
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Hao Lu,
Huazhong University of Science and
Technology, China

REVIEWED BY

Yanan Li,
Wuhan Institute of Technology, China
Yinglun Li,
Nanjing Agricultural University, China

*CORRESPONDENCE

Hyongsuk Kim

hskim@jbnu.ac.kr

RECEIVED 05 June 2023

ACCEPTED 06 July 2023

PUBLISHED 09 August 2023

CITATION

Ilyas T, Lee J, Won O, Jeong Y and Kim H
(2023) Overcoming field variability:
unsupervised domain adaptation for
enhanced crop-weed recognition in
diverse farmlands.
Front. Plant Sci. 14:1234616.
doi: 10.3389/fpls.2023.1234616

COPYRIGHT

© 2023 Ilyas, Lee, Won, Jeong and Kim. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 09 August 2023

DOI 10.3389/fpls.2023.1234616
Overcoming field variability:
unsupervised domain adaptation
for enhanced crop-weed
recognition in diverse farmlands

Talha Ilyas1,2, Jonghoon Lee2, Okjae Won3, Yongchae Jeong2,4

and Hyongsuk Kim2,4*

1Division of Electronics and Information Engineering, Jeonbuk National University, Jeonju-si, Republic
of Korea, 2Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju-
si, Republic of Korea, 3Production Technology Research Division, National Institute of Crop Science,
Rural Development Administration, Miryang, Republic of Korea, 4Division of Electronics Engineering,
Jeonbuk National University, Jeonju-si, Republic of Korea
Recent developments in deep learning-based automatic weeding systems have

shown promise for unmannedweed eradication. However, accurately distinguishing

between crops and weeds in varying field conditions remains a challenge for these

systems, as performance deteriorates when applied to new or different fields due to

insignificant changes in low-level statistics and a significant gap between training

and test data distributions. In this study, we propose an approach based on

unsupervised domain adaptation to improve crop-weed recognition in new,

unseen fields. Our system addresses this issue by learning to ignore insignificant

changes in low-level statistics that cause a decline in performance when applied to

new data. The proposed network includes a segmentation module that produces

segmentation maps using labeled (training field) data while also minimizing entropy

using unlabeled (test field) data simultaneously, and a discriminator module that

maximizes the confusion between extracted features from the training and test farm

samples. This module uses adversarial optimization to make the segmentation

network invariant to changes in the field environment. We evaluated the proposed

approach on four different unseen (test) fields and found consistent improvements in

performance. These results suggest that the proposed approach can effectively

handle changes in new field environments during real field inference.

KEYWORDS

crop-weed recognition, domain adaptation, precision agriculture, artificial intelligence,
crop phenotyping, agricultural operations
1 Introduction

Deep Learning (DL) techniques have been successful in detecting and recognizing

objects in images and videos. These techniques are now being applied to agriculture,

particularly in the automatic detection and classification of weeds (Khan et al., 2020). This

is a difficult problem because weeds and crops often have similar colors (green vs green),
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shapes, and textures (Adhikari et al., 2019; Sarvini et al., 2019).

Weeds are plants that negatively impact crop growth and yields by

competing for resources such as water, sunlight, air, and nutrients.

They can also interfere with crop growth through the release of

chemicals (Patel and Kumbhar, 2016; Iqbal et al., 2019). Effective

weed control is therefore necessary to support crop growth. In

addition, what is considered a weed in one setting may be a crop in

another. The increasing global population, expected to reach 9

billion by 2050, will require a 70% increase in agricultural

production (Radoglou-Grammatikis et al., 2020). However, the

agricultural industry will face challenges such as limited

cultivation land and the need for more intensive production.

Climate change and water scarcity will also impact productivity.

Precision agriculture can help address these challenges (Lal, 1991;

Seelan et al., 2003).

Farmers must use various strategies to control weeds, including

preventative measures (manual weeding), cultural techniques like

field hygiene (low weed seed bank), mechanical methods like

mowing and tilling, biological methods like using natural enemies

of weeds (insects or grazing animals), and chemical methods such

as herbicide application (Tu et al., 2001; Melander et al., 2005).

Automated weed control systems, which can reduce labor costs and

minimize herbicide use, have become desirable as labor costs have

increased and concerns about health and the environment have

grown (Durmus ̧ et al., 2015; Nicolopoulou-Stamati et al., 2016).

Moreover, due to a lack of interest among younger people in joining

the agriculture industry, there is a shortage of labor (Sarvini et al.,

2019). This shortage, combined with the need for efficient and cost-

effective weed control, has made automated weeding methods more

necessary than ever before (Lameski et al., 2018).

On other hand automated weed detection systems follow a series

of steps to identify and classify weeds in images. These steps include

acquiring images, pre-processing them, extracting features, and

detecting and classifying weeds (Pantazi et al., 2016; Parra et al.,

2020). Deep learning approaches have been successful in achieving

accurate results in recognizing crops and weeds in real-world

conditions (Li and Tang, 2018). The key challenge in these systems

is distinguishing between crops and weeds (Khan et al., 2020;

Matloob et al., 2020). These systems typically use fully

convolutional networks (FCNs) to perform semantic segmentation,

which involves labeling each pixel in an image with a specific class

(such as crop or weed) (Parra et al., 2020; Coleman et al., 2022).

