
Computers and Electronics in Agriculture 212 (2023) 108044

Available online 22 July 2023
0168-1699/© 2023 Elsevier B.V. All rights reserved.

Deep learning-based multi-cattle tracking in crowded livestock farming 
using video 

Shujie Han a,b, Alvaro Fuentes a,b, Sook Yoon c, Yongchae Jeong d, Hyongsuk Kim a,b,*, 
Dong Sun Park a,b,* 

a Department of Electronics Engineering, Jeonbuk National University, Jeonju, South Korea 
b Core Institute of Intelligent Robots, Jeonbuk National University, Jeonju, South Korea 
c Department of Computer Engineering, Mokpo National University, Muan, South Korea 
d Division of Electronics and Information Engineering, IT Convergence Research Center, Jeonbuk National University, Jeonju, South Korea   

A R T I C L E  I N F O   

Keywords: 
Deep learning 
Cattle tracking 
Video 
Crowded livestock farming 
Indoor environment 

A B S T R A C T   

Cattle monitoring is an essential aspect of precision farming, and recent advancements have greatly contributed 
to understanding cattle behavior using wearable devices like ear tags and collars, as well as contactless cameras 
for image-based detection. However, tracking multiple cattle in real farm conditions with cameras, particularly 
in crowded scenarios, poses significant challenges mainly due to scale variations, random motion, and occlusion. 
This paper proposes a deep learning-based framework with improved techniques for multi-cattle tracking using 
video, aiming to overcome these limitations. The proposed algorithm utilizes a detection-based tracking 
approach, leveraging a YOLO-v5 detector trained specifically for cattle detection to provide initial targets. The 
main contributions of our research primarily focus on implementing the tracking algorithm to address the 
aforementioned problems. Several improvements are introduced: first, to handle appearance and scale defor-
mation, a wide residual network with SPP-Net is employed as the backbone to extract cattle appearance infor-
mation. Second, an ensemble Kalman filter is utilized to adapt to unexpected movements. Additionally, the angle 
from the centered position of the individuals to the origin of the image is incorporated to predict their location. 
Third, to tackle occlusion, a novel bench-matching mechanism is designed, allowing for the retrieval of lost 
trajectories based on the assumption of a known number of cattle in the barn. To validate the performance of the 
proposed framework, experiments are conducted using video sequences from our Hanwoo cattle tracking dataset. 
Comparisons with other state-of-the-art trackers are also performed. Our method achieves an accuracy of 84.49 
% in data association, which represents a significant improvement considering the challenges involved in pre-
cision livestock farming applications.   

1. Introduction 

Animal welfare is a crucial factor in precision livestock farming, as it 
impacts economic gains and consumer health. Ensuring a good welfare 
state involves maintaining animal’s physical health, positive affective 
state, and the ability to express natural behaviors (Sih et al., 2004). 
Among various welfare assessment indices, behavior stands out as a 
readily understandable and commonly used indicator (Li et al., 2020). 
Studying individual animal behavior provides valuable insights for 
monitoring health, production, welfare assessment, and overall live-
stock management. In this study, our focus is on cattle, as they are a 

significant group of animals in this context. 
Tracking plays a fundamental role in monitoring cattle behavior, 

enabling precise farm management for each individual animal. The 
objective is to track cattle individually over extended periods, allowing 
for in-depth behavior analysis. Wearable devices like ear tags (Dogan 
et al., 2019; Zin et al., 2020; Li et al., 2021) and collars (Bailey et al., 
2018) equipped with Radio Frequency Identification (RFID), acceler-
ometers, or Global Positioning System (GPS) sensors are popular 
methods for cattle tracking. Especially, RFID-based sensors are widely 
used due to their standard specifications and the provision of cattle 
identity information (Gillenson et al., 2019). However, this approach 
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has limitations due to the distribution of tag readers and environmental 
influences (Dogan et al., 2019). On the other hand, GPS sensors offer 
more cost-effective tracking for herds, but they are primarily suitable for 
outdoor use (Bailey et al., 2018). Accelerometers are often combined 
with localization devices (Cabezas et al., 2022; Benaissa et al., 2020) to 
improve performance but are not commonly employed for tracking 
objects. 

Surveillance cameras are another prevalent technique for monitoring 
farm conditions through smartphone apps or computer interfaces, 
providing video data that can be analyzed using computer vision algo-
rithms to identify and track cattle. Several classic algorithms such as 
Kernelized Correlation Filter (KCF) (Henriques et al., 2015), Tracking- 
Learning-Detection (TLD) (Kalal et al., 2012), boosting, Multi-Instance 
Learning (MIL), Random Forest (Ter-Sarkisov et al., 2017), and Kal-
man Filter (Martinez-Ortiz et al., 2013) have been applied for this pur-
pose. However, the effectiveness of these tracking algorithms can be 
influenced by the farm configuration, which affects the feature extrac-
tion process. 

While the above techniques have achieved substantial results, they 
have certain limitations. Wearable devices may damage or alter cattle 
behavior, while surveillance systems with traditional algorithms require 
human intervention to manually observe and detect changes. To over-
come these limitations, recent works have proposed automatic systems 
based on RGB cameras, designed to monitor cattle behavior with 
reduced human involvement (Meunier et al., 2018; Fuentes et al., 2020; 
Salau and Krieter, 2020; Zambelis et al., 2021). 

With the recent advances in deep learning in computer vision tasks, 
cattle identification has become a popular area of study in precision 

livestock farming (Xu et al., 2022; Li et al., 2022; Weng et al., 2022; Qiao 
et al., 2021). However, tracking multiple cattle has received less atten-
tion in the literature. Common techniques involve constraining the vi-
sual space, such as creating corridors where only one animal can pass at 
a time (Martinez-Ortiz et al., 2013; Hu et al., 2020). Unfortunately, these 
limited environments are not conducive to long-term tracking. Tracking 
multiple cattle in crowded conditions using video data is more beneficial 
but poses challenges related to scale deformation, unexpected move-
ments, and occlusion. These challenges are primarily associated with the 
camera’s field of view in relation to the target objects. 

