aldrich (St. Louis, MO, USA),
which were utilized for the synthesis of WSz nanorods as received.

The WSz nanorods were prepared using a facile and eco-friendly hydrothermal pro-
cess. In the synthesis process, 0.1904 g of the tungsten(IV) chloride compound was mixed
in 80 mL of deionized (DI) water under dynamic stirring to achieve a good mixture. After
that, 0.1803 g of thioacetamide was put into the prepared mixture solution using magnetic
stirring to prepare a well-mixed solution. Furthermore, we added 1 mL of hexamethyl-
disilazane (HMDS) as a surfactant to control the morphology of the desired final product.
Moreover, this prepared solution of tungsten(IV) chloride and thioacetamide was trans-
ferred to the 100 mL Teflon-lined autoclave. Further, this solution-filled autoclave was put
into an air oven at 180 °C for twenty-four hours. Finally, the as-prepared nanomaterials
were rinsed with ethanol and DI water. Further, it was dried at 70 °C for 10 h in a vacuum
oven and processed with heat treatment at 200 °C for 3 h under a vacuum.

2.2. Materials Characterizations

Transmission electron microscopy (TEM) (JEOL JEM 2100F, JEOL Ltd., Tokyo, Japan)
was utilized to explore the structural, morphological, lattice spacings, and lattice planes
of WSz nanorods. In addition, the atomic-resolution high-angle annular dark-field
(HAADF) and electron energy loss spectroscopy (EELS) were investigated using a JEOL,
JEM-2100F, JEOL Ltd., Tokyo, Japan, to study the elemental color mapping of WSz nano-
rods.

2.3. WS2 NRs-Based Sensor Fabrication and Measurements

The following process was used to fabricate the WSz nanorods-based acetone sensor:
The first binder solution of 0.5 g of polyvinylidene fluoride (PVDF) was prepared using
solvent N-Methyl-2-pyrrolidone (NMP) in a drop-wise manner. After that, we slowly
added WSz nanorod powder to the binder solution and mixed it well to obtain the desired
solution for sensor fabrication. The WSz nanorod gluey solution was coated on the glass
substrate using drop-casting and dried slowly at 40 °C. Further, the silver paste was used
to make contact on both sides of the film (deposited on glass) for the electrical connection.
The gas-sensing measurements were conducted using the Keithley-2100 multimeter; how-
ever, the Motwane-454 multimeter was used to maintain the temperature inside the test
chamber. The acetone gas-sensing measurements were investigated at 25 °C-100 °C for 5
ppm, 10 ppm, and 15 ppm concentrations. The acetone concentrations were injected into
the test gas chamber using a Hamilton micro-syringe. In addition, the volume of the ace-
tone concentrations (C, ppm) was estimated using Equation (1) [47]:

224XT XV, xp

where C (ppm) is the desired acetone concentration, p (g L) is the liquid acetone density,
Vi (uL) is the volume of the liquid acetone, M (g mol™) is the molecular weight of the
acetone, T (°C) is the working temperature of acetone sensing, and V is the acetone gas
test chamber.
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3. Results and Discussion
3.1. Morphological, Structural, and Elemental Study

Figure 1 shows the schematic depiction of synthesis, the crystal structure, and the
acetone-sensing properties of the WSz nanorods. It depicts the solution preparation of
tungsten and thioacetamide with the HMDS surfactant. It also reveals the hydrothermal
reaction conditions at 180 °C for 24 h. Furthermore, it verifies the successful synthesis of
WSz2nanorods via TEM images. It shows the crystallographic illustration of the WSz crystal
structure and the visualization of the acetone-sensing mechanism. The detailed synthesis
procedure was discussed in the material synthesis section. The detailed synthesis proce-
dure was discussed in the acetone-sensing mechanism section.

1 ml HMDS

Deionized water

Tungsten(I1V) chloride

Thioacetamide

TEM

on e@ 00 Acetoneo COzo HZOO/ \W" S -0/

-

Figure 1. Concept of the WSz nanorod synthesis method. Crystallographic presentation of WSz crys-
tal structure. Graphic of the acetone-sensing mechanism of the WSz sensor. Visualization and inter-
actions of molecules and electrons during acetone sensing of WSz sensor.