One of the main challenges in developing an automatic weed

management system is accurately detecting and recognizing weeds

in crops. This can be difficult because weeds and crops often have

similar colors, textures, and shapes, and may appear differently at

different growth stages (Sarvini et al., 2019; Khan et al., 2020; Ilyas

et al., 2022). Other challenges include occlusion, variations in color

and texture due to lighting and illumination, and the presence of

motion blur and noise in images (Sa et al., 2016). The species of

weeds can also vary based on geographical location, crop variety,

weather conditions, and soil type (Kriticos et al., 2006). All of these

factors can make it difficult to classify plants accurately.
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Several studies have shown advancements in this area. For

example, Tavakoli et al. (2021) utilized marginal loss function in

CNN training for better classification. Raja et al. (2019) developed

crop signaling for improved detection, and Moazzam et al. (2022)

used a CNN ensemble for high accuracy detection in sesame fields.

Gao et al. (2020) explored DL-based object detectors for weed

detection in sugar beet fields, while Picon et al. (2022) and Peng

et al. (2022) investigated synthetic images and RetinaNet

adaptations, respectively, for better crop-weed recognition.

However, there remains a challenge with these DL models: they

often produce confident predictions on the dataset from the source

domain (original farm) but underperform on data from different

domains (other farms) due to domain shift (Vu et al., 2019). This is

further complicated by the high cost of acquiring labeled data for

each new domain, especially for semantic segmentation where each

pixel must be labeled (Tranheden et al., 2021).

Recent research has explored unsupervised domain adaptation

(UDA) to improve the adaptability of crop-weed segmentation

systems. Gogoll et al. (2020) devised a method utilizing cycle

GANs to regenerate source data in the target domain style while

maintaining semantic and structural object consistency. The result

was a considerable enhancement in the generalization capabilities of

fully convolutional networks (FCNs), resulting in around a 10%

increase in the mIOU metric on two different source-target

domain pairs.

Similarly, Kendler et al. (2022) tackled the issue of low-level

variability in plant disease recognition training data. By dividing

images into multiple patches, they increased dataset diversity and

improved CNN generalizability without needing environmental

modification. This resulted in a 20% improvement in

classification accuracy over the baseline. For corn yield prediction

across different regions, Ma et al. (2021) presented a CNN training

strategy based on unsupervised adaptive domain adversarial

training. Li et al. (2021) proposed an intermediate domain

approach to decrease the domain gap in maize residue

segmentation. However, the application of this approach may be

limited as the intermediate domain is problem-specific.

Our approach is based on the idea that the classification of a

plant as a crop or weed should not depend on the farm

environment, soil type, the specific sensor (camera) used, or other

low-level sources of variability. These sources of variability are

uninformative for crop-weed recognition, but can significantly

affect the predictions of CNNs.

In this paper our aim is to reduce the domain gap between the

extracted features, from source and target domain, via adversarially

optimized deep feature alignment and entropy minimization.

Additionally, we introduce a novel regularization technique to

improve the convergence of CNNs. In contrast to previous UDA

works, we also explore the effectiveness of few-shot training strategy

in the context of UDA, called few-shot supervised domain

adaptation (SDA). Few-shot SDA involves fine-tuning the model

on a small amount of labeled data from the target domain to

improve its performance on that domain. The main advantage of
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few-shot SDA is that it can be used to quickly adapt a model to a

new domain with minimal labeled data.

Our main contributions can be summarized as follows:
Fron
• A deep adversarial optimized framework for UDA and few-

shot SDA.

• Augmentation scheduling strategy for improved

regularization and convergence.

• A versatile dataset for fine-grained crop-weed recognition

collected from five different fields with different setups.
2 Materials

2.1 Dataset construction

Our proposed approach was tested on a bean field dataset

collected over the past one and a half years at five different locations

and farms in South Korea using different image acquisition

platforms. The dataset includes a number of variations in real-

field conditions such as the field seeding bed (Gebrekidan, 2003),

environment, weed density, plant scales, and sizes. To evaluate the

performance of our approach, we selected five farms with different

conditions and data variations as shown in Figure 1 and Table 1.

