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A B S T R A C T

Recognizing plant species and disease is essential to practical applications, such as keeping biodiversity and
obtaining a desired crop yield. This study aims to extend the recognition from known to unknown classes
in the context of plants, termed Plant-relevant Open-Set Recognition (POSR). In this task, a trained model
is required to either classify an input image into one of the known classes or an unknown class, even if the
model is only trained with the images of known classes. To achieve this task, we propose a method to obtain a
high-performance classifier with compact feature distributions for known classes. To have a high-performance
classifier, a ViT model pre-trained in the PlantCLEF2022 dataset is transferred, following an observation that
a plant-related source dataset is more beneficial to plant species and disease recognition than other commonly
used datasets, such as ImageNet. To have compact feature distributions, we adopt additive margin Softmax
loss (AM-Softmax) which brings the distance smaller between the features of the same known class and hence
gives more spaces for the unknown class. Extensive experimental results suggest that our method outperforms
current algorithms. To be more specific, our method obtains AUROC 93.685 and OSCR 93.256 on average on
four public datasets, with an average accuracy of 99.295 on closed-set classification. We believe that our study
will contribute to the community and, to fuel the field, our codes will be public2.

1. Introduction

‘‘The only thing that never changes is that everything changes’’ –
Louis L.Amour, which may be true in terms of ecological environment
and crop growth. Changing often suggests that something new appears
in systems, the opposite of the disappearing of existing things, and
receives attention because of its potential impacts on whole environ-
ments, systems, and human societies, one of which is exemplified
by COVID-19. In the context of plant science, remedies should be
considered when new things are big troubles, such as new crop diseases
that may lead to substantial yield loss (Savary et al., 2019) and invasive
plant species that may cause quick diminish of other species (Yan
et al., 2001). In these scenarios, recognizing new things is a fundamental
requirement. This task becomes urgent partly because of climate change,
a core triggering other non-trivial changes such as in plant traits (Wolf
et al., 2022) and biodiversity (Mahecha et al., 2022). This paper aims
to probe the potential of finding new plant diseases and species by
utilizing optical images and deep learning methods.

Although the recognition of plant disease (Hughes et al., 2015;
Thakur et al., 2022a) and species (Goëau et al., 2022; Chen et al., 2022;
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Beery et al., 2022) has witnessed a significant improvement with deep
learning over the last five years, recognizing their new classes is still
in its infancy. On the contrary, widely employed deep learning models
elusively embrace a Closed Set Assumption (CSA) where the classes in
the test process must be included in the training dataset (Geng et al.,
2021; Scheirer et al., 2013). This assumption is violated for real-world
applications when new classes appear (Scheirer et al., 2013; Bendale
and Boult, 2016; Xu et al., 2023a).

To address this issue with CSA, we explicitly embrace Open Set
Assumption (OSA) for plant-relevant recognition, termed Plant-relevant
Open Set Recognition (POSR) that assumes new classes (unknown
classes) existing in the test process. The classes in the training process
refer to known classes. In generic, a model to achieve open set recog-
nition (OSR) can only access the known classes in the training process
yet is tested with both known and unknown classes. The trained models
are required to either distinguish one image from one known class or
into the unknown classes. On the contrary, one image belonging to an
unknown class will be categorized into one of the known classes in
CSA, which is risky in the real world when the unknown class results
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Fig. 1. (a) High-level problem formulation of plant-relevant versatile recognition. The bold suggests the objective of this study and others are taken as future work. (b)
Understandings and our considerations to achieve the instantiated objective.

in problems. Besides, deep learning-based models are desired to know
what they know and what they do not know; otherwise, these models
lack explainability (Samek and Müller, 2019) and are not reliable.

A primary challenge in OSR is the absence of unknown classes in
the training process and thus the models can only learn the data from
known classes (Zhang et al., 2020). Although extra images are bene-
ficial (Dietterich and Guyer, 2022), such as images from controlling
classes (Fuentes et al., 2021) and known unknown images (You et al.,
2022), we are interested in a more generic setting, without any images
from unknown classes, because prior about the known unknown is
limited in real-world applications.3 In this scenario, a common strategy
is to learn a compact feature space for known classes, which gives more
spaces for unknown classes (Yang et al., 2022; Dietterich and Guyer,
2022; Du et al., 2022). We adopt a simple yet effective loss, additive
margin Softmax loss (AM-Softmax) (Wang et al., 2018), which pushes
the distance smaller between the features of the same known class.

In addition to POSR, it is interesting to train a model for multi-
ple applications, such as plant identification and disease recognition,
inspired by the observation that optical applications in plant science
share some visual patterns. However, current research adopts one
model to focus on one recognition task, such as either plant species
identification (Ghazi et al., 2017; Chen et al., 2022; Ganguly et al.,
2022) or plant disease recognition (Mohanty et al., 2016a; Fuentes
et al., 2017; Ferentinos, 2018; Xu et al., 2022a), or single dataset,
such as PlantVillage (Hughes et al., 2015), PaddyDoctor (Kiruba and
Arjunan, 2023), and other private datasets. In contrast, this study
explicitly proposes a plant-relevant versatile recognition (PVR), in-
cluding POSR, which requires designing a single model for multiple
recognition tasks and multiple applications as shown in (a) of Fig. 1.
More details are described in the next section. To achieve this idea,
we follow our previous work (Xu et al., 2022c) to adopt a large-scale
plant-related dataset with huge image variations (Xu et al., 2023b),
PlantCLEF2022, that encompasses commonness for other plant-relevant
versatile recognition. We emphasize that PVR is an ambition and this
study instantiates PVR as the boldface in Fig. 1(a) suggested. We hope
that our work will promote understanding of finding new classes in
plant diseases and species using deep learning and encourages other
real-world applications, and show the potential towards plant-relevant
versatile recognition.

To conclude, this study makes the following primary contributions:

• We explicitly propose a plant-relevant versatile recognition (PVR)
from a unified perspective for real-world applications.

• We instantiate the PVR with the objective to obtain a good open-
set classifier for plant-relevant disease and species recognition on
different datasets, termed POSR.

3 https://en.wikipedia.org/wiki/There_are_unknown_unknowns.

• To achieve POSR, we adopt a ViT model pre-trained in the Plant-
CLEF2022 dataset, rather than CNN models pre-trained in plant-
irrelevant datasets, and employ AM-Softmax to learn compact
feature spaces for known classes, rather than generic Softmax.

• We execute extensive experiments with non-trivial analysis,
which suggests that our method surpasses the current methods
with clear margins.

