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Plant disease detection has made significant strides thanks to the emergence of

deep learning. However, existing methods have been limited to closed-set and

static learning settings, where models are trained using a specific dataset. This

confinement restricts the model’s adaptability when encountering samples from

unseen disease categories. Additionally, there is a challenge of knowledge

degradation for these static learning settings, as the acquisition of new

knowledge tends to overwrite the old when learning new categories. To

overcome these limitations, this study introduces a novel paradigm for plant

disease detection called open-world setting. Our approach can infer disease

categories that have never been seen during the model training phase and

gradually learn these unseen diseases through dynamic knowledge updates in

the next training phase. Specifically, we utilize a well-trained unknown-aware

region proposal network to generate pseudo-labels for unknown diseases during

training and employ a class-agnostic classifier to enhance the recall rate for

unknown diseases. Besides, we employ a sample replay strategy to maintain

recognition ability for previously learned classes. Extensive experimental

evaluation and ablation studies investigate the efficacy of our method in

detecting old and unknown classes. Remarkably, our method demonstrates

robust generalization ability even in cross-species disease detection

experiments. Overall, this open-world and dynamically updated detection

method shows promising potential to become the future paradigm for plant

disease detection. We discuss open issues including classification and

localization, and propose promising approaches to address them. We

encourage further research in the community to tackle the crucial challenges

in open-world plant disease detection. The code will be released at https://

github.com/JiuqingDong/OWPDD.

KEYWORDS

plant disease detection, incremental learning, open-world detection, out-of-
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1 Introduction

Accurate and timely detection and diagnosis of plant diseases

are crucial for preserving crop health and increasing agricultural

productivity. However, traditional methods of plant disease

detection primarily rely on skilled agricultural professionals who

diagnose diseases based on visual symptoms and pathologic

characteristics of pathogens. These methods suffer from

limitations such as subjectivity, prolonged diagnosis time, and

dependence on experienced experts (Dong et al., 2022). To

address these limitations of traditional methods, plant disease

detection based on image analysis and artificial intelligence has

emerged as a hot research topic (Shoaib et al., 2023; Xu et al., 2023).

This emerging approach utilizes images captured from various

plant parts such as leaves and stems, followed by computer

algorithms for image analysis and recognition, enabling

automated detection and diagnosis of plant diseases. This method

not only enhances the accuracy and efficiency of detection but also

allows non-experts to participate in plant disease monitoring and

diagnosis (Panchal et al., 2023).

A substantial body of published work attests to the success of

deep learning in plant disease detection tasks (Fuentes et al., 2018;

Li et al., 2020; Nazki et al., 2020; Singh et al., 2020; Fenu and

Malloci, 2021; Fuentes et al., 2021; Qiao et al., 2022b). However,

existing studies focus on fixed disease categories of specific species

with all available annotations during the training phase. This

training strategy is known as closed-set learning (Xiong et al.,

2019). In this case, the model is more likely to classify suspicious

regions as one of the categories it has already learned, rather than

indicating the presence of an abnormal disease type (Du et al.,

2022b). We show the potential risks associated with closed-set

learning in Figure 1A. Note that “known classes” refer to the

classes present in the training dataset, while “unknown classes”

refer to the classes that exist in real-world scenarios but are either

absent or unannotated in the training dataset.

In the concept of plant stress, unknown diseases may result in a

large economic loss, and recognizing them is thus one of the

fundamental demands (Geng et al., 2020). Therefore, unknown

disease detection is more useful in most practical scenarios. The

learning paradigm that can detect unknown classes is known as

open-set learning (Vaze et al., 2021). Figure 1B illustrates the open-

set learning paradigm, which allows the model to detect instances

that are currently unknown to the model. Developmental

psychology (Livio, 2017) has revealed that the ability to recognize

the unknown is crucial for stimulating curiosity, which in turn fuels

the desire to learn new things. In the open-set learning paradigm,

when the model detects unknown diseases and provides feedback to

domain experts, it is important for the domain experts to pay

attention to these disease samples and assign them appropriate

category labels. This allows the model to further learn about these

new diseases.