Beans are a crop that help improve soil health through nitrogen

fixation, adding nitrogen back into the soil. Because of this ability,

beans are often included in crop rotation plans, as nitrogen is an

essential nutrient for growing strong and productive plants (Aschi

et al., 2017). In countries like South Korea, where only 20% of the

land is suitable for cultivation, it is especially important to use crops

that can improve soil health. The collected dataset includes a bean
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crop and various types of weeds, but for the purposes of the crop-

weed recognition task, we have grouped all the weeds into a single

category. Table 1 summarized the characteristics of the dataset.
2.2 Field data distribution

In order tomake our dataset suitable for domain adaptation, such

as the representation shown in Figure 2, we considered the case of

data collected at five different locations and fields, designated as FA,

FB, FC, FD, and FS, as shown in Figure 1. This is a specific example of

domain adaptation across various scenarios, in which we aim to build

a more robust system by transferring the visual characteristics from

one field to another. In this case, we assume that the conditions of

each field are different, meaning that each field may have a different

weed density, seeding system, image acquisition system, and crop

size. The visual characteristics of the fields used for data collection are

displayed in Figures 1, 2 illustrates the visual attributes of various

seeding bed systems across different fields.
2.3 Source and target datasets

In order to create the source and target datasets for unsupervised

domain adaptation (UDA) in our experiments, we designated the

field with the largest number of data available i.e., FS as the source

field, and all the other fields (FA, FB, FC, FD) as the target fields. Based

on this grouping, we consider the following combinations across the

five fields for evaluation: S→S, S→A, S→B, S→C, S→D.We train the

network using data from the source domain (FS) and test it against all

the target domain datasets (FA, FB, FC, FD).
FIGURE 1

Representative images from different fields to collect data. The source domain (Field S) data is collected using handheld cameras in the form of
images and are labelled by human annotators. Whereas the target domain data (Field A, B, C and D) is collected from various fields with a camera
mounted on a moving platform in form of videos.
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3 Methodology

Here, we present our methodology for deep feature adaptation in

context of UDA for crop-weed segmentation in unconstrained real-

field environments. We also compare UDA approach with few-shot

SDA for completeness. This section consists of the following sub-

sections: (i) clearly defining the problem statement, (ii) introducing the

architecture of the full framework, (iii) explaining the augmentation

scheduling strategy which improves the performance of our

framework, (iv) defining the learning objectives (loss functions), and

(v) providing implementation details.
Frontiers in Plant Science 04
3.1 Problem definition

For better generalization we cast our problem as few-shot SDA

because UDA can be simply defined as zero-shot SDA. Under these

setting consider we are given a labelled soured dataset Ds =

f(xsi , ysi )gNi=1, where Ds ⊆fFsg and N is the total number of images

in DS. Similarly, we have target domain datasets, Dt = f(xti , yti )gMt
i=1,

from which we can only access j labelled images, here j ϵ {0,1,2,…,

Mt} and Mt being the total number of images in t-th target domain

dataset, and Ds ⊂ fFA,   FB, FC , FDg. Here xi ∈ RH�W�3 is RGB-

image and yi ∈ RH�W is its corresponding label. We define j-shot

SDA as randomly selecting j labelled images from each target

domain datasets and using them for finetuning the network. The

case of 0-shot SDA (j=0) is equivalent to unsupervised domain

adaptation (UDA). For experiments we only consider j = 0,1,3,Mt. A

graphical illustration that demonstrates the distinctions between

UDA and few-shot SDA is displayed in Figure 3.
3.2 Augmentation scheduling

In conventional data augmentation strategies employed for

training deep neural networks, a constant probability is applied

for data augmentation, which often comprises a mixture of

geometric and noise transformations. However, our proposed

method diverges from this practice by progressively increasing the

frequency of data augmentation as training advances, with each

type of augmentation treated distinctly. The concept of increasing

the augmentation probability finds parallels in the training of PA-

GANs (Zhang and Khoreva, 2019), where both the generator and

discriminator of a GAN grow progressively. Starting at low

resolution, layers are incrementally added to enhance the

resolution over time, thereby enabling the model to initially learn

coarse-level structures, and then gradually learn fine-level details as

training continues.

In contrast, the proposed technique involves adjusting the

intensity or probability of data augmentation over time, but does

not involve changing the architecture of the model itself over the

course of training. In the augmentation scheduling of GANs, the

emphasis is on enhancing the stability and efficacy of training

through gradual growth of the model’s structure. Conversely,

augmentation scheduling focuses on presenting the model with

an increasingly diverse and challenging array of training samples

over time. While both techniques involve a form of progressive or

scheduled change during training, they target different aspects of

the training process. The augmentation scheduling technique is

primarily about the model, while the augmentation scheduling

technique is about the data.

Here we divide different augmentations into three categories

depending on their characteristics:
• Geometric augmentations (G), augmentations which effect

the entire image-label pair (xs,ys).

• Noise (distortion) augmentation (D), which only effect the

original image (xs) and labels (ys) remain unchanged.
A

B

D

E

C

FIGURE 2

Representation of field seeding bed systems depending on the
chosen planting method. Different planting methods can lead to
varying crop yields for different crops. (A) Flat seed bed, (B) seeding
bed with ridges and furrows, (C) plantation on flat seeding bed, (D)
plantation on ridges and (E) plantation on furrows.
TABLE 1 Characteristics of Crop-Weed Recognition Datasets for
unsupervised domain adaptation.