Figure 2a-d display the morphology of the WS2 nanorods using the TEM at different
scale bars. Figure 2a,b depict the agglomerations of the WSz nanorods with various sizes
and lengths. It seems to be overlapped, crossed WSz nanorods, which can improve oxygen
molecules” conduction mechanism and interactions with the nanorods and gas-sensing
properties. Figure 2¢ displays the WSz nanorods whose length varies from nearly 20 nm
to 200 nm. It also elucidates the WS2 nanorods whose widths fluctuate from 3 nm to 6 nm.
Figure 2d shows several attached WSz nanorods, forming various intersections between
nanorods. It also reveals a thickness of 3 nm to 6 nm and a length of 20 nm to 200 nm of
WS2 nanorods. It seems to develop several solid connections/attachments between the na-
norods, which offer a large surface area, more adsorption, and chemisorption of atmos-
pheric oxygen and gas molecules.
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Figure 2. (a-d) TEM images of the WSz nanorods at the different scales.

Figure 3a-e show the HRTEM and fast Fourier transform (FFT) patterns to explore
the crystal structure, lattice spacing, and lattice planes of the WSz nanorods. Figure 3a
displays the HRTEM image of the WSz nanorods with 2 to 5 nm thickness, and the length
varies from 20 nm to 100 nm. Figure 3b,c reveal the magnified HRTEM images of the WS:
nanorods, indicating lattice spacings of 0.28 nm corresponding to the (100) lattice plane.
Further, Figure 3d,e exhibit the FFT patterns of the WSz nanorods to study the lattice plane
and spacing, signifying the growth of the (100) lattice plane corresponding to the lattice
spacing of 0.28 nm. The FFT pattern justifies the lattice spacing results, as shown in Figure
3a. The literature reports discussed similar HRTEM and FFT results of WSz nanostructures
[48,49].



Sensors 2022, 22, 8609

6 of 14

(e)
~ 0.28 nm

Figure 3. (a) HRTEM image, (b,c) magnified HRTEM images, and corresponding (d,e) FFT patterns
of the WSz nanorods.

In addition, the elemental information of the WSz nanorods was studied using the
HAADF image consistent with the color mapping of tungsten and sulfur elements. Figure
4a—c unveil the dark-field TEM (HAADF) image and corresponding elemental mapping
of tungsten and sulfur elements of the WSz nanorods. Figure 4a divulges the HAADF im-
age of the WS2 nanorods to examine the elements’ composition and presence in the desired
area. It also shows short to long WSz nanorods with thin diameters. Figure 4b,c reveal the
color mapping of tungsten and sulfur elements of the WSz nanorods from the selected area
(as shown in Figure 4a). It exhibits the presence of tungsten and sulfur elements over the
selected area, confirming the successful formation of the WSz composition. These results
are well-matched and supported by the HRTEM and FFT results of the WS..

Map data 134 Map data 134
HAADF MAG: 320Kkx HV: 200KV ———1 W HAADF MAG: 320Kx HV: 200KV

Figure 4. (a) HAADF image and corresponding color mapping of (b) tungsten and (c) sulfur ele-
ments of the WSz nanorods.

3.2. Acetone-Sensing Characteristics

The temperature and test gas concentration mainly affect the gas-sensing properties
of the sensor. Therefore, it is necessary to find the optimum working temperature for a
specific gas concentration of the chemical gas sensors. In light of this, we investigated the
acetone-sensing properties of the WSz nanorod sensor at 25 °C-100 °C for 5 ppm, 10 ppm,
and 15 ppm concentrations. The desired acetone concentration of the WSz nanorod sensor
was evaluated with the help of Equation (1). In addition, the acetone gas sensitivity [S (%)]
of the WSz nanorod sensor was estimated using Equation (2) [50]:
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S(%) — Ry — Racetone % 100 (2)
Ra

where Rs and Rucetone are the resistances measured under air and different acetone gas con-
centrations at different operating temperatures.