Existing solutions have presented independent methods to address 
the aforementioned challenges. For instance, Dao et al. (2015) extended 
the Real-time Compressive Tracking (RTCT) algorithm by (Zhang et al., 
2012) to handle the degradation of appearance features caused by scale 
deformation in cattle. Their method involved sampling data from rect-
angular regions within the bounding box and computing features from 
each sample region. Hashimoto et al. (2020) introduced a pre-processing 
technique called superpixels, which accurately described the appear-
ance and centroid of cattle. However, while complex appearance models 
can enhance tracking performance, they are time-consuming and cannot 
cope with occlusion problems. To reduce unexpected movements of 
cattle, Martinez-Ortiz et al. (2013) implemented an exit race spanning 
approximately 10 m in length. They utilized an overhead-mounted 
standard surveillance camera system that captured a primarily rear- 
view perspective of the cattle before entering a large barn. This setup 
minimized the chances of deformation and occlusion. To overcome oc-
clusion problems, Andrew et al. (2017; 2020) used Unmanned Aerial 
Vehicles (UAVs) to fix the camera’s perspective, which is beneficial for 

Fig. 1. Representation of a recorded video from our experimental sites. (A) Data used to train the detector. (B)-(F) Data used to test the tracker.  
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cattle tracking through a deep learning-based appearance model. 
However, this method is not applicable to more complex scenarios 
encountered in real farm setups, where freely moving cattle are moni-
tored using cameras. Occlusion can lead to the loss of trajectories, 
particularly when individuals obstruct the camera’s view. Ter-Sarkisov 
et al. (2017)devised a technique that involved extracting the contours of 
the tracked objects rather than relying on the background to retrieve 
trajectories. This approach enabled accurate tracking of cattle while 
minimizing confusion in trajectory reconstruction following occlusion 
events. However, it is important to note that this method may not 
consistently generalize to all cattle angles, making it less suitable for 
long-term tracking. 

To tackle the limitations of existing techniques, this paper proposes a 
deep learning-based framework for multi-cattle tracking, incorporating 
improved techniques to address scale deformation, unexpected move-
ments, and occlusion. Drawing inspiration from pedestrian (Sundar-
araman et al., 2021; Zou et al., 2022) and vehicle (Kocur and Ftacnik, 
2021; Wang et al., 2021) tracking methods, we adapted and extensively 
explored the concepts for cattle tracking. Our framework comprises two 
main components: an object detector based on YOLOv5 (Jocher et al., 
2022) to obtain the initial regions of the target cattle, and a tracker 
based on DeepSORT (Wojke et al., 2017) to track the identified in-
dividuals in the scene. DeepSORT is a well-established algorithm that 
leverages both motion and appearance information to achieve real-time 
tracking. It consists of three modules: an independent detector, a feature 
extractor, and a data association component operating under a tracking- 
by-detection paradigm. The detector operates independently from the 
tracker, providing detection results as input to the tracker. The feature 
extractor incorporates both appearance and motion models, employing 
a Convolutional Neural Network (CNN) model for appearance and a 
linear Kalman filter for motion. Finally, the Hungarian algorithm is 
utilized to associate the data, taking advantage of the appearance and 
motion model outputs. 

In this paper, we introduce key contributions that focus on improving 
the performance of the DeepSORT-based tracking algorithm for cattle 
tracking, specifically addressing the challenges discussed earlier. These 
contributions encompass the introduction of a fixed appearance model 
(AM) capable of accommodating scale deformation, the integration of a 
5-dimensional ensemble Kalman filter as a motion model (MM) to 
effectively adapt to unexpected cattle movements and the development 
of an innovative bench-matching mechanism (BM) designed to handle 
occlusion. By integrating these proposed techniques into our framework, 
we achieved accurate and efficient multi-cattle tracking, successfully 
overcoming the hurdles associated with scale deformation, unexpected 
movements, and occlusion. 

To demonstrate the effectiveness of our work, extensive experiments 
were conducted using video sequences from our cattle tracking dataset, 
focusing specifically on Korean Hanwoo cattle. The proposed model 
achieved satisfactory performance in data association by employing the 
implemented strategies, surpassing the original DeepSORT algorithm in 
the same task. The advancements presented in this research provide an 
efficient strategy to address the challenges of tracking multiple cattle for 
precision livestock farming in indoor environments. 

The rest of this paper is organized as follows: Section 2 introduces 
our datasets and elaborates on our proposed framework. Section 3 shows 
the experimental results and ablation study. Section 4 discusses the 
limitations and deployment requirements of our framework. Finally, 
Section 5 concludes the paper. 

2. Materials and methods 

In this section, we first present the dataset employed in this study. 
Subsequently, we examine the challenges associated with our approach 
and introduce the proposed method for mitigating these challenges. 

2.1. Dataset 

In order to conduct this study, we deployed a CCTV surveillance 
camera system within a cattle farm situated in Imsil, South Korea. The 
primary objective of this setup was to capture the natural behavior of the 
cattle without inducing any disturbances or modifications. Examples of 
the recorded videos from the two sites are presented in Fig. 1. Our ex-
periments encompassed the utilization of a dataset specifically of Han-
woo cattle, which included both training and testing videos. 

For the training of the detector, a total of 2,250 images were 
extracted from the video footage captured at the first farm (Fig. 1A) with 
a frame rate of 15 frames per second (fps). Initially, the annotated 
dataset was designed for cattle activity recognition (Fuentes et al., 
2020), encompassing behaviors such as walking, resting, standing, etc. 
However, for the purpose of this study, only the location information 
with bounding boxes was utilized to generate a dataset specifically 
tailored for individual cattle detection. To train the appearance model, 
570 images from the same video of the first farm were selected, 
comprising a total of 9,690 instances within the same video setting. 