Field No. of
Images

Vegetation
Density

Image Acquisi-
tion Platform

Seeding
System

S 1893 Varying Stationary Flat Bed

A 202 Medium Dense Moving Ridge Bed

B 79 Dense Moving Ridge Bed

C 199 Sparce Moving Flat Bed

D 157 Medium Dense Moving Ridge Bed
frontiersin.org

https://doi.org/10.3389/fpls.2023.1234616
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ilyas et al. 10.3389/fpls.2023.1234616

Fron
• Collage Augmentation (C) (Chiang et al., 2019), which

generate a collage of multiple image-label pairs (xsi , y
s
i ) in

the dataset. Mathematically it can be expressed as,
(xci , y
c
i ) = C( (xsi , y

s
i )f gMi=1,wc, hc, bc) (1)

where, C represents the function to generate a collage image-

label pair (xci , y
c
i )   having width wc and height hc, of M images with

bc being the border width (in pixels) between images.

In the early training epochs, we only use the original images

(identity augmentation, i.e., id = 1) so that the network can easily and

quickly learn simple representations. We only augment the source

domain images. Then, we gradually increase the probability of using

the other augmentations, starting with geometric augmentations and

eventually using all augmentations with specified probabilities (i.e., a,
b, g > 0). These stronger regularizations make learning more difficult

for the CNN and improve its robustness. The probability weights for

each type of augmentation can be considered as hyperparameters (i.e.,

a for G, b for D, and g for C). The pseudo code for the augmentation

scheduling process is shown in Figure 4, and Algorithm 1 Figure 5

summarizes the procedure for integrating augmentation scheduling

into the proposed training loop of the framework. It is straightforward

to adapt this to a standard training loop. Line graph in Figure 6 shows

how the probability of each type of augmentation changes with training

epochs for a specified set of hyperparameters. A few examples of data

samples that have been augmented using the augmentation scheduling

algorithm are presented in Figure 7.
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3.3 Network architecture

The proposed framework for addressing the problem of domain

shift between source and target domains is depicted in Figure 8. It

consists of two subnetworks segmentation network and the

discriminator network:

Segmentation Network - The segmentation network (j), having
learnable parameters w, consists of two main parts: an encoder and a

decoder. The encoder is made up of a stem convolution block and four

stages of feature extraction. The stem block consists of two 7x7

convolutions with a stride of 2. The subsequent four stages are

composed of ConvNext blocks (Liu et al., 2022), with the number of

channels in each block being Nch∈{192, 384, 768, 1536}, in that order.

Each block is repeated Ns times at each stage, with Ns∈{3, 3, 27, 3}.
The decoder also has four stages. The first stage uses an ASPP

(Chen et al., 2018) module to extract multiscale features from the

output of the encoder. The second stage is an upsampling module.

In the third stage, the encoder’s second stage features are

concatenated with the output of the second stage of the decoder

through a skip connection (Ronneberger et al . , 2015;

Badrinarayanan et al., 2017) and are then refined by a dense

attention module (DAM) (Ilyas et al., 2021). To control the flow

of useful information between the encoder and decoder, the

encoder’s feature maps are passed through a gating function (G),

to reduce the number of feature maps and suppress low-level

information, before being added via a skip connection. This can
A B

FIGURE 3

A graphical representation illustrating differences between UDA and few-shot SDA. In UDA (A), there a relatively large number of unlabeled target
domain data is available for use during training. In few-shot SDA (B), only a small number of labeled samples (typically one or two) are available for
training. The figure shows an example of 1-shot SDA as only one labelled sample is provided.
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be represented mathematically as, G(x) = f 1�1
r (x), where f is a 1x1

convolutional filter with r channels.

Discriminator Network - PatchGAN (Isola et al., 2017) is used

as a fully convolutional discriminator (q) to classify whether

incoming image features are form source domain or target

domain. By evaluating smaller patches of the output features

rather than the full feature map as a whole allows the PatchGAN

to capture fine-grained details in the original image and make more

informed decisions. Our framework uses two discriminators for

deep feature alignment between the source and target domain

features, with one aligning the decoder features (qv, having

learnable parameters v) and the other aligning the encoder

features (qvaux , having learnable parameters vaux). It was found to

be more effective than using only one discriminator at the end of the

decoder. Both discriminators (q) consist of five layers having filter

size of 4x4 and a stride of 2, with the number of channels in each

layer being {64,128,256,512,1}. Each convolutional layer is followed
Frontiers in Plant Science 06
by instance normalization and a LeakyReLU activation with a

negative slope of 0.2.
3.4 Learning objective

Given the augmented source domain labelled pair (xci , y
c
i )   the

segmentation network (jw) predicts a K-dimensional soft

segmentation map pi = jw(xci ), where pi ∈ RH�W�K and K is the

number of classes present in the dataset. Here each K-dimensional

(pixel-wise) vector is a probability distribution over classes. The

segmentation network is trained by minimizing the following cross-

entropy loss between the ground truth (yci ) and the predicted

probability map (pi), given by equation 2.