To learn these new diseases, one naive learning strategy is to

combine the new and old data together and let the model learn

again. However, as the number of tasks increases, the accumulated

data volume becomes significantly large, resulting in high training
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costs. This approach may be feasible in the short term but is not

sustainable as a long-term training strategy. Another learning

method is to fine-tune the old model using new data. In this way,

the model will quickly adapt to the new task but there is a risk of

losing the ability to detect previously known classes. This prompts

us to propose a new challenge: a new paradigm should be capable of

recognizing instances of unknown diseases as unknown and

gradually learning these unknown categories through incremental

learning. Figure 1C illustrates the workflow of this new paradigm.

Plant growth is a dynamic process, and plant disease dynamics

are more complex than we imagined. During the plant growth cycle

monitoring, unexpected diseases and pests are likely to emerge.

Simultaneously, collecting all the existing plant diseases is difficult

and even impossible for real-world applications (Xu et al., 2023).

Given the dynamic nature of our world, the setup of open-world

plant disease detection is more aligned with real-world applications

compared to existing closed-set learning and open-set learning

settings. Therefore, we need to introduce a new paradigm to

continuously learn these unknown diseases instead of learning

them all at once. In this paradigm, the model can detect

unknown diseases and provide feedback to domain experts. Then,

experts will label these unknown diseases. As and when more

information about the identified unknown classes becomes

available, the system should be able to incorporate them into its

existing knowledge base. This iterative learning process will cycle

throughout the model’s lifecycle. In this paper, we propose an open-

world detector for plant disease detection, aiming to achieve

this goal.

The key contributions of our work as follows:
1. We introduce the concept of open-world problem

formulation into plant disease detection for the first time,

enabling a closer simulation of real-world application

scenarios. Unlike all existing plant disease detectors, it

dynamically expands the learned categories and actively

responds to unknown diseases.

2. We introduce an unknown-aware region proposal network

(UA-RPN) and conducted pre-training on various datasets.

We find that the model pre-trained on LVIS (Large

Vocabulary Instance Segmentation) (Gupta et al., 2019)

dataset can exhibit superior performance across different

experimental setups. Additionally, we propose a class-

agnostic region of interest (ROI) head, which significantly

improved the recall rate for unknown classes. Interestingly,

the model trained on a dataset of tomato leaf diseases could

even detect diseases in paprika fruit.

3. Our method also achieves class incremental detection of

plant diseases. Additionally, we discuss the open issues

associated with open-world plant disease detection and

provide promising solutions. We believe that this open-

world and dynamically updated detection method can

become a new paradigm for future plant disease

detection, and we encourage the research community to

explore and address these open challenges.
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Section 2 provides a detailed review of the deep learning

techniques employed for plant anomaly detection and existing

open-set and open-world deep learning approaches. Section 3

comprehensively describes the problem formulation, methodology,

and evaluation framework of the novel paradigmwe have introduced.

In Section 4, experimental results are presented to demonstrate the

effectiveness and expandability of our proposed approach. We have

observed that the proposed method achieves cross-species disease

detection. Furthermore, we discuss the open challenges concerning

plant disease detection in the context of open-world detection. In the

final section, we provide several conclusions to guide future

researchers. In summary, this work establishes the foundation for

open-world detection in intelligent agriculture and advocates for

increased attention to incremental learning and unknown target

detection within the community.
2 Related works

In this section, we provide a brief overview of recent studies

relevant to our proposed approach. Firstly, we delve into existing

deep learning-based methods employed in plant disease detection.

Furthermore, considering the limitations of the latest advancements

in plant disease recognition, no previous work specifically addresses

open-world detection. Consequently, we explore two closely related

avenues: open-set detection and open-world detection.
Frontiers in Plant Science 03
2.1 Deep learning technics in plant
disease detection

In recent years, various deep learning-based object detection

algorithms have been applied in plant disease detection task (Qiao

et al., 2022a; Shoaib et al., 2023). In the two-stage plant disease

detection methods, Fuentes et al. (2017) first used Faster RCNN

(Ren et al., 2015) to accurately locate tomato diseases and pests in a

dataset consisting of 4800 images with 11 different classes. When

using deep feature extractors like VGG-Net and ResNet, the mean

average precision (mAP) was calculated as 88.66%. Liu and Wang

(2021) suggested modifying the Faster RCNN (Ren et al., 2015)

framework to automatically detect beet spot diseases by changing

the parameters of the CNNmodel. Priyadharshini and Dolly (2023)

provided a comparative investigation on tomato leaf disease

detection and classification using RCNN (Girshick et al., 2014),

Fast RCNN (Girshick, 2015) and Faster RCNN (Ren et al., 2015).