To evaluate the performance of the tracker, various videos captured 
from a different farm were utilized. These videos featured different 
viewpoints and encompassed a total of 17 cattle (Fig. 1B-1F). The re-
cordings were obtained from a closed barn measuring 30 × 12 m. The 
videos included a side view (Fig. 1B), long-distance views (Fig. 1C, 
Fig. 1D, Fig. 1F), and a close-up view (Fig. 1E), all in the north–south 

Fig. 2. Challenges on video-based multi-cattle tracking. (A) Scale deformation. (B) Unexpected movements and occlusion.  
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direction. From these videos, 2,000 images were utilized for fine-tuning 
the detector. Finally, the test set consisted of six video clips, totaling 
3,800 images. Specifically, the side view data consisted of two clips 
recorded at 9:31 A.M., while the north–south direction views comprised 
four clips captured at 4:30P.M. on a different day. 

2.2. Challenges 

The task of tracking multiple cattle in crowded farm scenarios using 
video requires addressing the following key challenges:  

- Scale deformation. Cattle can undergo significant shape changes 
relative to the camera, even with slight movements from a stable 
viewpoint, as shown in Fig. 2A. This deformation degrades the 
appearance model, as a fixed-size input image can distort the cattle’s 
features. To address scale deformation, we employed a wide-residual 

network (Zagoruyko and Komodakis, 2017) with SPP-Net (He et al., 
2014) as the backbone, serving as the appearance model (AM). This 
model effectively extracts the appearance information of cattle, 
considering their varying scales. 

- Unexpected movements. Cattle movements are irregular and un-
predictable, as illustrated in Fig. 2B. Conventional linear uniform 
motion models fail to accurately predict their movements. To ac-
count for unexpected movements, an ensemble Kalman filter was 
used to implement a nonlinear motion model (MM). Additionally, we 
incorporated the angle from the centered position of the cattle to the 
image origin to enhance the prediction of their corresponding loca-
tions. This approach enabled the filter to utilize a 5-dimensional 
prediction vector encompassing position, size, and angle.  

- Occlusion. The camera installation setup in the farm often leads to 
severe occlusion as cattle move around the barn, resulting in the loss 
of trajectories, as shown in Fig. 2B. To tackle occlusion, we propose a 

Fig. 3. General overview of our model. The detector has the function of detecting cattle targets from a video sequence. Then, the obtained detections and tracks are 
used for feature extraction except in the initial frame, where only detections are employed. In the data association stage, a Hungarian algorithm matches detections 
and tracks. Finally, the bench-matching mechanism retrieves unmatched tracks. 

Fig. 4. Pseudocode of the cattle tracking framework.  
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novel bench-matching mechanism (BM) aimed at recovering lost 
trajectories. This mechanism relies on the assumption that the 
number of cattle in the barn remains constant and they never 
disappear from the scene. When a new trajectory is created, it is 
considered a “bench player” temporarily listed on the bench for the 
subsequent few frames. Subsequently, this new trajectory is 
compared with the lost trajectories to determine whether it should 
replace a lost trajectory or be retained as a new one. 

2.3. Proposed method for multi-cattle tracking 

This part introduces the proposed method, starting with a general 
overview of the architecture. Subsequently, we provide a comprehen-
sive description of each component within the system, which includes 
the appearance model (AM) to adapt cattle features effectively, the 
utilization of a nonlinear motion model (MM) that incorporates 5- 
dimensional motion information, and the implementation of a bench- 
matching mechanism (BM) designed to recover lost trajectories. 

2.3.1. General overview 
The proposed cattle tracking framework consists of the following 

modules: the detector, feature extraction, data association method, and 
bench-matching mechanism. These modules are depicted in Fig. 3. Our 
primary contributions lie in the feature extraction component and the 
novel bench-matching mechanism (BM) to address the challenges 
mentioned in Section 2.2. Within the feature extraction part, we 
employed the appearance model (AM) and non-linear motion model 
(MM) to extract target features in diverse scenarios. Additionally, we 
introduce the innovative bench-matching mechanism (BM) to iteratively 
match and recover lost trajectories within the barn. Subsequent sub-
sections provide detailed explanations of each module. 

The process starts with an image sequence extracted from a video 
used as input to the detector. The object detector was trained separately 
on our cattle dataset, and its final weights were used to provide the 
initial detection targets with their corresponding location within an 
image. Specifically, we utilized a one-stage detector, YOLOv5 (Jocher 
et al., 2022), due to its robustness in dealing with scale variations and 
faster processing speed. YOLOv5 creates features from the input 

sequence and feeds them through the prediction head to draw boxes 
around targets and predict their classes. 

Once the initial targets are obtained, they are initially marked as 
unmatched detections and randomly assigned ID numbers to enter the 
tracker. Then, the feature extraction module, serving as the first part of 
the tracker, processes the AM and MM. The data association then 
matches the detections and tracks. As a result, matched detections are 
marked as matched tracks. Finally, the BM uses the remaining un-
matched detections to retrieve unmatched tracks. 

The algorithm’s pseudocode is presented in Fig. 4. The appearance 
cost was evaluated using the nearest neighbor distance, and the motion 
cost was described using the Mahalanobis distance. We set the appear-
ance weight as 0.3 and the motion weight as 0.7 to obtain the cost matrix 
to match tracks, considering that cattle movements were easier to pre-
dict in the short term. Finally, the system creates new tracks if there are 
still unmatched detections after going through all the modules. 

2.3.2. Appearance model (AM) 
The appearance model involves extracting features from the de-

tections, but it does not apply to tracks. For tracks, we store the feature 
vectors obtained from the previous frame. To address this, we designed a 
wide-residual network as the appearance model. The appearance model 
consists of a convolution layer, followed by four residual blocks in the 
backbone, and an SPP layer, as shown in Fig. 5A. 

In the case of our detection problem, the shape of the cattle in the 
image sequence undergoes significant deformation due to changes in 
perspective, primarily because of their large and non-rigid body. While a 
typical solution would involve normalizing the size of detections, this 
approach introduces feature distortion, preventing the model from 
learning essential features. To overcome this issue, we incorporated an 
SPP layer into our architecture. The SPP layer utilizes spatial pyramid 
pooling to remove the fixed-size constraint of the network instead of 
normalization, allowing for more effective feature extraction. 