2. Plant-relevant versatile recognition

As shown in Fig. 1(a), our ambition is to achieve a plant-relevant
versatile recognition for multiple applications with different techniques
from the computer vision field. Both of them can also be further
considered from the perspectives of dataset and target. In real-world
applications, the datasets have multiple crops cultivated in various
farms and the images are taken in different environments such as
lighting conditions and backgrounds. Those deviations may lead to
huge image variations and further result in challenges to training
a model with good generalization ability. The targets in the plant
science community may also vary, such as recognizing plant diseases
and species. In this case, existing methods are designed for a specific
objective (Liu and Wang, 2021; Abade et al., 2021; Thakur et al.,
2022b), such as either plant species identification (Xu et al., 2022b;
Goëau et al., 2022; Chen et al., 2022) or plant disease recognition (Xu
et al., 2022a; Rahman et al., 2020; Nanehkaran et al., 2020; Chen et al.,
2021a). Similarly, most of the methods are only validated in a single
dataset or single crop (Mohanty et al., 2016a; Liu and Wang, 2021;
Xu et al., 2022a; Kendler et al., 2022; Wang et al., 2022; Chen et al.,
2021c). Training and deploying these models are time-consuming and
are often expensive to get decent performance. We rather highlight the
idea that training one trained model for multiple datasets and targets,
inspired by the observation that plant-relevant recognition essentially
owns commonness across different applications such as the patterns on
plant organs. Extra processing for the trained model is allowed and
encouraged for different downstream applications. In this study, we
instantiate this PVR idea by recognizing plant diseases and species on
multiple datasets.

For real-world applications in the plant science community, tech-
niques in the computer vision field can be utilized. The training dataset
from the technique perspective may lead to some challenges. For ex-
ample, a training dataset may only include a few images for each class
in the few-shot case (Xu et al., 2022c, 2023a) whereas, in the domain
adaptation, the test datasets are not in the similar distribution of the
training datasets (Wu et al., 2023). A model may also be desired with
diverse targets, such as that a class is the desired output for an image in
image classification. Accordingly, a bounding box should be predicted
for each class and multiple classes are possible for one image in object
detection. In this study, we instantiate the task of PVR into the open set

https://en.wikipedia.org/wiki/There_are_unknown_unknowns
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Table 1
Four utilized datasets and their highlights. These datasets are collected from three
countries to verify our idea of PVR. The first three datasets are for plant disease
recognition and the last one is for plant species identification.

Dataset Image Class Description

PaddyDoctor 10,407 10 A rice disease dataset with
real-world backgrounds in an
unbalanced way. One image may
include leaves, stems, and heads,
not only diseased but also
healthy, collected in India.

IVADLTomato 3021 9 A tomato disease dataset,
unbalanced and multi-scale,
collected from different
greenhouses in South Korea.

IVADLRose 3132 6 A rose disease dataset with a
similar collecting way as
IVADLTomato.

CottonWeed 5187 15 A dataset to identify weeds in
cotton field taken from different
viewpoints under diverse lighting
environments, collected in the
United States.

and image classification case. We believe that it is beneficial to more
complex tasks such as object detection. The idea is inspired by a current
hot topic, foundation models, such as segmenting anything (Kirillov
et al., 2023) where a pre-trained model can be utilized to perform
multiple tasks. Along with our previous work for few-shot (Xu et al.,
2022c), our experiments suggest that the foundation model for plant-
relevant recognition shows potential, which therefore encourages the
community to put more attention in this direction.

We believe that the proposed PVR is valuable in real-world applica-
tions and encourage a holistic perspective to consider these applications
and techniques because some commonness is shared. Although the indi-
vidual ones are listed in Fig. 1, their combinations are more common in
the real world. We further instantiate it with the objective of this study
to obtain a good open-set image classifier for plant-relevant diseases
and species recognition, as shown in (b) of Fig. 1, with other goals
remaining as future work. The achieve the instantiated objective, our
considerations and methods are described in the next section.

3. Objective, material, and method

3.1. Plant-relevant open set recognition

As mentioned before, we aim to achieve plant-relevant open set
recognition (POSR) for diseases and species recognition across different
datasets, an instantiation of ambition, PVR. This subsection aims to
define open set recognition (OSR) formally. Let the training dataset
𝑡𝑟 = {𝒙𝑖, 𝒚𝑖}𝑁𝑖=1 ⊂ 𝑡𝑟 × 𝑡𝑟 where 𝑡𝑟 refers to the input image space
and 𝑡𝑟 denotes the label space, plant species and disease in this study.
𝑁 is the number of inputs in the training dataset. Similarly, suppose the
test dataset 𝑡𝑒 = {𝒙𝑖, 𝒚𝑖}𝑀𝑖=1 ⊂ 𝑡𝑒 ×𝑡𝑒 where 𝑀 is its total number of
inputs. With the Closed Set Assumption (CSA), training and test datasets
share the same label space, namely 𝑡𝑒 = 𝑡𝑟, which is embraced by
most previous works (Xu et al., 2022c,a; Chen et al., 2022; Rahman
et al., 2020). However, a new type of class may appear when testing
in real-world applications, such as unknown plant species and diseases.
In this scenario, current methods will categorize the new type of class
into one of the known classes in 𝑡𝑟, which is often risky. Therefore, it
is desired to extend the closed set to the open set (Scheirer et al., 2012;
Yang et al., 2021; Xu et al., 2023a).

Mathematically, the test dataset in OSR is denoted: 𝑡𝑒 = 𝑡𝑟 + 𝑢𝑘
where 𝑢𝑘 ≠ ∞ refers to the unknown or new classes. A trained
model is required to correctly classify a testing image either into the
known classes 𝑡𝑟 or into the unknown class 𝑢𝑘 (Bendale and Boult,

2016; Yang et al., 2021). We argue that POSR is more complicated
than generic OSR in computer vision mainly because the images from
different classes in plant science may be very similar. In contrast,
general computer vision split datasets, such as CIFAR10 (Krizhevsky
et al., 2009) and TinyImageNet (Le and Yang, 2015), to evaluate the
OSR (Scheirer et al., 2012; Oza and Patel, 2019; Zhang et al., 2020;
Vaze et al., 2022) where one class semantically differentiates another
class, such as dogs and cats.

3.2. Datasets

Three plant disease datasets and one plant identification dataset are
utilized, as listed in Table 1. Some images from the four datasets are
displayed in Figs. 2 to 4. PaddyDoctor (Kiruba and Arjunan, 2023) is
originally a completion in Kaggle4 to distinguish rice diseases in leaves,
stems, and heads. The images are collected in the real world and one
image has multiple rice organs. In particular, one image includes not
only diseased organs but also healthy ones, which is more difficult than
the images taken in laboratories (Rahman et al., 2020; Sethy et al.,
2020) where one image includes only one dominant visual pattern of a
single organ. Despite its difficulty, PaddyDoctor is utilized because of
its closeness to a real application. It covers nine diseases and one health
in an unbalanced way where some classes have much more images
than other classes (Xu et al., 2022a). The original PaddyDoctor training
dataset is split into our training and test datasets because the ground
truth of the original test dataset is not publicly available. Further, the
adopted IVADLTomato and IVADLRose5 have 3021 images within 9
classes and 3132 images within 6 classes, respectively. The images
with different illuminations are collected in multiple greenhouses in
South Korea. The multi-scale challenge (Xu et al., 2023b) exists in the
two datasets where the distances between cameras and the region of
interest vary, with some other image variations such as backgrounds.
Some classes in the original datasets have more than 1000 images and
we limited the number of each class to less than 520 to make the
recognition more complex.