Murugeswari et al. (2022) trained a model using 1500 images of

healthy and diseased sugarcane leaves and deployed the model in an

android application. Seetharaman and Mahendran (2022) proposed

using a convolutional recurrent neural network for banana leaf

disease detection. Alruwaili et al. (2022) proposed real-time faster

region convolutional neural network (RTF-RCNN) for the real-

time detection of tomato leaf diseases in video streams.

In the application of single-stage networks, Zhang et al. (2019)

proposed a new method for detecting small agricultural pests by
A B

C

FIGURE 1

Comparison of three different learning paradigms. (A) Closed-set-based models detect unknown diseases as known diseases; (B) Open-set based
models can detect unknown diseases but do not learn them; (C) Open-world detector learns the known diseases and also autonomously detects
unknown diseases. The identified unknown diseases are then provided as feedback to domain experts, who annotate these newly discovered labels.
This valuable information is incorporated into the model during subsequent tasks, allowing it to adaptively update itself with new knowledge.
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combining an improved version of the YOLOv3 algorithm with

spatial pyramid pooling. This method addresses the low accuracy

caused by the varying poses and scales of crop pests by applying

deconvolution, oversampling, and convolution operations. Mathew

and Mahesh (2022) used YOLOv5 to detect bell pepper leaf disease.

Wang et al. (2022) optimized the lightweight YOLOv5 model for

detecting peanut diseases. Additionally, Dong et al. (2022) evaluated

the performance of different annotation strategies based on the

YOLOv5 model.

During the training process, the aforementioned methods have

access to all labels. However, they cannot locate and classify

unknown diseases. In the task of plant disease classification,

Fuentes et al. (2021) proposed an approach based on the concept

of open-set domain adaptation to the task of plant disease

recognition to allow existing systems to operate in new

environments with unseen conditions and farms. To the best of

our knowledge, there is currently no relevant work on detecting

unknown diseases in plant disease detection tasks.
2.2 Out-of-distribution detection

The class in the training dataset refers to the ‘known class’ while

a class existing in the test dataset but not in the training dataset is

termed an ‘unknown class’. Determining whether inputs are out-of-

distribution (OOD) is an essential building block for safely

deploying machine learning models in the open world. OOD

detection is crucial for ensuring the reliability and usability of

systems in the real world. Hendrycks and Gimpel (2016)

proposed a baseline for OOD detection that relies on softmax

confidence scores. However, such methods can be influenced by

overconfidence in the posterior distribution of OOD data. Liu et al.

(2020) demonstrated mathematically that the softmax confidence

score is a biased scoring function that is not aligned with the density

of the inputs and hence is not suitable for OOD detection.

The energy-based model maps each input to a single scalar that

is lower for observed data and higher for unobserved ones (Lecun

et al., 2006). Liu et al. (2020) first proposed a unified framework for

OOD detection using energy scores. Unlike softmax confidence

scores, energy scores are theoretically aligned with the probability

density of the input and are less susceptible to issues of

overconfidence. Joseph et al. (2021) were the first to apply

energy-based OOD detection to object detection. In this paper,

we follow the setup of (Joseph et al., 2021) and maintain a validation

set to learn the energy distribution of both known and

unknown classes.
2.3 Open-world object detection

Open-world object detection is an emerging topic in computer

vision and has attracted extensive attention due to its practicability

in the real world. Unlike OOD tasks that only focus on the

identification of unknown classes, open-world tasks require

models to learn new classes and recognize old classes. This

learning process is also known as incremental learning. To our
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best knowledge, there have been only a few relevant works

published in top-tier conferences and journals (Joseph et al.,

2021; Gupta et al., 2022; Wu et al., 2022; Ma et al., 2023a; Ma

et al., 2023b; Zohar et al., 2023). Based on network architecture,

these works can be categorized into methods based on Region

Proposal Network (RPN) (Joseph et al., 2021; Wu et al., 2022; Ma

et al., 2023b) and methods based on Transformer (Gupta et al.,

2022; Ma et al., 2023a; Ma et al., 2023b; Zohar et al., 2023).