Fig. 5B illustrates the architecture of a residual block used in the 
appearance model. Each residual block consists of convolution layers 
with kernel sizes of 3 × 3 and 1 × 1, except the first block, which solely 
contains convolution layers with a 3 × 3 kernel size. The channel con-
figurations for the blocks were set as [64, 128, 256, 512]. Additionally, 

Fig. 5. Architecture of the appearance model. (A) Overview of the model with a convolution layer, four residual blocks, and an SPP-Net layer. (B) A residual block 
from the appearance model. 1 and 2 represent the stride size. 
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we introduced an SPP layer with kernel sizes of 3 × 3, 2 × 2, and 1 × 1. 
During training, we employed two fully-connected layers and a 

SoftMax classifier to detect cattle. In the tracking stage, we only utilized 
the feature vectors from the backbone. 

2.3.3. Nonlinear motion model (MM) 
In addition to the appearance features, motion features were also 

extracted in the feature extraction module. While an original Kalman 
filter relies on detections as measures to predict tracks, we found that the 
random nature of cattle movements in our application requires a 
nonlinear movement model for more accurate predictions. Therefore, 
we employed an ensemble Kalman filter approach, which utilizes an 
ensemble of hundreds to thousands of state vectors randomly sampled 
around the estimate and adds perturbations at each update and 

prediction step, resulting in improved predictions that better align with 
cattle motion patterns. 

Additionally, to capture essential information about cattle move-
ment, we utilized a 5-dimensional vector. This vector includes the center 
position, height, width of the cattle, and the angle from the center po-
sition to the image origin. We observed that the absolute position of the 
cattle within the barn serves as a reliable indicator of their location, 
assuming they never leave the designated space. 

In Fig. 6, we present an example of the trajectories of the sine value of 
the angle for two annotated cattle, identified as No.9 and No.14. We 
noticed significant changes in these values when the cattle’s trajectory 
deviated. Hence, the accurate angle feature played a crucial role in data 
association. To predict the 5-dimensional vector [x, y, w, h, θ] as the 
motion features, we utilized the ensemble Kalman filter. Here, x and y 

Fig. 6. The sinθ value of different trajectories. The value changed drastically when an ID transfer happened.  

Fig. 7. Flow of the bench matching mechanism. Starting from the i-th frame, an unmatched detection is processed in two ways, created as a new track and re- 
matched with a substitute track. After 3 frames, the minimum cost bench is selected as matched track. 
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represent the center position coordinates, w and h denote the width and 
height of the cattle, and θ indicates the angle from the centered position 
to the image origin. 

2.3.4. Bench-matching mechanism (BM) 
In the final step of tracking, we applied our novel bench-matching 

mechanism to handle any remaining unmatched detections, typically 
objects that reappear after being occluded. Unmatched detections often 
occur during occlusion when the location of the cattle changes from its 
previous position. Consequently, retrieving the trajectory when the 
same object is detected again becomes challenging for the original 
DeepSORT algorithm. Instead, it creates a new trajectory, resulting in an 
ID transfer. 

To address this issue, we propose a bench-matching mechanism 
specifically designed for a cattle barn, which is a closed environment 
where individuals consistently remain in place. Additionally, we 
assumed that cattle will never disappear within the barn, enabling us to 
retrieve lost trajectories through long-term recoveries. 

Fig. 7 illustrates the concept of a bench for a trajectory. The 
appearance cost value is used to create a substitute track on the bench 
for unmatched tracks. Simultaneously, an unmatched detection is 
initiated as a new track on the bench. It is important to note that the 
bench merely represents a potential trajectory. The confirmed trajectory 
is determined by selecting the substitute or new track with the minimum 
appearance cost. In this process, motion information is not utilized as the 
location of the redetected object is lost. Only substitutes that match for 
three consecutive frames can be selected. 

3. Experimental results 

This section provides an overview of the implementation details for 
both the detector and the tracker. Subsequently, we present experi-
mental results to showcase the performance of our proposed techniques 
when applied to the tracker. 

3.1. Implementation details 

Detector. To facilitate the training of the YOLO-v5 detector, all 
images were resized to dimensions of 608 × 608. Data augmentation 
techniques were applied to enhance the diversity of the training data, 
including methods such as mosaic, mixup, shear, rotation, pepper, and 
salt. 

The detector was trained with Stochastic Gradient Descent (SGD) 
with a learning rate of 0.01. The training was conducted for a total of 60 
epochs, with 3 warm-up epochs and a weight drop of 0.0005. Fig. 8 
shows the training curves, evaluated using the mean Average Precision 

(mAP). Our model achieved an mAP of 97 % mAP with an IoU (Inter-
section over Union) threshold of 0.5. To generate more candidate de-
tections and avoid misdetection, we adjusted the confidence and IoU 
thresholds. Specifically, we set the thresholds to 0.3 to increase the 
number of candidates while maintaining a reasonable level of accuracy. 

Tracking. The tracker was trained using SGD with a learning rate of 
0.01 but for 30 epochs. We employed a drop weight of 0.0005 and did 
not include a warm-up phase in the training process. 

During the subsequent stage, candidates were first evaluated for non- 
maximal suppression (NMS). We implemented candidate pools with 
three different NMS thresholds: 0.9, 0.7, and 0.5. This approach allowed 
us to add more candidates to the pools when the number of candidates 
does not match all the paths. In the data association stage, we assigned 
an appearance weight of 0.3 and a motion weight of 0.7. The confidence 
and IoU thresholds were also set to 0.55 and 0.5, respectively. In the 
bench-matching stage, only the appearance model is utilized for data 
association. 