CottonWeed (Chen et al., 2022), a weed dataset collected in the
cotton field, is leveraged as plant species recognition. This dataset is
collected in 2020 and 2021 under natural light conditions and at di-
verse growth stages. The weeds are also taken from different viewpoints
with heterogeneous lighting environments. We observe that the images
tend to have only one species of weeds with a similar clean background.
The CottonWeed dataset is seriously imbalanced.

3.3. Method

3.3.1. Baseline to achieve OSR
A strong baseline method is first introduced because OSR is different

from generic image classification with the closed-set assumption. Ad-
versarial Reciprocal Points Learning (ARPL) (Chen et al., 2021b; Vaze
et al., 2022), one of the current state-of-the-art methods to achieve OSR,
is borrowed. 𝐾 reciprocal points, the opposite of protocol points (Geng
et al., 2021), are learned when training an ARPL model where 𝐾 equals
the number of known classes 𝑁 . Each sample 𝒙 is first embedded to be
a feature E(𝒙) where E is the embedded network. E(𝒙𝑘) is learned to
be far away from the corresponding reciprocal point 𝑘 where 𝑘 is a
class. In the test process, a sample will be assigned to be unknown if its
embedded feature is close to one of the reciprocal points. Otherwise, it
is classified to be the class whose reciprocal point is the farthest from
its embedded feature. Fig. 5 displays the test process. For more details
refer to Chen et al. (2021b) because this method is not our work. With
this baseline, we will adopt two strategies as described below.

4 https://www.kaggle.com/competitionspaddy-disease-classification/.
5 https://github.com/IVADL/tomato-disease-detector.

https://www.kaggle.com/competitionspaddy-disease-classification/
https://github.com/IVADL/tomato-disease-detector
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Fig. 2. Image examples in the PaddyDoctor (Kiruba and Arjunan, 2023) dataset. Every triplet denotes the same class. The images in this dataset own may not only have diseased
but also healthy ones. The models should learn robust features for distinguishing healthy images from diseased ones.

3.3.2. Our strategies to achieve POSR across multiple datasets
To achieve POSR for different applications across multiple datasets,

a straightforward way is to follow the divide-and-conquer paradigm,6.
For example, individual models and specific training strategies are
designed and trained for every heterogeneous task, plant, and dataset,
which require enormous resources and are complicated to deploy.
Our objective is rather to propose a unified algorithm by utilizing
two strategies and considering three things described in the following
paragraphs, as shown in (b) of Fig. 1 which are added to the baseline
APRL model. Our strategies are illustrated in Fig. 6.

ViT model pretrained in large-scale PlantCLEF2022 dataset
with huge image variations Inspired by the observation that a better
closed-set classifier tends to be better in an open set (Vaze et al., 2022),
we make a surrogate object, obtaining a decent closed-set classifier. To
achieve this idea, our first strategy is utilizing transfer learning because
it significantly boosts the performance in the downstream tasks (Mo-
hanty et al., 2016b; Liu and Wang, 2021; Fan et al., 2022; Chen et al.,
2021d; Zhao et al., 2022; Thakur et al., 2022a; Chen et al., 2022; Xu
et al., 2022b; Goëau et al., 2022). In transfer learning, two factors are
essential, type of architecture and source dataset (Xu et al., 2022c;
Xu, 2023). Our strategy distinguishes from the widely used method in
these two factors. A vision transformer (ViT) (Dosovitskiy et al., 2020),
rather than a convolution neural network (CNN), is employed. The
underlying reasons are from the empirical law that the models having
higher performance generally have better transferability (Kornblith
et al., 2019) and the observation that ViT models tend to get higher

6 https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm.

performance in many closed-set tasks, such as in ImageNet (Deng et al.,
2009) classification accuracy of 85.9% with ViT-large (He et al., 2022)
and 80.62% with ResNet152 (He et al., 2016) (a CNN model).

Second, a ViT model is pre-trained in the PlantCLEF2022 dataset
(Goëau et al., 2022; Xu et al., 2022b). This dataset is plant-related and
the performance in the target task tends to be better if the source and
target dataset are similar (Kora et al., 2022; Matsoukas et al., 2022).
In contrast, most current methods use ImageNet (Deng et al., 2009)
as the source dataset, but it is unrelated to plants. PlantCLEF2022 is
on a large scale with huge image variations, having 80,000 classes and
2,885,052 images and including multiple organs such as leaves and
fruits. In contrast, a plant-related dataset, AIChallenger (Zhao et al.,
2022), has much smaller image variations. We emphasize that the
PlantCLEF2022 dataset is beneficial not only for a close-set classifier
but also for multiple datasets because it allows the pre-trained model
to learn many plant-related patterns. A ViT-large model pre-trained in
PlantCLEF2022 is directly borrowed from our previous work (Xu et al.,
2022c) to save training resources and time. To be more specific, the
ViT-large model is first pre-trained in ImageNet in a self-supervised
manner and then is pre-trained once more in PlantCLEF2022 dataset in
a supervised manner, which facilitates the shortage of GPUs (Xu et al.,
2022c).

Additive margin Softmax to have compact feature space within
the same known class Our second strategy is using the additive
margin Softmax loss function, rather than generic Softmax, to have
a compact feature space. Different from closed-set classification, OSR
models are entailed to output an unknown score to suggest the pos-
sibility of an input image belonging to the unknown, and a threshold
can be tuned to finally make a decision with the unknown score. In this

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
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Fig. 3. Image examples in the IVADLTomato (the first three rows) and IVADLRose datasets (the last two rows). Every triplet denotes the same class where H and S refer to healthy
and stress respectively.

Fig. 4. Image examples in the CottonWeed. Every triplet denotes the same class.

case, a tight feature space for known classes is beneficial because it will
give more space for the unknown class. Inspired by this idea, additive

margin Softmax (AM-Softmax) (Wang et al., 2018) loss function is
employed. Although it is originally designed for face verification, APRL
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Fig. 5. Test process with an ARPL (Chen et al., 2021b) model, one of the state-
of-the-art to achieve OSR. We use it as a baseline and add two more strategies, a
ViT pre-trained embedded model in the PlantCLEF2022 dataset and additive margin
Softmax loss (AM-Softmax). E is the embedding network and 𝑘 is a learnable reciprocal
point. d is a distance metric function and 𝑠 is a threshold.

models to achieve OSR has the same core that the central or the
reciprocal points are utilized to distinguish images.