To endow the model with the capacity of detecting unknown

objects, Joseph et al. (2021) proposed the Open World Object

Detection (ORE) method, in which an unknown auto-labeling RPN

is designed to generate pseudo labels for unknown instances. Gupta

et al. (2022) and Zohar et al. (2023) employed an attentionmechanism

to score candidate bounding boxes, enhancing the network’s

perception capability for unknown objects. Ma et al. (2023a)

proposed a method that combines selective search and attention

mechanisms to further enhance the retrieval capability for unknown

objects. The underlying logic behind these methods is to enhance the

proposal quality for unknown objects in order to obtain stronger weak

supervision signals. However, methods based on attention

mechanisms and selective search tend to be complex. Optimizing the

perception capability for unknownobjects through a simpler approach

is indeed more desirable in practical engineering scenarios. Therefore,

we improve the proposal quality of the network for unknown objects

by using a pre-trained region proposal network (RPN), thereby

enhancing the performance of open-world plant disease detection.
3 Methods

3.1 Challenges of real-world plant
disease detection

Plant disease detection is a complex field that possesses distinct

characteristics and challenges, particularly when considering the

influence of diverse domains such as greenhouse conditions.

Incremental learning serves as a crucial tool to address these

challenges and enhance the accuracy and adaptability of disease

detection systems.

3.1.1 Characteristics of plant disease detection
The process of plant disease detection is marked by several

unique characteristics. Unlike some other domains, plant health is

influenced by an intricate interplay of factors. Variations in features

across plant species, genetic diversity, and environmental conditions

lead to a diverse range of disease symptoms. These symptoms can be

subtle, ranging from changes in leaf color and texture to wilting and

necrosis. Additionally, the progression of diseases can vary widely,

making it challenging to predict the trajectory and severity of

an infection.

3.1.2 Challenges in diverse domains and
greenhouse conditions

Diverse domains, such as greenhouse environments, introduce

a set of challenges that impact plant disease detection. Greenhouses

provide controlled conditions for plant growth, which can
frontiersin.org
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accelerate disease progression due to the close proximity of plants,

regulated temperature, and humidity. The dynamic interactions

between plants, pathogens, and the environment within

greenhouses contribute to complex disease patterns that

traditional, static models might struggle to capture. Moreover, the

controlled environment can lead to rapid mutations in pathogens,

adding further complexity to disease identification.

In a domain characterized by diverse symptoms, feature

variations, environmental factors, and disease progression,

previous models to detect plant disease can fall short. Our

proposed approach, however, enables models to evolve alongside

the evolving disease landscape. The adaptive nature of our approach

allows models to incorporate new information, adapt to feature

variations, and account for changing environmental conditions. As

the disease patterns shift and pathogens mutate, incremental

learning ensures that the detection system remains up-to-date

and effective. This is particularly critical in greenhouse conditions,

where rapid disease spread demands real-time monitoring and

rapid response.
3.2 Problem formulation

In this section, we provide a formal definition of Open World

Object Detection. In a closed-setting approach, a model is trained on

a specific set of known classes and then tested on data collected

from the same or similar environment such as Dclosed−set
train = f(xi, yi)gMi=1

⊂ X  �  C, and Dclosed−set
test = f(xi, yi)gNi=1 ⊂ X  �  C, where X denotes

the image samples in the dataset D, and C indicates the number of

classes. However, real-world scenarios often involve new environments

and the presence of unknown diseases that the model has not

encountered before. Consequently, when tested on such data, the

model may fail to perform accurately. In this context, the test dataset

is Dopen−world
test = f(xi, yi)gNi=1 ⊂ X  �  (C&U) , where U denotes

unknown classes in training phase. Therefore, in open-world disease

detection, the primary target is to detect these unknown diseases.

After achieving the primary target, the model becomes capable

of identifying diseases that were not part of the initial training set

(unknown diseases). Our objective is for the model to learn these

new classes in subsequent learning tasks while retaining its

recognition ability for the classes learned int eh previous tasks.