Metrics. To evaluate the effectiveness of our framework, we 
employed several standard metrics commonly used in tracking evalua-
tions. These include Higher-Order Tracking Accuracy (HOTA) (Luiten 
et al., 2021), Association Accuracy (AssA) (Luiten et al., 2021), Identi-
fication metric (IDF1) (Ristan et al., 2016), Multi-Object Tracking Ac-
curacy (MOTA) (Bernardin and Stiefelhagen, 2008), and Multi-Object 
Tracking Precision (MOTP) (Bernardin and Stiefelhagen, 2008). MOTA 
and MOTP are metrics that accumulate the accuracy per frame and the 
precision of the bounding boxes. However, they do not count errors 
where the same predicted ID is changed to a different ground truth ID 
(ID transfer). It is then suggested that they are more likely to measure 
detection performance than the association. To measure ID transfer, 
IDF1 calculates a bijective mapping between the ground truth sets and 
the trajectory predictions, unlike MOTA, which matches at a detection 
level. Similarly, AssA measures the accuracy of the data association 
directly. To fairly combine all the different aspects of the tracking 
evaluation, HOTA is the geometric mean of a detection score and an 
association score. Further details regarding the metrics and their cor-
responding equations can be found in the Appendix. 

3.2. Quantitative results 

We conducted a comparative analysis of our model, which in-
corporates the Appearance Model (AM), Motion Model (MM), and 
Bench-Matching (BM) techniques to address challenges related to scale 
deformation, unexpected movements, and occlusion. We evaluated our 
model against several state-of-the-art trackers including DeepSORT 
(Wojke et al., 2017), SORT (Bewley et al., 2016), OC-SORT (Cao et al., 
2022), ByteTrack (Zhang et al., 2022), and Tracktor (Bergmann et al., 

Fig. 8. Results of cattle detection based on the YOLOv5 architecture. (A) mAP curve trained with an IoU threshold of 0.5. (B) Example results of the detector on a 
test image. 
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2019) using our test set comprising six video clips. The tracking results 
averaged across the predictions from these six video clips are presented 
in Table 1. 

In the context of cattle tracking, it is crucial to minimize ID transfer 
and accurately maintain the trajectories of target candidates. Therefore, 
metrics such as IDF1, AssA, and HOTA hold particular significance to 
assess cattle tracks. As presented in Table 1, our model outperformed the 
others in terms of IDF1, AssA, and HOTA, indicating superior data as-
sociation capabilities. These results suggest that our model is better 
suited for effective cattle tracking, as it demonstrates enhanced ability in 
maintaining accurate track associations. 

Our framework performed best in terms of IDF1 due to its discreet 
creation of new IDs through the Bench-Matching (BM) mechanism. New 
IDs were generated only when none of the candidates on the bench 
matched with unmatched detections. On the other hand, our model 
sacrificed detection performance by predicting absolute positions and 
creating bench candidates to improve data association. In contrast, 
DeepSORT and SORT algorithms showcased better in MOTA and MOTP, 
indicating that both methods focus more on detection performance than 
ours. 

In terms of processing time, SORT utilized the IoU overlapping 
instead of CNN as the appearance model, resulting in the fastest infer-
ence speed. SORT achieved a rate of 28 fps, DeepSORT at 11 fps, and our 
proposed approach operated at 3 fps. 

3.3. Ablation study 

To provide a more comprehensive analysis of our proposed im-
provements, we conducted an ablation study that decomposed the three 
modules: Appearance Model (AM), Motion Model (MM), and Bench- 
Matching (BM). This study aims to showcase their individual effects 
on the final tracking results using two side-view videos, as summarized 
in Table 2. 

Starting by implementing each model independently (top of Table 2), 
the results revealed that AM served as the base module for improving the 
baseline performance. It enhanced the AssA score by 6.99 % and ach-
ieved at least a 3 % improvement in HOTA and IDF1. This improvement 
can be attributed to AM effectively addressing the challenge of scale 
deformation by extracting more informative features. Notably, BM 
played a significant role in achieving these outcomes. The best results 

were obtained when AM, MM, and BM were used in combination. 
However, a decrease in performance was observed when using only two 
of the three models (AM, MM, BM). This can be attributed to the fact that 
AM focuses on appearance, while MM focuses on motion. Over-
emphasizing AM may undermine the effectiveness of MM when 
matching objects, and vice versa. It is important to note that our BM 
solely utilizes the appearance feature for data association. Thus, to 
resolve the conflict between the three models, it is essential to balance 
their weights based on different test data. 

In summary, our results indicate that AM and MM contributed to 
improved tracking precision, while BM enhanced the data association 
capabilities of the framework. However, it is crucial to carefully balance 
the weights assigned to each model. Furthermore, we analyzed the 
inference speed of different modules and found that the AM module 
consumed the most time, resulting in a rate of 3 frames per second (fps). 
This is because inputs of varying sizes require more time to extract 
features compared to batch processing with uniform sizes. Nevertheless, 
the computational cost of the complete model depends on the specific 
application and the utilization of the AM. In certain cases where cattle 
appearance is difficult to distinguish, the AM module can be excluded 
from the test data. Consequently, the results of the ablation study 
highlight the advantages of our model in closed barns with crowded 
scenarios. 

3.4. Qualitative results 

Fig. 9 and Fig. 10 depict the qualitative results of our model. In 
particular, Fig. 9 showcases the outcomes obtained from various view-
point videos recorded simultaneously. To demonstrate the significance 
of our study, we present the results for a continuous duration of 3 s from 
each video. It is important to note that each video has a duration of 46 s 
and was captured at a frame rate of 15 frames per second (fps). The 
testing was conducted independently for each video, which means the 
IDs assigned to the cattle in different videos do not need to be aligned. 

While our model exhibited stable performance on most clear objects, 
it missed detecting some cattle in instances where they were located too 
far from the viewpoint. Nonetheless, the model’s performance remained 
consistent on the majority of visible objects. 

Fig. 10 displays the outcomes obtained from different models using 
the same views. The video used for evaluation has a duration of 33 s and 
was recorded at a frame rate of 15 frames per second (fps). In this sce-
nario, our model successfully retrieved some cattle that were initially 
lost during detection, as evident from the trajectories of No. 3 and No. 
18. 