To optimize a model to achieve multi-class image classification,
cross-entropy loss for one sample can be formalized as

𝐻(𝒚,𝒑) =
𝐶
∑

𝑘=1
−𝑦𝑘 log(𝑝𝑘), (1)

where 𝑦𝑘 is ‘‘1’’ for the correct class and ‘‘0’’ for other classes. 𝐶 is the
total number of known classes and 𝑝𝑘 is the likelihood for class 𝑘 the
model assigned for a given input and 𝑾 𝑘 is the corresponding weight
vector. In generic Softmax, 𝑝𝑘 can be computed as 𝑝𝑘 = exp𝒇T𝑾 𝑘

∑𝐶
𝑐=1 exp(𝒇

T𝑾 𝑐 )
,

where 𝒇 denote extracted features for an input image 𝒙 and 𝑾 is
the weights in the classifier layer. AM-Softmax (Wang et al., 2018)
calculates the likelihood in a different way:

𝑝𝑘 =

⎧

⎪

⎨

⎪

⎩

exp(𝑠⋅(𝒇T𝑾 𝑘−𝑚))
exp(𝑠⋅(𝒇T𝑾 𝑘−𝑚))+

∑𝐶
𝑐=1,𝑐≠𝑐 exp(𝑠⋅𝒇

T𝑾 𝒄 )
if 𝑦𝑘 = 1 ;

exp(𝑠⋅𝒇T𝑾 𝑘)
exp(𝑠⋅(𝒇T𝑾 𝑐−𝑚))+

∑𝐶
𝑐=1,𝑐≠𝑐 exp(𝑠⋅𝒇

T𝑾 𝑘)
otherwise .

(2)

In Eq. (2), 𝑦𝑐 = 1 denotes the correct class. The hyperparameter
margin 𝑚 is only used for the correct class, and 𝑠 is a scaling hyper-
parameter. Importantly, the feature vector 𝒇 and weight vector 𝑾 𝑘
are required to be normalized, such that 𝒇 = 𝒇 ′∕‖𝒇 ′

‖ (‖ ⋅ ‖ is a norm
function) and 𝑾 = 𝑾 ′∕‖𝑾 ′

‖ where 𝒇 ′ and 𝑾 ′ are the counterparts
before normalization. The loss with this likelihood pushes the features
belonging to the same known class tighter, which gives more space for
the unknown class in OSR and thus contributes to achieving a better
OSR.

3.4. Evaluation metrics

AUROC and CSA. OSR has two fundamental tasks that distinguish
the unknown class from the known one and classify the known into
the correct class. Because of these tasks, commonly adopted met-
rics in generic image classification are not reasonable to evaluate
OSR (Scheirer et al., 2012). The first challenge to evaluating OSR is
that different thresholds to find unknown from known will give dif-
ferent performances. Area Under the Receiver Operating Characteristic
(AUROC) curve (Neal et al., 2018), not sensitive to thresholds is one
useful metric. To compute AUROC, all known classes are cast as a super
known class and the task becomes a binary classification along with the
unknown classes as a super unknown class. With these two superclasses,
true positive rate (TPR) and false positive rate (FPR) can be computed
for the super known class. As the name of AUROC suggests, it can be
considered as the area under the curve of 𝑇𝑃𝑅𝑠 and 𝐹𝑃𝑅𝑠. Bigger
AUROC commonly suggests that the model is better. Although AUROC
is helpful to ease the effect of choosing a threshold, it essentially has no
ability to evaluate if the model classifies the known classes correctly.

Close Set Accuracy (CSA) (Vaze et al., 2022; Neal et al., 2018) can be
used together in that a good open-set classifier should not degrade in
the closed-set. Only known classes are taken to the trained model and
then CSA is directly the generic accuracy. Therefore, we utilize AUROC
and CSA together to evaluate different models considering the two tasks
simultaneously.

OSCR Dhamija et al. (2018) considers the two OSR tasks simulta-
neously and aims to output a single value to evaluate trained models.
The test datasets are split into known classes 𝑘𝑛𝑜𝑤𝑛 and unknown
classes 𝑢𝑛𝑘𝑛𝑜𝑤𝑛. For samples from 𝑘𝑛𝑜𝑤𝑛, the correct classification rate
(CCR) is the fraction of the samples whose unknown scores are smaller
than a given threshold 𝑠, and the learned classifier can also correctly
classify them. For samples from 𝑢𝑛𝑘𝑛𝑜𝑤𝑛, the false positive rate (FPR)
is the fraction of the samples whose unknown scores are smaller than 𝑠.
Similar to AUROC, OSCR is the area under the 𝐶𝐶𝑅𝑠 and 𝐹𝑃𝑅𝑠 curve.

4. Experiments and discussions

4.1. Implementation details

We split each dataset into training and testing sets at a ratio of
7:3. Six known classes are randomly chosen for PaddyDoctor and
IVADLTomato datasets while four and ten known classes are randomly
chosen for IVADLRose and CottonWeed, respectively. The other classes
across these datasets are left as unknown classes. For each dataset,
RandAugment (Cubuk et al., 2020) with 𝐴𝑈𝐺𝑚 of 30, 𝐴𝑈𝐺𝑛 of 2
is utilized and images are resized to 224. For the AM-Softmax loss
function, according to preliminary experiments, the values of 𝑠 and
𝑚 are set to 10.0 and 0.5, respectively. We set the batch size to 32
and the number of workers to 16 with one RTX 3090 GPU (24 GB
memory). We train the network for 100 epochs with a learning rate
of 0.0001. Following the generic experimental setting of OSR, each
model is trained on five different random splits of known and unknown
on each dataset and the mean and variance of the performance are
reported.

4.2. Compared methods

We designed several comparisons with different strategies and
models. For the selection of methods for comparison, the following
characteristics exist: CNN-based or ViT-based, and supervised or self-
supervised, with or without transfer learning, whether training with
PlantCLEF2022 (Xu et al., 2022c) or not. The compared methods are
listed in Table 2 and described as follows:

• CNN-based

– RN50. A ResNet50 model is trained from scratch with the
target datasets listed in Table 1.

– RN50-IN1k. A ResNet50 model is pre-trained with the
ImageNet-1k (IN1k) dataset in a supervised way and then
fine-tuned in the target datasets.

– RN50-MoCov2. A ResNet50 model is pre-trained with the
IN1k dataset in a self-supervised way and then fine-tuned
in the target datasets.

• ViT-based

– ViT-L. A ViT-large (Dosovitskiy et al., 2020) model is trained
from scratch with the target datasets.

– ViT-IN1k. A ViT-large model is pre-trained with the IN1k
dataset in a supervised way and then fine-tuned in the target
datasets.

– MAE. A ViT-large model is pre-trained with the IN1k dataset
in a self-supervised way (He et al., 2022).

• Ours. We emphasize that our methods are based on ViT. To
explain easier, we put our methods at the same level as CNN- and
ViT-based.
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Fig. 6. Illustration of our strategies considering three things: model architecture, training strategy, and loss function. A ViT model (architecture) is pretrained in the PlantCLEF2022
dataset (training strategy). The last classification layer in the pretrained ViT-L model is adapted for downstream tasks and the whole model is finetuned using APRL and AM-Softmax
loss (loss function) using individual datasets. Our ambition is to achieve PVR in multiple applications and multiple datasets.