Figure 5a shows the sensitivity vs. temperature plots of the WSz nanorod sensor for
5,10, and 15 ppm acetone concentrations. It is found that the sensitivity increases with the
increasing acetone concentration and operating temperature of the WSz nanorod sensor.
The WSz nanorod sensor shows the highest sensitivity of 94.5% for 15 ppm of acetone at
100 °C. However, the WSz nanorod sensor reveals the lowest sensitivity of 18.5% for 5
ppm of acetone at 25 °C. The high sensitivity observed at 100 °C compared to the low
sensitivity at 25 °C, 50 °C, and 75 °C for increasing concentrations may be attributable to
the following reasons: (i) The high thermal energy at 100 °C (as compared to 25 °C) allows
more thermally excited electrons to reach the conduction band, which can easily interact
with the oxygen molecules to form the active site on the WSz nanorod sensor surface; (ii)
the large surface area of the 2D WSz nanorod provides more interactions of oxygen mole-
cules to form a large amount of active site on the sensor surface; (iii) the high elec-
tronic/ionic conductivity of WSz; (iv) high electronic and chemical responsiveness; and (v)
rapid adsorption/desorption and extremely high diffusion of acetone molecules, leading
to fast and outstanding sensitivity [51-53]. Figure 5b manifests the sensitivity vs. acetone
concentration plots of the WSz nanorod sensor at two operating temperatures of 25 °C and
100 °C. It is perceived that the WSz nanorod sensor divulges low sensitivities of 18.5%,
24.7%, and 32.5% at an operating temperature of 25 °C for 5, 10, and 15 ppm of acetone,
respectively. However, the WS: nanorod sensor displays high sensitivities of 64.5%,
82.4%, and 94.5% at an operating temperature of 100 °C for 5, 10, and 15 ppm of acetone,
respectively. It is also elucidated that the sensitivity increases with the acetone concentra-
tion at 25 °C and 100 °C. Many factors influence the sensitivity of the WSz nanorod sensor
due to the following reasons: (i) The high diffusion rate of gas molecules on the WSz na-
norod sensor surface due to the high concentration gradient of acetone molecules. The
concentration gradient is proportional to the diffusion rate; therefore, acetone sensitivity
increases with the acetone concentration at 25 °C and 100 °C. Furthermore, (ii) the acetone
molecules formed a significant dipole moment due to the presence of the C-C=O group. It
encourages the chemical adsorption/desorption and redox reaction capability of the WS
nanorod sensor material [3,54].

100 100
(a) (b)
80 804{... 25°C
g 3 s 100 °C
2 601 > 60-
2 : 7
@ =
1 TN
o »
201 o ppi 20+
10 ppm
—@— 15 ppm
T L) T L) T L} T T L] 0
20 30 40 50 60 70 80 90 100110 5 10 15
Operating temperature (°C) Concentration (ppm)

Figure 5. (a) Acetone sensitivity vs. temperature plots and (b) acetone sensitivity vs. concentration
plots of the WSz nanorod sensor.

Figure 6a shows the transient characteristic of the WSz nanorod sensor at 25 °C and
100 °C for 5, 10, and 15 ppm of acetone. It shows a fast response and recovery at all acetone
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concentrations. It also exhibits that as the acetone concentration increases, the recovery
and the response time decrease. This may be because of the enhanced chemisorption rate
of acetone molecules on the WSz nanorod sensor’s surface [55,56]. Figure 6b illustrates the
response and recovery time plot of acetone molecules of the WSz nanorod sensor. The
response and recovery times were estimated when the WSz nanorod sensor attained 90%
of its maximum value and recovered 90% of its minimum value [57]. The WSz nanorod
sensor displays a quick response time of 3.02 min and a recovery time of 3.41 min at 100
°C for the 15 ppm concentration. This may be due to the high surface area of WSz nano-
rods, rapid adsorption/desorption, and the chemisorption process. On the other hand, the
reduction in the depletion layer and potential barrier height is due to more thermally ex-
cited electrons in the conduction band, leading to quick response and recovery [58,59].

100
1004 (@) (b) Wm
25°C 80 $ \
801 s 100°C e . ¢
9 £ £ 60- | o o
< 60 c ° & = T§ s E
- o - -
2 £ = * | 2 s @ \ 2
Z 40{$ 8 S e I e
& ] b | @ L 3
D
220 20- ? Y-
9
S5 . . ; . . (o, : i —
0 10 20 30 40 50 30 35 40 45 50
Time (min.) Time (min.)

Figure 6. The WSz nanorod sensor: (a) Transient characteristics at 25 °C and 100 °C for 5, 10, and 15 ppm
acetone concentrations and (b) estimation of response and recovery time at 100 °C for 15 ppm of acetone.