When comparing our model with other methods, it becomes 
apparent that OC-SORT and ByteTrack exhibited noticeable missing 
trajectories and experienced ID transfer issues, particularly with half- 
exposed cattle located at the bottom of the images. Additionally, 
Tracktor encountered detection errors, as evidenced by instances like 
No. 16, No. 21, and No. 23, where only the heads of the cattle were 
detected. 

To provide a clear complement to the qualitative results, we utilized 

Table 1 
Tracking results of the applied models.  

Model IDF1 
(%) 

AssA 
(%) 

HOTA 
(%) 

MOTA 
(%) 

MOTP 
(%) 

fps 

SORT  83.59  75.4  73.55  83.08  85.51 28 
DeepSORT  88.96  81.17  76.80  84.23  85.43 11 
OC-SORT  67.97  70.97  59.39  54.59  84.39 5 
ByteTrack  64.42  68.44  56.76  52.78  84.88 6 
Tracktor  84.65  80.63  73.33  77.85  82.42 4 
Ours  90.22  84.49  77.64  82.75  85.36 3 

*The numbers in bold represent the best scores in each case. 

Table 2 
Ablation study on our three proposed techniques.  

DeepSORT AM MM BM IDF1(%) AssA(%) HOTA(%) MOTA(%) MOTP(%) fps 

✓     80.78  73.22  68.84  78.06  83.98 11 
✓ ✓    84.18  80.21  72.02  74.45  84.13 3 
✓  ✓   84.62  81.11  72.41  77.35  84.13 5 
✓   ✓  85.45  81.49  72.57  77.37  84.17 5 
✓ ✓ ✓   84.37  80.29  72.10  77.40  84.17 3 
✓ ✓  ✓  84.44  80.12  71.97  77.28  84.18 3 
✓  ✓ ✓  83.67  79.70  71.66  77.26  84.11 5 
✓ ✓ ✓ ✓  85.48  81.50  72.58  77.36  84.14 3 

AM: Appearance model; MM: Motion model; BM: Bench matching mechanism. 
*The numbers in bold represent the best scores in each case. 
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the sinθ of the trajectories to visualize their positional changes. We 
specifically compared the trajectories generated by our proposed model 
with those produced by the DeepSORT model. In Fig. 11 and Fig. 12, 
each curve corresponds to a trajectory generated by the respective 
tracking model. Note that each line in the figure represents a specific 
object only when the model’s tracking is completely accurate. Hence, an 
ideal result would consist of a continuous curve without any abrupt 
changes. A broken curve indicates that no object was detected, while a 
curve with sudden changes can indicate an ID transfer. 

In Fig. 11, we present the tracking results of our model on a test 
sequence consisting of 500 frames and 17 cattle. Our model generated a 
total of 22 trajectories, most of which are continuous and exhibit smooth 
transitions. Note that the area where trajectory No. 14 is located in-
cludes multiple broken and overlapping paths. This indicates the 
occurrence of frequent occlusions among the cattle in that specific area, 
resulting in some prediction errors. 

Similarly, Fig. 12 shows the results of the DeepSORT model on the 
same sequence. DeepSORT generated 43 trajectories, which is 21 more 
than our model. The trajectories produced by DeepSORT exhibit higher 

discontinuity and overlap. Additionally, the visualizations clearly 
demonstrate that the trajectories predicted by our model maintain 
greater consistency over time and remain in space in the long term. 

In summary, the qualitative results indicate that our proposed 
method exhibits strong data association capabilities, although it may 
face challenges with distant targets or the movement of calves. This 
observation is consistent with the sinθ trajectories, where our method 
generates more stable and continuous trajectories compared to the 
original method. Even in areas with frequent occlusions, where the 
trajectories overlap, our method demonstrates clearer tracking results. 

4. Discussion 

Cattle tracking poses unique challenges due to factors such as oc-
clusion, scale deformation, and unexpected movements. Cattle can be 
heavily occluded by other cattle due to their large body and their col-
lective behaviors. And it is often observed that occludes keep moving in 
the state of occlusion and reappear at a different location. And also, they 
can be shown in various areas in an image plane according to distance 

Fig. 9. Qualitative tracking results selected in 3 consecutive seconds using different viewpoints at same time.  
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and angle with a camera and their postures. 
Our proposed framework addressed these challenges through the 

integration of AM, MM, and BM techniques, enabling efficient tracking 
in crowded barn scenarios. However, it is important to acknowledge the 
strengths and weaknesses of our algorithm to guide future improve-
ments and replication of our work. One major limitation of our frame-
work is that the number of cattle must remain unchanged or the 
maximum number of tracks is required for effective bench-matching. 

In comparison to other algorithms like SORT (Bewley et al., 2016), 
our framework does have a processing time limitation. As demonstrated 
in the ablation study, the AM component is the main contributor to 
reduced speed. This issue arises because the appearance model extracts 
features on a per-sample basis rather than in batches. Addressing this 
challenge could involve exploring techniques such as parallel 
computing, presenting an opportunity for improvement in future 
studies. 

For broader application, it is recommended to implement the pro-
posed algorithm in closed indoor barns, where a camera can be posi-
tioned at the top of the barn with a high viewing angle to ensure a clear 
view of all cattle. In this setup, camera resolution becomes less critical as 

our algorithm downscales the original image to a standardized size of 
608 × 608. However, it is important to have sufficient infrastructure, 
including computing and networking equipment, to support the algo-
rithm’s processing requirements and achieve the desired tracking re-
sults. Adequate resources will ensure smooth operation and accurate 
tracking performance in real-time scenarios. 

5. Conclusion 

Automatic cattle monitoring using video in indoor precision farming 
poses significant challenges, necessitating effective solutions to address 
issues like scale deformation, unexpected movement, and occlusion. 
This paper presented a deep learning-based framework for multi-cattle 
tracking in video, aiming to overcome these challenges. We modified 
the DeepSORT algorithm to accommodate scale deformation and un-
expected cattle movement. Additionally, we introduced a novel bench- 
matching mechanism to alleviate the problem of long-term lost trajec-
tories. By prioritizing data association performance over detection ac-
curacy, our method aligns with the specific requirements of cattle farms. 
The experimental results demonstrated the effectiveness of our 

Fig. 10. Qualitative tracking results selected in 3 consecutive seconds by different models.  