Table 2
Characteristics of the compared methods. CE and AM represent Cross Entropy loss
with generic Softmax and AM-Softmax, respectively. w/o denotes without using the
corresponding datasets.

Architecture Training strategies Loss function

Model Method ImageNet-1k PlantCLEF2022 CE/AM

CNN-based
RN50 w/o w/o

CE/AMRN50-IN1k Supervised w/o
RN50-MoCov2 Self-supervised w/o

ViT-based
ViT-L w/o w/o

CE/AMViT-IN1k Supervised w/o
MAE Self-supervised w/o

Ours MAE-PlantCLEF-CE Self-supervised Supervised CE
MAE-PlantCLEF-AM Self-supervised Supervised AM

– MAE-PlantCLEF-CE. We pre-train the ViT-large model from
MAE with the PlantCLEF2022 dataset once again in a super-
vised way and then fine-tuned it with the target datasets.

– MAE-PlantCLEF-AM. In MAE-PlantCLEF-CE, Softmax loss is
replaced with AM-Softmax.

We want to emphasize that more comparisons are encouraged to
highlight the contributions of our proposed strategies. Especially, a
pretrained RN-50 model in PlantCLEF2022 dataset is highly desired
to show the impact of architectures. However, pretraining models is
not a trivial thing that often requests access to GPUs and tuning
the hyperparameters. This situation becomes more challenging if the
dataset is on a large scale, such as PlantCLEF2022. Due to this issue,
we attempt to directly utilize existing pretrained models, and thus
pretraining RN-50 in PlantCLEF2022 is not compared. Although it may
be beneficial to the downstream performance, an empirical law, that
the models having higher performance generally have better transfer-
ability (Kornblith et al., 2019), suggests that it will be inferior to ViT
models pretrained in PlantCLEF2022. To be specific, ViT-based models
outperform CNN-based models by a clear margin in the official report
of the PlantCLEF2022 challenge (Goëau et al., 2022).

4.3. Main result

As our main objective is to achieve versatile plant-relevant open-set
recognition across multiple datasets, we first compare our method to
other strategies. Table 3 denotes the main results of different methods
over four datasets mentioned in Table 1.

As shown in Table 3, experimental results show that our method
significantly outperforms other methods on all datasets. Especially on
the IVADLRose dataset, our method MAE-PlantCLEF-AM achieves 91.52
AUROC and 91.14 OSCR, 19.48 AUROC, and 19.89 OSCR higher than
the MAE method. Moreover, our method outperforms the second-best
method RN50-IN1k by 7.54 AUROC and 8.06 OSCR on the IVADLRose
dataset. In the CottonWeed dataset, only PlantCLEF2022 pre-training
(MAE-PlantCLEF-CE) can obtain 99.51 AUROC and 99.29 OSCR, 9.30
AUROC and 9.83 OSCR higher than the MAE method. Furthermore,
AM-Softmax loss improves the classification accuracy on known data
and achieves comparable results on AUROC and OSCR.

Regarding the impact of transfer learning, both the CNN-based
and the ViT-based methods achieve much higher POSR results than
ResNet50 and ViT models trained from scratch in all four datasets.
Another important phenomenon can be seen from the experimental
results. The ResNet50 model can achieve better POSR results than the
ViT model on disease datasets (such as PaddyDoctor and IVADLRose
datasets) as shown in Fig. 7. Still, when we apply PlantCLEF pre-
training to the ViT model, the POSR capability of the ViT model can be
significantly improved.

Due to the AM-Softmax loss, intra-class compactness and inter-
class separability are achieved, so better closed-set classification can
be obtained and open-set recognition is also improved. It can also be
seen from Table 3 that the AM-Softmax loss function also plays a crucial
role in promoting POSR in most datasets. Specifically, AM-Softmax loss
improves AUROC and OSCR by 15.21 on the IVADLRose dataset.

The number of parameters and computation complexity are also
displayed in Table 4 for two basic architectures, CNN and ViT. ViT-
L model has much more learnable parameters and computations. The
training time for every dataset is also shown in the table but we point
out that the training time is impacted by not only models but also
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Table 3
Main results on four datasets from different methods. TDS denotes the target data
set. PD, IVADLT, IVADLR, and CW are PaddyDoctor, IVADLTomato, IVADLRose, and
CottonWeed datasets. The boldface represents the best results in every dataset for the
specific evaluation metrics.

TDS Method Loss CSA AUROC OSCR

PD

RN50 CE 60.97 ± 0.03 60.68 ± 0.06 41.73 ± 0.04
RN50-IN1k CE 97.52 ± 0.01 87.57 ± 0.01 86.26 ± 0.01
RN50-MoCov2 CE 97.97 ± 0.01 90.02 ± 0.01 88.90 ± 0.02
ViT-L CE 68.29 ± 0.08 62.15 ± 0.08 47.64 ± 0.09
ViT-IN1k CE 97.12 ± 0.01 85.95 ± 0.03 84.53 ± 0.03
MAE CE 97.11 ± 0.01 86.28 ± 0.03 84.87 ± 0.03
MAE-PlantCLEF-CE CE 98.50 ± 0.01 90.59 ± 0.02 89.73 ± 0.02
MAE-PlantCLEF-AM AM 98.70 ± 0.01 91.69 ± 0.01 91.07 ± 0.01

IVADLT

RN50 CE 68.90 ± 0.02 59.83 ± 0.13 47.79 ± 0.11
RN50-IN1k CE 95.67 ± 0.00 87.13 ± 0.02 84.74 ± 0.02
RN50-MoCov2 CE 96.94 ± 0.01 86.17 ± 0.04 84.86 ± 0.04
ViT-L CE 68.76 ± 0.01 68.58 ± 0.04 53.34 ± 0.03
ViT-IN1k CE 98.81 ± 0.01 91.13 ± 0.03 90.55 ± 0.03
MAE CE 93.78 ± 0.02 84.32 ± 0.03 81.46 ± 0.03
MAE-PlantCLEF-CE CE 98.62 ± 0.01 90.98 ± 0.04 90.36 ± 0.04
MAE-PlantCLEF-AM AM 99.29 ± 0.00 92.02 ± 0.05 91.75 ± 0.04

IVADLR

RN50 CE 74.97 ± 0.04 58.96 ± 0.08 48.00 ± 0.06
RN50-IN1k CE 97.95 ± 0.01 83.98 ± 0.09 83.08 ± 0.09
RN50-MoCov2 CE 98.69 ± 0.01 81.09 ± 0.10 80.58 ± 0.10
ViT-L CE 78.78 ± 0.04 59.65 ± 0.08 52.03 ± 0.07
ViT-IN1k CE 99.20 ± 0.01 74.12 ± 0.17 73.75 ± 0.17
MAE CE 97.88 ± 0.01 72.04 ± 0.19 71.25 ± 0.19
MAE-PlantCLEF-CE CE 99.23 ± 0.01 76.31 ± 0.18 75.93 ± 0.18
MAE-PlantCLEF-AM AM 99.39 ± 0.01 91.52 ± 0.09 91.14 ± 0.09