We define the initial training task as Task 1 and subsequent tasks as

Task 2, Task 3, and so on. In Task 1, the training dataset, denoted as

DT1, consists of labeled samples for a number of CT1 disease classes.

However, during the inference process, the model may encounter

instances of unknown diseases that were not seen during training.

To address this, the model needs to accurately locate these unknown

disease types and assign them the label ‘unknown’. These unknown

disease instances will be presented to domain experts for annotation

and will be used for training in Task 2. In Task 2, the number of new

disease classes is denoted as CT2. After completing Task 2, the set of

known classes is updated to the previously known classes CT1 along

with the newly learned classes CT2. However, during the inference

process, the model still may encounter unknown diseases that do

not belong to the known classes (CT1 + CT2). Therefore, in addition

to detecting the known classes, the model will continue to identify
Frontiers in Plant Science 05
unknown diseases and assign them the label ‘unknown’. These

unknown disease instances will be learned in Task 3.

This cycle of updating the model’s knowledge continues

throughout the entire lifecycle of the detector. In each task, the

detector acquires new knowledge without forgetting the previously

learned classes. This allows the model to continuously adapt and

improve its detection capabilities by incorporating new information

in a progressive manner.
3.3 Datasets and splits

After defining the open-world problem, it is necessary to

search for suitable datasets to evaluate our method. In this

study, we extended the tomato dataset used in previous works

(Fuentes et al., 2018; Fuentes et al., 2021) to include 15 different

classes, which were learned in Task 1, Task 2, and Task 3,

respectively. To ensure a balanced distribution, we divided the

classes equally, with 5 different classes assigned to each task. In

Task 1, instances belonging to the classes of Task 2 and Task 3

were not available. Additionally, we aimed to investigate the

performance of our model in cross-species training. For this

purpose, we incorporated the paprika disease detection dataset

(Dong et al., 2022) in Task 4. The tomato dataset originally

consisted of 15 classes, while the paprika dataset contained 5

classes. To ensure the dataset’s representation of real-world

scenarios and to introduce complexity, we excluded images

collected in a laboratory setting. This approach prevents

potential overestimation of the model’s performance and

enhances the dataset’s ability to simulate real-world conditions.

For each task, we employed a random selection process to

designate 20% of the integrated dataset (combining tomato and

paprika data) as the validation data. This allowed us to learn the

distribution of known and unknown samples within this subset.

Additionally, we randomly chose 20% of the data as the test set,

which was used across all tasks. Here we aim to address the

question: why do we test diseases from different species together?

There are several reasons for this approach. Firstly, evaluating the

performance of our model on different species’ diseases allows us to

assess its generalization capability across species. In real-world

scenarios, plant disease detection systems encounter various

species and their associated diseases. By testing different species’

diseases together, we can effectively assess how well our model

handles the challenges of detecting diseases across multiple species.

This includes dealing with variations in symptoms, visual

appearances, and disease patterns. Such evaluation helps us gain

insights into the robustness and effectiveness of our model in

practical applications where encounters with a diverse range of

plant species are expected. Furthermore, successful detection of

diseases from different species indicates that our model has acquired

solid features of diseases as a concept. It demonstrates that the

model’s learning transcends species-specific information and can be

effectively applied to diverse plant species. The dataset split and

more specific details are presented in Table 1. Unless otherwise

specified, the training order of all experiments in this paper follows

the sequence shown in Table 1.
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3.4 Architecture

In their study, Dhamija et al. (2020) found that two-stage

networks outperform single-stage networks when it comes to

detecting unknown objects. Motivated by this finding, we have

chosen to implement our open-world detection model using the

classic Faster RCNN (Ren et al., 2015), which is a two-stage network

architecture. To enhance the representation of multi-scale features,

we have incorporated the feature pyramid network (FPN) (Lin

et al., 2017).

In Figure 2, we present an illustration of the Faster RCNN with

the FPN network. Please note that our method, unlike the standard

Faster RCNN, can detect unknown classes. This capability is

achieved through a well-trained unknown perception Region

Proposal Network (RPN) and a class-agnostic localization head.