S. Han et al.                                                                                                                                                                                                                                     



Computers and Electronics in Agriculture 212 (2023) 108044

11

Fig. 11. sinθ value of all trajectories in the test sequence by our tracking model. The test sequence consisted of 17 ground truths, while our model generated 22 
predicted trajectories. 

Fig. 12. sinθ value of all trajectories in the test sequence by DeepSORT. The test sequence consisted of 17 ground truths, while DeepSORT generated 43 predicted 
trajectories. 
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framework, showcasing its adaptability to real-world conditions and 
successful retrieval of lost trajectories in crowded scenarios. Both 
qualitative and quantitative results obtained from our dedicated cattle 
tracking dataset validate the efficiency of our proposed approach. 

CRediT authorship contribution statement 

Shujie Han: Conceptualization, Methodology, Software, Writing - 
review & editing. Alvaro Fuentes: Conceptualization, Methodology, 
Writing - review & editing. Sook Yoon: Supervision, Conceptualization, 
Methodology, Funding acquisition. Yongchae Jeong: Conceptualiza-
tion, Methodology. Hyongsuk Kim: Investigation, Methodology, Re-
view and Editing. Dong Sun Park: Supervision, Conceptualization, 
Methodology, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The authors do not have permission to share data. 

Acknowledgements 

This research was supported by Basic Science Research Program 
through the National Research Foundation of Korea (NRF), funded by 
the Ministry of Education (No. 2019R1A6A1A09031717); by the Korea 
Institute of Planning and Evaluation for Technology in Food, Agriculture 
and Forestry (IPET) and Korea Smart Farm R&D Foundation (KosFarm) 
through Smart Farm Innovation Technology Development Program, 
funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) and 
Ministry of Science and ICT (MSIT), Rural Development Administration 
(RDA)(1545027423); and by the National Research Foundation of Korea 
(NRF) grant funded by the Korea government (MSIT) 

(2020R1A2C2013060). 

Appendix A 

See Table A1. 

References 

Andrew, W., Greatwood, C., and Burghardt, T. (2017). Visual Localization and Individual 
Identification of Holstein Friesian Cattle via Deep Learning. IN: 2017 IEEE 
International Conference on Computer Vision Workshops (ICCVW), 2850–2859. doi: 
10.1109/ICCVW.2017.336. 

Andrew, W., Greatwood, C., and Burghardt, T. (2020). Fusing Animal Biometrics with 
Autonomous Robotics: Drone-based Search and Individual ID of Friesian Cattle 
(Extended Abstract). 2020 IEEE Winter Applications of Computer Vision Workshops 
(WACVW), 38–43. doi: 10.1109/WACVW50321.2020.9096949. 

Bailey, D.W., Trotter, M.G., Knight, C.W., Thomas, M.G., 2018. Use of GPS tracking 
collars and accelerometers for rangeland livestock production research. Transl. 
Anim. Sci. 2 (1), 81–88. https://doi.org/10.1093/tas/txx006. 

Benaissa, S., Tuyttens, F.A.M., Plets, D., Trogh, J., Martens, L., Vandaele, L., Joseph, W., 
Sonck, B., 2020. Calving and estrus detection in dairy cattle using a combination of 
indoor localization and accelerometer sensors. Comput. Electron. Agric. 168, 105153 
https://doi.org/10.1016/j.compag.2019.105153. 

Bergmann, P., Meinhardt, T., Leal-Taixe, L., 2019. Tracking without bells and whistles. 
In: In Proceedings of the IEEE/CVF International Conference on Computer Vision, 
pp. 941–951. https://doi.org/10.1109/ICCV.2019.00103. 

Bernardin, K., Stiefelhagen, R., 2008. Evaluating multiple object tracking performance: 
the clear mot metrics. EURASIP Journal on Image and Video Processing 2008, 1–10. 

Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B., 2016. Simple online and real-time 
tracking. IEEE International Conference on Image Processing (ICIP) 2016, 
3464–3468. https://doi.org/10.1109/ICIP.2016.7533003. 

Cabezas, J., Yubero, R., Visitación, B., Navarro-García, J., Algar, M.J., Cano, E.L., 
Ortega, F., 2022. Analysis of accelerometer and GPS data for cattle behaviour 
identification and anomalous events detection. Entropy 24 (3), 336. https://doi.org/ 
10.3390/e24030336. 

Cao, J., Weng, X., Khirodkar, R., Pang, J., & Kitani, K. (2022). Observation-Centric SORT: 
Rethinking SORT for Robust Multi-Object Tracking. arXiv preprint arXiv, 2203- 
14360. doi: 10.48550/ARXIV.2203.14360. 

Dao, T.-K., Le, T.-L., Harle, D., Murray, P., Tachtatzis, C., Marshall, S., Michie, C., 
Andonovic, I., 2015. Automatic cattle location tracking using image processing. In: 
2015 23rd European Signal Processing Conference (EUSIPCO), pp. 2636–2640. 
https://doi.org/10.1109/EUSIPCO.2015.7362862. 

Dogan, H., Basyigit, I.B., Yavuz, M., Helhel, S., 2019. Signal level performance variation 
of radio frequency identification tags used in cow body. Int. J. RF Microwave 
Comput. Aided Eng. 29 (7), e21674. 

Fuentes, A., Yoon, S., Park, J., Park, D.S., 2020. Deep learning-based hierarchical cattle 
behavior recognition with spatio-temporal information. Comput. Electron. Agric. 
177, 105627 https://doi.org/10.1016/j.compag.2020.105627. 

Gillenson, M., Zhang, X., Muthitacharoen, A., Prasarnphanich, P., 2019. I’ve Got You 
Under My Skin: The Past, Present, and Future Use of RFID Technology in People and 
Animals. J. Inf. Technol. Manag 30 (2), 19–29. 