CW

RN50 CE 64.39 ± 0.02 60.12 ± 0.02 43.32 ± 0.02
RN50-IN1k CE 97.86 ± 0.01 86.82 ± 0.03 85.69 ± 0.03
RN50-MoCov2 CE 98.50 ± 0.00 86.61 ± 0.05 85.82 ± 0.05
ViT-L CE 69.65 ± 0.03 63.95 ± 0.09 49.27 ± 0.05
ViT-IN1k CE 99.12 ± 0.00 94.88 ± 0.01 94.29 ± 0.01
MAE CE 98.54 ± 0.00 90.21 ± 0.03 89.46 ± 0.02
MAE-PlantCLEF-CE CE 99.75 ± 0.00 99.51 ± 0.00 99.29 ± 0.00
MAE-PlantCLEF-AM AM 99.80 ± 0.00 99.26 ± 0.01 99.10 ± 0.01

Fig. 7. Performance comparison on two model groups with the same loss function CE.
(a) and (b) denote average performance on disease and species datasets, respectively.
Compared to CNN-based methods, ViT-based methods achieve comparable open-set
performance on disease datasets and better performance on species datasets.

Fig. 8. AUROC comparison based on different methods. CE and AM represent Cross
Entropy loss and AM-Softmax loss, respectively.

hardware and training settings, such as the number of workers to
read data using PyTorch. From the table, ViT-L models spend a longer
time but is tolerant. In terms of the FPS, ViT models can achieve the
real-time requirement, 20 FPS.

4.4. Ablation study and visualization

To evaluate our method, in this subsection, we mainly analyze
the impact of the architecture, AM-Softmax loss function, and pre-
trained PlantCLEF2022 dataset. As mentioned before, one image has
multiple plant organs, not only diseased but also healthy ones in the
PaddyDoctor dataset as shown in Fig. 2. These characteristics make
the PaddyDoctor dataset more complex. Moreover, it can be seen
from the IVADLTomato dataset shown in Fig. 3 that different diseases
are very similar, such as Health, Chlorosis, and Yellow_curl. Another
important phenomenon is that the Powdery_mildew classes have very
few pictures (49 pictures) in the dataset. Hence, we mainly choose these
two datasets to analyze the ablation study. Moreover, we believe that
the pre-training of the PlantCLEF2022 dataset will be helpful for CNN-
based models, but there is currently no CNN-based pre-training model
on the PlantCLEF2022 dataset. Therefore we only show the ViT-based
pre-trained model on the PlantCLEF2022 dataset.

As shown in Table 5 and Fig. 8, a common phenomenon obtained
from experiments on the PaddyDoctor and IVADLTomato datasets is
that the AM-Softmax loss function can promote the performance of
open sets in CNN-based methods. On the contrary, in the ViT-based
models, AM-Softmax loss will reduce the classification effect of open
sets. The ViT model with more capacity has a strong dependence on
feature reuse (Matsoukas et al., 2022), while ImageNet-1k is far away
from plant disease data, therefore if the features from ImageNet feature
reuse are made more compact, the results of disease classification will
decrease. However, it can be seen from Fig. 8 that after AM-Softmax
loss is combined with the ViT model (MAE-PlantCLEF-AM) pre-trained
on the plant-related PlantCLEF2022 dataset, the open-set recognition
effect will be significantly improved. MAE-PlantCLEF-AM can obtain
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Table 4
Comparisons of the number of parameters (params) of models, floating-point operations (FLOPs), training time with the hour (H) unit, and frames per second (FPS) in inference
time. Although ViT models have much more parameters and require a longer time to be trained, their FPSs are still in real-time mainly because of the simplicity of image
classification.

Model Params (M) ↓ FLOPs (G) ↓ Dataset Training time (H) ↓ FPS ↑

ResNet50 23.533 4.109

PD 0.35 190.61
IVADLT 0.18 192.05
IVADLR 0.18 193.04
CW 1.78 187.26

ViT-large 311.296 61.603

PD 2.46 80.99
IVADLT 1.00 80.84
IVADLR 0.97 80.88
CW 2.13 80.70

Table 5
Ablation study on the PaddyDoctor (PD) and IVADLTomato (IVADLT) datasets.

TDS Method Loss CSA AUROC OSCR

PD

RN50-IN1k CE 97.52 ± 0.01 87.57 ± 0.01 86.26 ± 0.01
RN50-IN1k AM 97.77 ± 0.01 88.77 ± 0.01 87.56 ± 0.01
RN50-MoCov2 CE 97.97 ± 0.01 90.02 ± 0.01 88.90 ± 0.02
RN50-MoCov2 AM 97.83 ± 0.00 91.25 ± 0.01 90.16 ± 0.01
ViT-IN1k CE 97.12 ± 0.01 85.95 ± 0.03 84.53 ± 0.03
ViT-IN1k AM 98.26 ± 0.00 84.44 ± 0.08 83.67 ± 0.08
MAE CE 97.11 ± 0.01 86.28 ± 0.03 84.87 ± 0.03
MAE AM 97.63 ± 0.01 74.79 ± 0.10 73.84 ± 0.09
MAE-PlantCLEF-CE CE 98.50 ± 0.01 90.59 ± 0.02 89.73 ± 0.02
MAE-PlantCLEF-AM AM 98.70 ± 0.01 91.69 ± 0.01 91.07 ± 0.01

IVADLT

RN50-IN1k CE 95.67 ± 0.00 87.13 ± 0.02 84.74 ± 0.02
RN50-IN1k AM 96.84 ± 0.01 88.47 ± 0.04 86.83 ± 0.04
RN50-MoCov2 CE 96.94 ± 0.01 86.17 ± 0.04 84.86 ± 0.04
RN50-MoCov2 AM 96.91 ± 0.01 87.54 ± 0.04 86.04 ± 0.03
ViT-IN1k CE 98.81 ± 0.01 91.13 ± 0.03 90.55 ± 0.03
ViT-IN1k AM 97.83 ± 0.01 90.96 ± 0.02 89.92 ± 0.02
MAE CE 93.78 ± 0.02 84.32 ± 0.03 81.46 ± 0.03
MAE AM 94.18 ± 0.02 83.80 ± 0.03 81.28 ± 0.03
MAE-PlantCLEF-CE CE 98.62 ± 0.01 90.98 ± 0.04 90.36 ± 0.04
MAE-PlantCLEF-AM AM 99.29 ± 0.00 92.02 ± 0.05 91.75 ± 0.04

99.29 CSA, 92.02 AUROC, and 91.75 OSCR on the IVADLTomato
dataset.

Fig. 9 shows that when the AM-Softmax loss is applied, the intra-
class and inter-class feature spaces become more compact and sepa-
rated, respectively. To quantify the compactness of feature space after
applying the AM-Softmax loss function, we introduce the Silhouette
Coefficient Score (SCS) metric as shown in Fig. 9. The SCS ranges
between −1 and 1, where a higher silhouette coefficient refers to a
model with more coherent clusters (Belyadi and Haghighat, 2021).
Meanwhile, the MAE-PlantCLEF-AM and RN50-IN1k-AM methods can
achieve 0.71 SCS and 0.54 SCS, respectively, much higher than using
the cross-entropy loss. Furthermore, as can be seen from the red frame
in Fig. 9, although unknown classes are identified as known classes,
the overlap between known and unknown classes is reduced. The
more interesting phenomenon is that the feature space of the unknown
classes is also more compact and far away from the feature space of
known classes, which makes the recognition rate of POSR higher.