Interestingly, the selectivity of the gas sensor plays a vital role in distinguishing the
specific gas from various other gases. Here we investigated the selectivity of the WSz na-
norod sensor to six gases, including acetone. Figure 7a shows the sensitivity vs. test gas
plots of the WSz nanorod sensor at 100 °C for 15 ppm concentrations of various gas to
disclose the selectivity behavior. It is detected that the WSz nanorod sensor reveals the
maximum sensitivity to acetone (94.5%) compared to the other gas, such as ethanol
(46.4%), methanol (33.2%), ammonia (25.7%), acetaldehyde (21.2%), and xylene (13.2%) at
100 °C for 15 ppm concentrations. In addition, the selectivity coefficient (Cs) to quantify the
sensitivity of the WSz nanorod sensor was calculated using the following Equation (3) [60].

CS — SSacetone (3)
other gas

The estimated values of Cs of the WSz nanorod-based acetone sensor are 2.0 (ethanol),
2.9 (methanol), 3.7 (ammonia), 4.5 (acetaldehyde), and 7.1 (xylene). These C; values indi-
cate that the sensitivity of the WSz nanorod sensor to acetone is 7.1, 4.5, 3.7, 2.9, and 2.0
times higher than xylene, acetaldehyde, ammonia, methanol, and ethanol, respectively.
Therefore, it is concluded that the WSz nanorod sensor is most suitable for acetone detec-
tion compared to other tested gases at 100 °C with 15 ppm concentrations. The lowest
unoccupied orbital energy has different values for different gases [61]. Figure 7b depicts
the stability plot of the WSz nanorod sensor for 20 days for 15 ppm concentrations at 100
°C. The sensitivity of the WSz nanorod sensor slowly reduces with time from 94.5% (on
the 1st day) to 93.0% (on the 20th day). It also exhibits the excellent stability of the WSz
nanorod sensor of 98.5% over twenty days for a 15 ppm acetone concentration at 100 °C.
The high stability of the WSz nanorod sensor may be due to the excellent electrical and
thermal conductivity of WSz2. On the other hand, the nanorod’s large surface area also
provides high exposure to acetone molecules and rapid interactions with the adsorbed
oxygen-active ions (O"), leading to excellent stability.
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Figure 7. (a) Selectivity and (b) stability and corresponding sensitivity of the WSz nanorod sensor.

In addition, a comparison between the various TMD-based acetone sensors has been
discussed here with our observed results of the WSz nanorod sensor. The MoS2-CuO nano-
composite sensor exhibited a high response of 16.21 for 10 ppm acetone at room temper-
ature. It also showed a fast response of 61 s and recovery of 85 s [62]. The WS2/WQs sensor
has demonstrated a prolonged response time of 823 s and recovery time of 1093 s at 100
°C for 20 ppm acetone [42]. The decoration of Co3Os on ZnS nanorods has been discussed
regarding the acetone-sensing characteristics, which elucidated a high response of 1650%
for 500 ppm acetone at room temperature under 2.2 mW c¢cm2 UV illumination [63]. A 2D
SnS nanoflakes-based sensor displayed a high response of 1000%, a response time of ~35
s, and a recovery time of ~45 s at 100 °C for 10 ppm acetone [64]. SnS>-based sensors have
demonstrated a high response of ~25, a response time of ~210 s, and a recovery time of
~600 s at 300 °C for 10 ppm acetone [65]. We found very limited reports on the WSz-based
acetone sensor in the literature. Therefore, it is concluded that the WSz nanorods could be
a promising nanomaterial for an acetone sensor.

3.3. Oxygen Active Site Formation and Acetone Molecule Detection Mechanism

The acetone recognition mechanism of the WSz nanorod sensor essentially depends on
the change in sensor resistance during gas sensing. The chemisorption reaction among the
adsorbed active sites (O-) on the WSz nanorod surface and acetone molecules determines the
gas-sensing process [66]. It regulates the concentration of oxygen molecules with the WSz na-
norod sensor surface and modulates the sensor resistance [67]. Equations (4)—(6) represent the
interaction reactions of atmospheric oxygen molecules and the creation of active sites (O-) on
the WSz nanorod surface at different operating temperatures [51,68,69].

0, (atmospheric) & 0,(adsorbed) (4)
0,(adsorbed) + e~ & 05 (adsorbed) <100 °C (5)
05 (adsorbed) + e~ < 20~ (adsorbed) 100 °C-300 °C (6)

These active oxygen ions/sites are responsible for interacting with the acetone mole-
cules. Therefore, the possible reaction between the adsorbed active sites (O-) and acetone
molecules on the WSz nanorod sensor surface is discussed in Equation (7) [59,70].