Hashimoto, Y., Hama, H., Zin, T.T., 2020. Robust Tracking of Cattle Using Super Pixels 
and Local Graph Cut for Monitoring Systems. Int. J. Innovative Comput., Inform. 
Control 16 (4), 1469–1475. https://doi.org/10.24507/ijicic.16.04.1469. 

He, K., Zhang, X., Ren, S., and Sun, J. (2014). Spatial Pyramid Pooling in Deep 
Convolutional Networks for Visual Recognition. IEEE transactions on pattern analysis 
and machine intelligence, 37(9), 1904-1916. doi: 10.1109 / TPAMI.2015.2389824. 

Henriques, J.F., Caseiro, R., Martins, P., Batista, J., 2015. High-Speed Tracking with 
Kernelized Correlation Filters. IEEE Trans. Pattern Anal. Mach. Intell. 37 (3), 
583–596. https://doi.org/10.1109/TPAMI.2014.2345390. 

Hu, H., Dai, B., Shen, W., Wei, X., Sun, J., Li, R., Zhang, Y., 2020. Cow identification 
based on fusion of deep parts features. Biosyst. Eng. 192, 245–256. https://doi.org/ 
10.1016/j.biosystemseng.2020.02.001. 

Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012, Kwon, Y., TaoXie, Fang, 
J., imyhxy, Michael, K., Lorna, V, A., Montes, D., Nadar, J., Laughing, tkianai, 
yxNONG, Skalski, P., Wang, Z., … Minh, M. T. (2022). ultralytics/yolov5: V6.1 - 
TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference. Zenodo. doi: 
10.5281/zenodo.6222936. 

Kalal, Z., Mikolajczyk, K., Matas, J., 2012. Tracking-Learning-Detection. IEEE Trans. 
Pattern Anal. Mach. Intell. 34 (07), 1409–1422. https://doi.org/10.1109/ 
TPAMI.2011.239. 

Kocur, V., Ftacnik, M., 2021. Multi-Class Multi-Movement Vehicle Counting Based on 
CenterTrack. In: In Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, pp. 4009–4015. https://doi.org/10.1109/ 
CVPRW53098.2021.00452. 

Li, W., Bakker, J.D., Li, Y., Zheng, S., Li, F.Y., 2021. Applying a high-precision tracking 
system to distinguish the spatiotemporal patterns of animal movement in grassland 
ecology. Biol. Conserv. 255, 109016 https://doi.org/10.1016/j. 
biocon.2021.109016. 

Li, Z., Lei, X., Liu, S., 2022. A lightweight deep learning model for cattle face recognition. 
Comput. Electron. Agric. 195, 106848 https://doi.org/10.1016/j. 
compag.2022.106848. 

Li, N., Ren, Z., Li, D., Zeng, L., 2020. Review: Automated techniques for monitoring the 
behaviour and welfare of broilers and laying hens: towards the goal of precision 

Table A1 
shows the metrics and equations for multi-object tracking, IDF1 = I.  

Metric Equation Notation 

IDF1 
IDF1 =

|IDTP|
|IDTP| + 0.5|IDFN| + 0.5|IDFP|

IDTP: Identity 
True Positive 
IDFN: Identity 
False Negative 
IDFP: Identity 
False Positive 

MOTA MOTA = 1 −
|FN| + |FP| + |IDSW|

|gtDet|
FP: False Positive 
FN: False Negative 
IDSW: ID Switch 
gtDet: 
Groundtruth 

MOTP  MOTP =
1

|TP|
∑

TP
S S: Similarity Score 

TP: True Positive 
AssA 

AssA =
1

|TP|
∑

c∈TP

|TPA(c)|
|TPA(c)| + |FNA(c)| + |FPA(c)|

TPA: True Positive 
Associations 
FNA: False 
Negative 
Association 
FPA: False 
Positive 
Association 

HOTA 
HOTAα =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
DetAα • AssAα

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
c∈TPα

AssIoUα(c)
|TPα| + |FNα| + |FPα|

√

;DetAα =
|TP|

|TP| + |FN| + |FP|

DetA: Detection 
Association  

HOTA =
∫

0<α≤1
HOTAα ≈

1
19

∑0.95
α = 0.05

α+ = 0.05
HOTAα    

S. Han et al.                                                                                                                                                                                                                                     

https://doi.org/10.1093/tas/txx006
https://doi.org/10.1016/j.compag.2019.105153
https://doi.org/10.1109/ICCV.2019.00103
http://refhub.elsevier.com/S0168-1699(23)00432-5/h0030
http://refhub.elsevier.com/S0168-1699(23)00432-5/h0030
https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.3390/e24030336
https://doi.org/10.3390/e24030336
https://doi.org/10.1109/EUSIPCO.2015.7362862
http://refhub.elsevier.com/S0168-1699(23)00432-5/h0055
http://refhub.elsevier.com/S0168-1699(23)00432-5/h0055
http://refhub.elsevier.com/S0168-1699(23)00432-5/h0055
https://doi.org/10.1016/j.compag.2020.105627
http://refhub.elsevier.com/S0168-1699(23)00432-5/h0065
http://refhub.elsevier.com/S0168-1699(23)00432-5/h0065
http://refhub.elsevier.com/S0168-1699(23)00432-5/h0065
https://doi.org/10.24507/ijicic.16.04.1469
https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1016/j.biosystemseng.2020.02.001
https://doi.org/10.1016/j.biosystemseng.2020.02.001
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1109/CVPRW53098.2021.00452
https://doi.org/10.1109/CVPRW53098.2021.00452
https://doi.org/10.1016/j.biocon.2021.109016
https://doi.org/10.1016/j.biocon.2021.109016
https://doi.org/10.1016/j.compag.2022.106848
https://doi.org/10.1016/j.compag.2022.106848


Computers and Electronics in Agriculture 212 (2023) 108044

13

livestock farming. Animal 14 (3), 617–625. https://doi.org/10.1017/ 
S1751731119002155. 

Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-Taixé, L., Leibe, B., 2021. 
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