Lseg(x
c
i , y

c
i ) = −

1
No

N

i=0
〈 yci : log(j

w(xci )) 〉 (2)
FIGURE 4

Pseudo code of Augmentation scheduling algorithm.
FIGURE 5

Training algorithm for proposed framework.
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For target domain samples (xti ) as annotation (yti ) are not

available, hence these samples can’t be used to learn the parameters
Frontiers in Plant Science 07
(w) in same way as source domain samples can be used. So, following

[28] here we use entropy minimization approach to maximize

prediction certainty (lowering surprise) on target domain samples.

Given a target domain input (xti ) we generate and entropy map (ei),

where ei ∈ RH�W shows independent pixel-wise entropies of

summation of network’s predictions pi (on target domain),

normalized between [0,1] range. An example of entropy map is

shown in Figure 8 and mathematically expressed by equation 3.

ei = −
1

log(K)o
K

k=0

jw(xti ) : log(j
w(xti )) (3)

However, minimizing entropy directly is ineffective in low

entropy regions (Yang and Soatto, 2020). So, we utilize robust

entropy minimization, modified via carbonnier penalty function

which penalizes high entropy predictions more than low entropy

predictions when h > 0.5. Utilizing this modified entropy loss (Lent)

we update the network’s parameters by equation 4.

Lent(x
t
i ) = (

1
No

N

i=0
e2i + 0:00012)h (4)

Given the class probability distributions generated from the

features output by third stage of encoder and final stage of decoder,

represented as piaux and pi respectively. These distributions are then

passed on to their corresponding discriminators, denoted as qvaux

and qv respectively. The goal of these discriminators is to produce

domain classification outputs, with a value of 1 indicating the

source domain and 0 indicating the target domain. Both

discriminators are trained using the cross-entropy loss (Lce). The

overall objective for the final discriminator can be expressed as

equation 5.

Ld = Lce(q
v(xci ),   1) + Lce(q

v(xti ),   0) (5)

Similarly, an equation can be written for the auxiliary

discriminator (Ldaux ), resulting in the total discriminator loss.

LD = Ld + lauxLdaux (6)

Now, the adversarial objective for training segmentation

network can be written as,

Ladv = Lce(q
v(xti ),   1) (7)

Both the segmentation and discriminator networks are jointly

trained in each iteration. During training, the supervised

segmentation loss for source domain samples and unsupervised

entropy loss for target domain samples are jointly optimized. The

adversarial loss trains the segmentation network to deceive the

discriminator by maximizing the probability of target predictions

being considered as source predictions. This is achieved by

minimizing the cross-entropy loss between the discriminator’s

predictions for target images and the label of the source domain,

which is 1. Therefore, the total loss becomes,

Ltotal = Lseg + lentLent + ladvLadv (8)

In the few-shot SDA scenario, where we have j labelled images

from the target domain, which are used to fine-tune our model. In

addition to the entropy minimization loss described in equation 4,
FIGURE 6

Line graph representing the changes in probabilities for each type of
augmentation with training epochs for a specified set of
hyperparameters, i.e., a=0.2, b=0.3, g=0.4 and laug=20.
FIGURE 7

Augmentation scheduling in action: images are augmented using
various combinations of augmentations at different training epochs.
Black boxes depict identity augmentation, green boxes depict
geometric (G) augmentation, purple boxes depict noise (D)
augmentation, red boxes depict the collage (C) augmentation, and
the dashed black boxes represent the application of all
augmentations simultaneously.
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we also incorporate a cross-entropy loss similar to equation 2 for

these j examples. Let’s denote these labeled examples from the target

domain as Dt = f(xti , yti )gMt
i=1 where i ranges from 1 to j. The

additional cross-entropy loss for these samples can be expressed as:

L̂ seg(x
t
i , y

t
i ) = −

1
j o

j

i=0
〈 yti : log(j

w(xti )) 〉 (9)

Therefore, in the case of j-shot SDA, the total loss would be

updated to:

Ltotal = Lseg + lsegL̂ seg + lentLent + ladvLadv (10)

where L̂ seg corresponds to the supervised segmentation loss for the

j labeled target domain samples, and lseg is a weight hyperparameter to

balance this new term. The model is then jointly optimized for the

supervised segmentation loss on both source domain and j labeled

target domain samples, unsupervised entropy loss for the remaining

unlabeled target domain samples, and adversarial loss.

In this way, we effectively use the limited labeled data available

in the target domain to guide the model’s adaptation process, while

still leveraging the entropy minimization approach for the

unlabeled target domain data.
3.5 Implementation details

In our implementation we used the PyTorch toolbox and a

single NVIDIA RTX-3090 GPU, which has 24GB of memory. The

source dataset, which contains a large number of images, was split

into a 80% train-validation set and a 20% test set. The target datasets

were split into a 70% training set (used only in the case of supervised

training for comparison) and a 30% test set.
Frontiers in Plant Science 08
For training the segmentation network, we employed the SGD

optimizer with a weight decay of 5x10-4. For training the

discriminators, we used the Adam optimizer with a momentum

value of 0.9 and 0.99. We used a cosine decay policy for the

segmentation network, with a learning rate of 0.001 and warm

start for the first 1000 iterations. For the discriminators, we used a

polynomial decay policy with an initial learning rate of 10-4. A

detailed list of the hyperparameter settings for the augmentation

scheduling and loss function weights can be found in Table 2.
4 Results and discussion

The performance of the proposed method for crop-weed

recognition in bean fields was evaluated using the same field data

distribution and source and target data splits described in Section 2.