Comparing MAE-PlantCLEF-CE with MAE in Table 5, it can be
seen that the pre-trained PlantCLEF2022 dataset plays a key role in
the POSR task. The MAE-PlantCLEF-CE method achieves 98.50 CSA,
90.59 AUROC, and 89.73 OSCR on the PaddyDoctor dataset 5, im-
proving by 1.39 CSA, 4.31 AUROC, and 4.86 OSCR over the MAE
method, respectively. The improvement of the POSR recognition effect
on the IVADLTomato dataset is more obvious. Compared with MAE,
MAE-PlantCLEF-CE improves 4.84 CSA, 6.66 OSCR, and 8.9 OSCR,
respectively.

To illustrate the effect of AM-Softmax loss and PlantCLEF2022
pre-training on classification results in more detail, we obtained the
confusion matrix of the known classes on the IVADLTomato dataset.
From Fig. 10, it can be seen that both CNN-based and ViT-based
methods can achieve better classification results when AM-Softmax
loss is applied. Especially on the RN50-IN1k method, the classification

accuracy of Leaf_miner disease has been significantly improved. Com-
paring MAE-PlantCLEF-AM and RN50-IN1k-AM, the ViT-based method
can achieve an accuracy of 1.0 in most known diseases classification.
Since Chlorosis and Yellow_curl disease are very similar, the CNN-based
method misclassifies Chlorosis as Yellow_curl disease, while the ViT-
based method can largely classify it correctly. As shown in Fig. 11,
when the true positive rate is 95%, our method can better identify
unknown classes (TN) and after utilizing AM-Softmax loss, the false
positive ones are reduced a lot.

Fig. 12 illustrates image samples of incorrectly recognized unknown
and known classes by the MAE-PlantCLEF-AM and RN50-IN1k-AM
methods. Some diseases, especially early-stage diseases or diseases
without obvious features, are wrongly recognized by both two methods.
The MAE-PlantCLEF-AM method has a better recognition ability and
can completely correctly classify Ulcer disease.

4.5. Extra understandings towards POSR

Openness tells us that knowing more is better to recognize new
types of diseases. To analyze the impact of openness on POSR, we
introduce openness based on the ratio of the numbers of classes in
training and test sets (Zhang et al., 2020).

𝑜𝑝𝑒𝑛𝑛𝑒𝑠𝑠 = 1 −

√

𝑘𝑡𝑟𝑎𝑖𝑛
𝑘𝑡𝑒𝑠𝑡

, (3)

where 𝑘𝑡𝑟𝑎𝑖𝑛 and 𝑘𝑡𝑒𝑠𝑡 are the number of classes in the training dataset
and the test dataset, respectively.

To better analyze the impact of known classes on POSR, we define
a novel method for sampling the number of known and unknown
classes. Same with before experiments, we randomly split ’known and
unknown’ classes for five trials, moreover, we select a fixed number
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Fig. 9. Visualization using t-SNE on the IVADLTomato dataset. Six categories are from known data and three categories are from unknown data. Every known and unknown class
is displayed with different colors in the top part and all unknown classes are displayed with the same black color in the down part. (a), (b), (c), and (d) denote our method
MAE-PlantCLEF-AM, MAE-PlantCLEF-CE, RN50-IN1k with AM-Softmax loss (RN50-IN1k-AM), and RN50-IN1k with Cross Entropy loss (RN50-IN1k-CE), respectively. Please zoom
in to see the details.

Table 6
Performance based on different openness on the PaddyDoctor dataset.

Openness CSA AUROC OSCR

22.54% 98.70 ± 0.01 91.69 ± 0.01 91.07 ± 0.01
25.46% 99.14 ± 0.01 90.93 ± 0.03 90.53 ± 0.02
29.29% 99.15 ± 0.01 90.29 ± 0.04 89.91 ± 0.04
34.53% 99.19 ± 0.01 84.15 ± 0.06 83.87 ± 0.06
42.26% 99.72 ± 0.00 79.47 ± 0.04 79.40 ± 0.04
55.28% 100.00 ± 0.00 25.37 ± 0.06 25.34 ± 0.06

of unknown classes for each trial and decrease the number of known
classes to get different openness values. We fix four and three unknown
classes for the PaddyDoctor dataset and the IVADLTomato dataset,
respectively. In other words, the number of unknown classes is four,
and the number of known classes decreases from six to one in the
PaddyDoctor dataset. The fewer the number of known classes, the
higher the openness.

As shown in Table 6, the higher the openness, the higher the
accuracy of closed-set classification. On the contrary, because there are
fewer known classes, it poses a great challenge to POSR, resulting in
lower AUROC and OSCR. A noteworthy phenomenon is that when the

Table 7
Performance based on different openness on the IVADLTomato dataset.

Openness CSA AUROC OSCR

18.35% 99.29 ± 0.00 92.02 ± 0.05 91.75 ± 0.04
20.94% 98.96 ± 0.01 91.79 ± 0.04 91.29 ± 0.04
24.41% 98.98 ± 0.01 92.75 ± 0.05 92.27 ± 0.05
29.29% 99.25 ± 0.00 91.56 ± 0.06 91.20 ± 0.05
36.75% 98.87 ± 0.01 90.97 ± 0.04 90.66 ± 0.04
50.00% 100.00 ± 0.00 15.29 ± 0.05 15.18 ± 0.05

openness is 22.54%, 25.46%, and 29.29%, that is, the number of known
classes is greater than or equal to the number of unknown classes, the
variation range of AUROC and OSCR is relatively small. But when the
number of known classes is less than the number of unknown classes,
such as the openness of 34.53% and 42.26%, the variation range of
AUROC and OSCR starts to become apparent. Especially when there is
only one known class (openness is 55.28%), AUROC and OSCR drop
sharply.