CH,COCH, + 80~ & 3C0, + 3H,0 + 8e~ )

Figure 8a—f show the schematic drawings of the oxygen adsorption reaction, deple-
tion layer formation, the creation of a potential barrier, and reaction mechanisms of ace-
tone molecules with the oxygen active sites (O-) on the WSz nanorod surface. Figure 8a—c
depict the schematic sketch of the creation of active sites on the WS: nanorod sensor sur-
face and depletion region in the electronic band structure. Firstly, atmospheric oxygen
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[Oz(atmospheric)] was adsorbed on the WSz nanorod sensor surface (O:(adsorbed)) using
the process discussed in Equation (4). Further, it is expected that, below 100 °C, the ad-
sorbed oxygen (O:(adsorbed)) interacts with the electrons in the conduction band and cre-
ates the active sites (O2") on the WSz surface, as discussed in Equation (5). After that, active
sites (Oz") take more thermally excited electrons from the conduction band of the WS2 na-
norod, finally creating the active sites (O-) on the WSz nanorod sensor surface, as discussed
in Equation (6). Figure 8b portrays a schematic view of the emergence of a depletion layer
around the WSz nanorod sensor surface during the adsorption process, which plays an
intensive role in acetone sensing. Figure 8c describes the electronic band structure of the
WS2 nanorod sensor following the various steps as discussed in Equations (4)—(6). It illus-
trates that the depletion layer and potential barrier are created during the adsorption and
active site (O-) formation on the WSz nanorod sensor. Similar reports have studied and
discussed the exploration of the concept of the creation of active oxygen ions/sites in the
literature [71-73]. Figure 8d reveals the graphical visualization of the interaction between
acetone molecules and the active site (O) on the WSz nanorod sensor surface, following
the process discussed in Equation (7), showing the liberation of CO: gas, H20, and elec-
trons in the conduction band of the WSz nanorod. Figure 8e discloses an illustration of the
acetone-sensing mechanism (as discussed in Equation (7)) on the WSz nanorod sensor sur-
face and the release of carbon dioxide, water, and electrons. Figure 8f unveils the elec-
tronic band structure of the chemisorption of acetone molecules on the WS nanorod sen-
sor (as discussed in Equation (7)). It is observed that the declining depletion region and
the height of the potential barrier are created during the adsorption and creation of the
active site (O-) on the WSz nanorod surface. It also frees electrons in the conduction band
of the W52 nanorod sensor during the release of the carbon oxide and water molecules.
The sensitivity of the acetone increases with increasing temperature and concentration due to
the reduction in the depletion region and potential barrier heights, as schematically illustrated
in Figure 8a—f, which supports the results discussed in Figures 5 and 6. Similar reports of ace-
tone-sensing mechanisms have been studied and discussed in the literature [73-76].

nc) Depl}tmn layer
Potential barrier

\ WS, nanorod Surﬁy

/( f) Dcpl::[tion laycer \

Potential barrier

4 Ey

S _////
— WS, nanurnd/ \ ‘WS, nanorod Surfacy

o+0

Figure 8. WSz nanorod sensor: (a,d) Graphical illustration of adsorption of oxygen via electron in-
teractions, formation of the active sites on the surface, and interaction of active sites with the acetone
molecules; (b,e) visualization of a depletion layer formation around the WSz nanorod by adsorbed
active sites, and acetone-sensing reaction mechanism; (c,f) electronic band structure during active
site formation and chemisorption of acetone molecules of the WSz nanorod sensor.
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4. Conclusions

In conclusion, we studied an acetone gas-sensing application based on WSz nanorods
(NRs). The WSz nanorod sensor shows the highest sensitivity of 94.5% at 100 °C for 15
ppm acetone. It also discloses the admirable selectivity of acetone compared to other
gases, such as xylene, methanol, ammonia, acetaldehyde, and ethanol at 100 °C with a 15
ppm concentration. Further, it demonstrates fantastic stability over 20 days at 100 °C for
a 15 ppm concentration. Consequently, it is concluded that the WSz nanorod can offer a
new choice for fabricating reliable, low-cost, environmentally friendly acetone sensors for
observing workplace safety.
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