To thoroughly evaluate the proposed method, we employed widely

used semantic segmentation frameworks, including DeepLab-v3+

and PSPNet (Zhao et al., 2017), with ResNet-101 (He et al., 2016),

Xception-71 (Chollet, 2017), and ConvNext-L backbones as

baselines. The results of our proposed method were compared

with these baselines under the same operating conditions.
FIGURE 8

Architecture of proposed framework for UDA in crop-weed segmentation. DS and D̂s represent the source domain and augmented source domain
datasets respectively. During encoder-decoder training, the pink arrows depict the flow of forward and backward gradients for input from the source
domain, while the purple arrows represent input from the target domain. The discriminators are kept frozen during this training step. The green arrows
show the flow while the discriminators are being trained. At this stage, the encoder-decoder network is kept frozen.
TABLE 2 Hyperparameter settings for proposed framework.

Hyperparameter Value Hyperparameter Value

a 0.3 h 2.0

b 0.3 laux 0.4

g 0.3 lent 0.5

laug 20 ladv 0.4

lseg 2
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Firstly, we compared the performance of the proposed

framework with traditional segmentation models and other recent

unsupervised domain adaptation (UDA) methods. The results

indicated that our proposed method performed competitively

with these models. Furthermore, we demonstrated how the use of

augmentation scheduling further improved the performance of our

network. We also conducted ablation experiments to highlight the

improvement in results achieved by using augmentation scheduling

in comparison to vanilla augmentation.

Lastly, we compared the results of our proposed UDA method

under both few-shot self-supervised domain adaptation (SDA) and

fully supervised settings. The results showed that our proposed

method performed well under both settings and yielded promising

results. We evaluate the effectiveness of the proposed framework as

well as compare it with other networks utilizing the Intersection-

over-Union (IoU) metric, defined by equation 11.

mIoU =
1
No

N

i=0

yi ∩
 pi

yi ∪ pi

�
�
�
�

�
�
�
�

(11)

where yi and pi represent the ground-truth and predicted

segments, respectively.
4.1 Source training only

In the first experiment, we trained semantic segmentation

architectures in a simple supervised fashion on the source field

(FS) dataset and compared their performance. In this experiment,

all models were trained on the source field dataset and results are

reported on its test split (S→S), as shown in Table 3. PSPNet

showed the worst performance among all other models when using

the same backbone (ResNet-101), while DeepLab-v3+ with

Xception-71 backbone performed better than PSPNet.

Additionally, integrating the proposed modified decoder into the

best-performing model (DeepLab-v3+ with ResNet-101) further

boosted performance. It is worth noting that no data

augmentation was used in these experiments.

Under the source training only (STO) setting, we also tested the

segmentation performance of only source-trained models on other

target domain fields (i.e., FA, FB, FC, FD). The results are reported in

Table 3 under columns S→T, where T∈{A, B, C, D}. It can be seen

from the table that, even though using better segmentation

architectures resulted in considerably better performance on the

FS dataset, the results on the target domain fields did not improve

and even got worse in some cases (e.g., the mIOU of field A and C

decreased when using DeepLab-v3+ (ResNet-101) and proposed

decoder). This demonstrates the need for unsupervised domain

adaptation (UDA) approaches in the field of precision agriculture.
4.2 Unsupervised domain adaptation

In our unsupervised domain adaptation experiments, we used

the same data pairs as in previous experiments. We applied the

augmentation scheduling algorithm with the hyperparameter values

listed in Table 2. The results of these experiments are shown in
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Tables 3, 4, with and without augmentation scheduling. Overall, we

observed a significant improvement in the mIOU score for bean-

weed recognition compared to STO methods (as seen in Table 3’s

top four rows). Our proposed deep feature alignment method

without augmentation scheduling performed better on average

than previous STO and UDA methods. As shown in Figure 9,

using proposed deep feature alignment method resulted in a

noticeable improvement in performance compared to using only

STO. Additionally, incorporating augmentation scheduling further

increased the performance of all models. Specifically, our proposed

segmentation model that uses both deep feature alignment and

augmentation scheduling outperformed previous best STO models

by 8% and previous best UDA methods by 7%. The performance

gap was even greater on target fields FA and FD, with

improvements of 5.42% and 8.1% respectively.
4.3 Few-shot supervised domin adaptation