While similar variations can also be seen in the IVADLTomato
dataset, as shown in Table 7, some features emerge due to the presence
of some very similar classes in the IVADLTomato dataset. When the
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Fig. 10. One of the examples of confusion matrix of known classes in the IVADLTomato dataset. (a), (b), (c), (d) indicate our method MAE-PlantCLEF-AM, MAE-PlantCLEF-CE,
RN50-IN1k-AM, and RN50-IN1k-CE, respectively. Please zoom in to see the details.

number of known categories is reduced, some similar diseases may
disappear, resulting in higher AUROC and OSCR, for example, when
the openness is 24.41%, AUROC, and OSCR are higher than when the
openness is 18.35% and 20.94%. The same phenomenon is that when
the number of known classes is one (the openness is 50.00%), the
performance drops rapidly.

What kind of classes impact the performance of POSR The
similarity of plant diseases has a large impact on the performance of
POSR. To analyze the impact, we implemented open-set classification
accuracy curves based on different true positive rates on the IVADL-
Tomato dataset. As shown in Fig. 13, id 0 to id 4 represent five different
‘‘known/unknown’’ trials, where the known and unknown classes are
different and chosen randomly. In Fig. 13(a), we follow the previous ex-
perimental settings, six classes are known classes and three classes are
unknown. From the results, we can see that different ‘known/unknown’
combinations have a large influence on the performance of open-set
classification. To understand what kind of classes affect performance,
three unknown classes of id 1 are evaluated separately. Specifically, we
select one of the three unknown classes as an unknown class and then
use the model trained in (a) for validation. From Fig. 13(b), we can see
that chlorosis has a large impact on performance because chlorosis is
similar to Yellow_curl and health.

4.6. Social impacts and limitations

New class recognition is a fundamental requirement for many prac-
tical applications. We explicitly proposed plant-relevant open-set recog-
nition and conducted preliminary experiments to recognize new plant
species and diseases. An ambition, PVR, is highlighted simultaneously

that a model or some strategies can be shared for different downstream
applications, inspired by the observation of commonness among them.
Our results suggest that pretraining big models such as ViTs in a large-
scale dataset related to plants is promising. However, this ambition
should be validated by more applications. Further, a straightforward
question is the boundary of this ambition. One of the essential factors
in our method is to pretrain a model in the PlantCLEF2022 dataset.
Even though it is large-scale, it may not be large enough. Collecting
a better dataset may be beneficial to the field yet is definitely not
easy. A major limitation of PlantCLEF2022 for downstream tasks is
only related to RGB images. Therefore, the pretrained models are
expected to contribute less to other modalities, such as infrared images
suitable for nights. Although POSR and PVR proposed in this study
are very limited, we believe that our work has displayed possibilities
and potential. With this point, more applications beyond plant disease
and species recognition are highly encouraged. On the other hand,
deploying POSR in real-world applications will be interesting, such as
what a weed-removing robot should do when it finds unknown weeds.
We believe that extending our work for different practical applications
is charming.

To achieve POSR and PVR, we elusively embraced a perspective
that they can be considered as a common task in general computer
vision (Xu et al., 2023a). With this embrace, the techniques are bor-
rowed from the latter to the former. However, plant-related tasks may
have their dominant characteristics (Xu et al., 2023a), such that the
similarities between plant diseases and species may be big. Another
example is the scale and severity of plant disease. The widely adopted
strategies in general computer vision may not always be optimal for this
challenge. For example, human experts may look closely and carefully
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Fig. 11. One of the examples of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) samples of known and unknown classes at a 95% true
positive rate (𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁
is 95%) in the IVADLTomato dataset, where the known class is deemed positive. (a) the TP, TN, FP, and FN values are based on different methods. (b)

compared with the MAE-PlantCLEF-AM method, the other three methods reduce the correct identification of unknown classes and increase the false recognition of known classes.
(c) represents the proportion of different methods to identify TN and FP ( 𝑇𝑁

𝑇𝑁+𝐹𝑃
∕ 𝐹𝑃

𝑇𝑁+𝐹𝑃
).

Fig. 12. Examples of misidentified images on the IVADLTomato dataset. The images with red boundaries are the wrong recognization for both MAE-PlantCLEF-AM and RN50-IN1k-
AM, the image with blue boundary was the only wrong recognition by our model, MAE-PlantCLEF-AM, and the images without colorful boundaries are the only wrong recognition
by RN50-IN1k-AM.

but current models often employed a fixed resolution of input images.
Even though our method obtains decent performance in four public
datasets, we cannot guarantee that it is beneficial for other datasets
especially when the style to take pictures changes. However, varying
the input resolution and using multiple observations may mitigate this
issue when a low performance is observed. Preliminary results with
the ResNet50 model are suggested in Table 8. We emphasize that the
performance with high resolution tends to be higher but still lower

than ours. In this case, employing a higher resolution for our model
is encouraging and left as future work.

5. Conclusions

In this study, we described an ambition, PVR (plant-relevant versa-
tile recognition), and instantiated it as POSR (plant-relevant open set
recognition) for two specific tasks, plant disease, and species recogni-
tion. To achieve POSR, two strategies were utilized and incorporated
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Fig. 13. Open-set classification accuracy with different true positive rates on the IVADLTomato dataset. (a) denotes five ‘known/unknown’ splits and the average result, respectively.
(b) To illustrate what kind of classes affect the performance, three unknown classes of split one are evaluated separately.

Table 8
Preliminary experiments to probe the impact of input resolutions with the RN50-IN1k-
CE method. Generally, the performance tends to be better when the resolution increases
and the gain become smaller, but not always such as the case in the IVADLRose dataset.
Besides, AUROC in The IVADLTomato dataset slightly increases when the input image
size becomes larger. We conjecture that it is because the image scales are small-scale,
compared to the CottonWeed dataset.

Dataset Image size CSA AUROC OSCR

PD
224 97.52 87.57 86.26
336 97.89 87.77 86.68
384 97.78 87.48 86.34

IVADLT
224 95.67 87.13 84.74
336 96.77 88.99 87.20
384 97.22 89.03 87.38

IVADLR
224 97.95 83.98 83.08
336 98.56 79.51 78.89
384 98.65 78.20 77.63

CW
224 97.86 86.82 85.69
336 98.53 89.57 88.78
384 98.76 90.41 89.71

with the state-of-the-art OSR method, APRL. To be more specific, a
ViT-based model pretrained in a large-scale and plant-related dataset,
PlantCLEF2022, was transferred for the downstream tasks, compared
to the commonly used CNN-based models pretrained in either plant-
irrelated or small-scale datasets. An AM-Softmax loss was employed to
have a tight intra-class feature space that is beneficial to detect the
unknown class. Our strategies were executed on four public datasets
and the experimental results and ablation studies validate their effec-
tiveness. The results also suggest that POSR and PVR are promising.
In spite of the decent performance and some basic understanding of
POSR, our model is desired to be improved for real-world applications.
Social impacts and some limitations are summarized in the previous
section. We hope that our work will contribute to the community and
encourage more work and, to fuel the field, our codes will be public at
https://github.com/xml94/POSR.
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