In this section, we compared our approach with other

conventional few-shot SDA and fully supervised methods. The

results are summarized in Table 4. All experiments were

conducted under the same conditions. For the fully supervised

training, all models were trained using training splits of both the

target and source dataset as described in subsection 3.5

(Implementation Details). Under these conditions, our proposed

segmentation network showed an improvement of 3% in the mIOU

score compared to the DeepLabv3+ model, indicating its superior

feature extraction ability. For the few-shot SDA experiments, the

model’s parameters were fine-tuned using a small number of labeled

samples from the target domain. As shown in Table 5, using only

one labeled sample (1-shot), our model achieved an accuracy that

was almost similar to that of the fully supervised model (80.53% vs

83.6%). Additionally, our proposed method consistently

outperformed other SDA methods throughout the few-shot

experiments. As seen in Table 5, our method exceeded the best-

performing few-shot SDA methods by 2.5% (0-shot), 3.0% (1-shot),

and 2.2% (3-shot) for bean-weed recognition. Figure 10 compares

the visualization results, demonstrating that our method showed

significant improvements in recognizing crops and weeds.
4.4 Vanilla vs. scheduled augmentation

In these experiments, we verify the superior performance of the

proposed augmentation scheduling over vanilla augmentation, and

the results are summarized in Tables 4, 6. For these experiments we

use proposed framework under UDA (0-shot SDA) settings. We

experimented with different augmentation probabilities and found

that augmenting 30% of all samples during each epoch produced

the best results. Starting from the baseline (no augmentations), we

first performed random geometric augmentations (G) and observed

performance improvement. Then, we performed noise (D) and

collage (C) augmentations one by one to see further improvements.

A significant increase in performance, 55.36% (baseline) to 71.28%,

can be seen when using collage augmentation (C), indicating that
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TABLE 3 A comparison of the experimental results on a crop-weed segmentation dataset between traditional semantic segmentation and UDA
methods with the use of Vanilla Augmentation.

Backbone Framework Method
mIOU (%)

S→S S→A S→B S→C S→D Average

ResNet-101 PSPNet – 74.05 66.34 56.83 38.62 52.88 53.66

Xception-71 DeepLab V3+ – 78.7 67.63 59.19 43.05 47.68 56.13

ResNet-101 DeepLab V3+ – 79.57 68.9 59.34 40.43 54.34 57.75

ResNet-101 Proposed – 80.02 68.53 58.88 41.35 53.7 57.36

ResNet-101 DeepLab V3+ Vu et al., (2019) 80.95 63.66 55.62 52.31 47.62 54.80

ResNet-101 DeepLab V3+ Tsai et al. (2018) 75.94 75.57 65.23 45.65 66.7 63.28

ResNet-101 DeepLab V3+ Proposed 79.55 74.1 62.6 49.56 64.48 62.18

ConvNext-L Proposed Proposed 79.93 75.67 68.54 52.36 63.34 64.97
F
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Bold and underlined values represent best and second-best values, respectively.
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FIGURE 9

Training and loss curves for cross domain adaptation. (A) learning curve for mIOU score on source domains validation set. (B) learning curve for
mIOU score averaged over all target domain test sets. (C) Segmentation network’s loss curves. Best viewed in color.
TABLE 4 A comparison of the experimental results on a crop-weed segmentation dataset between traditional semantic segmentation and UDA
methods with the use of Augmentation scheduling.

Backbone Framework Method
mIOU (%)

S→S S→A S→B S→C S→D Average

ResNet-101 PSPNet – 78.31 77.07 67.36 47.39 62.33 63.53

Xception-71 DeepLab V3+ – 82.5 78.16 62.05 48.49 63.46 63.04

ResNet-101 DeepLab V3+ – 84.81 75.75 69.85 56.88 60.69 65.79

ResNet-101 DeepLab V3+ Vu et al. (2019) 83.99 80.6 73.4 60.86 71.7 71.39

ResNet-101 DeepLab V3+ Tsai et al. (2018) 79.8 78.75 70.8 50.67 79.98 70.05

ResNet-101 DeepLab V3+ Proposed 83.97 84.2 73.52 61.71 74.7 73.53

ConvNext-L Proposed Proposed 88.5 91.02 83.11 60.3 81.1 78.88
Bold and underlined values represent best and second-best values, respectively.
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TABLE 5 Comparison of mIOU scores for few-shot SDA models with varying values of k against fully supervised models.

Backbone Framework Method Strategy
mIOU (%)

S→S S→A S→B S→C S→D Average

ResNet-101 DeepLab V3+ Vu et al. (2019) 0-shot 83.99 80.6 73.4 60.86 71.7 71.39

ResNet-101 DeepLab V3+ Tsai et al. (2018) (UDA) 79.8 78.75 70.8 50.67 79.98 70.05

ConvNext-L Proposed Proposed 88.5 91.02 83.11 60.3 81.1 78.88

ResNet-101 DeepLab V3+ Vu et al. (2019) 1-shot 86.13 88.71 83.59 58.89 75.05 76.56

ResNet-101 DeepLab V3+ Tsai et al. (2018) (SDA) 76.49 85.01 73.02 61.59 74.9 73.63

ConvNext-L Proposed Proposed 88.7 92.53 84.25 62.5 80.87 80.53

ResNet-101 DeepLab V3+ Vu et al. (2019) 3-shot 88.57 89.66 84.17 60.69 78.62 78.28

ResNet-101 DeepLab V3+ Tsai et al. (2018) (SDA) 77.36 86.07 75.49 62.99 76.31 75.19

ConvNext-L Proposed Proposed 89.01 92.67 85.6 62.9 82.43 81.4

ResNet-101 DeepLab V3+ – Fully 90.56 93.25 83.5 61.56 83.42 80.43

ConvNext-L Proposed – supervised 91.62 95.24 85.48 68.67 85.39 83.69
F
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the collage augmentation improves the network’s generalization on

other domains as well. Next, we combined these augmentations at a

constant probability (0.3) throughout the training process. It can be

seen from Table 2 that performing all augmentations in

combination considerably improved the framework’s performance

compared to the baseline.

However, when using all augmentations at once throughout the

training process (i.e., G+D+C), the network’s performance drops as

compared to when only using G+D. We believe this is because the

augmentations are quite strong from the start of training, making it

difficult for the network to learn important distinguishing features.

To overcome this, we deployed the proposed augmentation

scheduling strategy, which fully activates each augmentation after

a certain number of epochs (set by the user as a hyperparameter), so

that the network can easily and quickly learn simple representations

at the start of training. At the end of training, when all

augmentations are fully activated, these stronger regularizations

make learning more difficult for the CNN and improve

its robustness.

As can be seen in Table 6, even without using collage

augmentation, the augmentation scheduling algorithm improves

the average mIOU by almost 9% compared to vanilla G+D+C.

When using all three types of augmentation with progressive

strategy, the results improvement is almost 14% as compared to

the vanilla augmentation strategy and about a 22% increase when

using no augmentation at all.
4.5 Training and loss curves
across domains

In Figure 9, the graphs illustrate the training loss (source

domain only) and accuracy curves for the proposed domain

adaptation for the source domain and average of all the target

domains. The system successfully adapted from one domain to the

other and was able to effectively recognize both crops and weeds

across various seeding bed systems.
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5 Visual analysis

The qualitative results of the proposed method are illustrated in

Figure 10. The figures present some examples of the system’s

qualitative performance on the testing dataset from the target and

source domains. The system is capable of identifying crops and weeds

effectively across different fields, even with varying densities of weeds

and different seeding systems. Our approach is robust in addressing the

recognition of crops (beans) and weeds, even in complex target

(unseen) field environments used for domain adaptation. The

underlying reason behind this performance is the utilization of deep

feature alignment and augmentation scheduling algorithm which

allows the system to incorporate more robust features and context

information, leading to more stable and reliable segmentation results.
6 Conclusion

In this research, we presented an approach for unsupervised

domain adaptation for crop-weed recognition in an unseen field

environment. The main challenge in creating an automatic weed

management system is the varying visual appearance of weeds based

on factors such as lighting, weather, soil, and seeding bed type. We

proposed to address this problem by minimizing the entropy of the

network on target domain dataset and aligning the features of both

domains through deep feature alignment. Our proposed

framework, which is trained in an end-to-end fashion, consists of

two main components: a segmentation network for feature

extraction and robust entropy minimization and a discriminator

network for adversarial training to generate target domain features

as close as possible to the source domain. Additionally, we proposed

the use of a augmentation scheduling strategy that starts with weak

augmentations for quick adaptation to the source domain dataset

and gradually increases to stronger augmentations for improved

robustness and generalizability. We also demonstrated that the use

of collage augmentation improves performance on target domains

even further. Our extensive evaluation across four different fields
TABLE 6 Effect of augmentation scheduling on performance of proposed UDA framework.

Strategy Augmentation
mIOU (%)

S→S S→A S→B S→C S→D Average

Baseline – 73.9 68.36 56.86 42.33 53.91 55.36

Vanilla (0.3)

Geometric (G) 74.37 82.3 70.59 55.98 72.67 70.39

Noise/Dist. (D) 77.59 78.49 74.63 55.83 73.42 70.59

Collage (C) 80.35 84.7 71.33 53.91 75.19 71.28

G+D 81.03 74.9 66.14 53.55 65.67 65.06

G+D+C 79.93 75.67 68.54 52.36 63.34 64.97

Progressive (0.3)
G+D 82.59 83.57 75.85 57.75 78.36 73.88

G+D+C 88.5 91.02 83.11 60.3 81.1 78.88
fro
Bold and underlined values represent best and second-best values, respectively.
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with various environments and plant seeding systems showed an

overall performance gain of approximately 10% mIOU on average

compared to the baseline. Furthermore, using just one image for

fine-tuning in a few-shot SDA setting, our network achieved almost

similar performance to that of a fully supervised network, i.e.,

80.53% vs 83.6%. A potential direction for future research would

be to explore the adaptation of the model for recognition of multiple

crops and weeds.
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