The unknown perception RPN is designed for automatic labeling of

unknown objects, while the class-agnostic localization head is

responsible for accurately localizing these unknown objects. Each

of these components is explained in detail in the following

subsections, providing a coherent understanding of their roles in

our model.
3.5 Well-trained unknowns-aware RPN

In the context of object detection tasks, the objective is to

identify and localize objects of interest within an image. Traditional

object detection models are typically trained on datasets that consist

of known classes, assuming that all objects can be classified into

predefined categories. However, real-world scenarios often present

instances where the model encounters objects belonging to

unknown or unseen classes.

To address the challenge of detecting unknown diseases, we

introduce an additional “unknown” class during the training

process. This class is assigned as a pseudo label ‘unknown’ to

proposals that have a high objectness score but do not overlap

with any ground-truth objects. To generate high-quality proposal

boxes, we directly train the detector on the object detection dataset
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to obtain well-initialized parameters. A well-trained RPN can

generate highly accurate proposals or candidate object regions

within an image. These proposals effectively filter out cluttered or

background regions, enabling the model to focus solely on relevant

object proposals. This capability helps in reducing false positives

and improving overall detection accuracy. Additionally, a well-

trained RPN can effectively handle objects of different sizes and

shapes. It learns to generate proposals that encompass objects with

varying aspect ratios, ensuring comprehensive coverage of the

object space. This enables the model to effectively handle novel or

unseen objects, thereby enhancing its performance and robustness

in open-world scenarios. We further compare the performance of

different pre-trained datasets in open-world plant disease detection.
3.6 Class-agnostic ROI head

Locating unknown diseases is an important issue in open-world

detection tasks. Standard detectors are primarily designed for

localizing objects of known classes, as they employ class-specific

localization methods. For instance, detectors like Faster RCNN

(Ren et al., 2015) and Mask RCNN (He et al., 2017) generate class-

specific bounding boxes for each known class when the proposals

enter their prediction heads.

To address the localization of novel objects, we introduce a

class-agnostic Region of Interest (ROI) head in our object detection

models. The class-agnostic ROI head treats region-based feature

extraction and classification tasks independently of specific object

classes. Unlike class-specific ROI heads that are designed to predict

object classes for each region, the class-agnostic ROI head focuses

solely on generating accurate bounding box regression outputs

without considering the object categories. This makes it well-

suited for open-world object detection scenarios where unknown

or novel classes may appear.

Inspired by the learned objectness (Kuo et al., 2023), we utilize

class-agnostic box regression heads instead. We have observed that

class-agnostic ROI heads exhibit better generalization to unseen

classes during inference. They are not biased towards specific object
TABLE 1 Task composition and data split in the proposed open-world plant disease detection protocol.

Task sequence Task 1 Task 2 Task 3 Task 4

Species Tomato Tomato Tomato Paprika

Training Classes 5 5 5 5

Categories

magnesium deficiency,
gray mold,
leaf mold,

yellow leaf curl virus,
physical damage

canker,
plague,

leaf miner,
white fly,

white fly egg

wilt,
chlorosis virus,

stress,
powdery mildew,

old leaf

blossom end rot,
gray mold,

powdery mildew,
spider mite,

spotting disease

Training images 3236 1728 1647 2049

Validation images 2491 2491 2491 2491

Test images 2493 2493 2493 2493

Known Classes 5 10 15 20

Unknown Classes 15 10 5 0
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categories, allowing the model to adapt to new classes without the

need for retraining or fine-tuning. Additionally, by removing the

class-specific classification branch, the overall architecture becomes

simpler and more streamlined. This modification not only reduces

the computational complexity and memory requirements of the

model but also enables more efficient handling of unknown classes.
3.7 Alleviating forgetting

Catastrophic forgetting (Hayes et al., 2020) refers to the

phenomenon observed in incremental learning, where a model

trained on new data gradually loses or forgets the knowledge

acquired from previously learned tasks or classes. This occurs

when the new data heavily influences the model’s parameters,

leading to the overwriting or disrupting of previously learned

information. To address catastrophic forgetting, several

techniques have been proposed, such as parameter isolation

(Prabhu et al., 2020), regularization (Li and Hoiem, 2017), and

sample replay (Rebuffi et al., 2017). These techniques reinforce the

model’s memory of previous tasks or classes by incorporating

previously observed samples during training. In this way, the

model can maintain its performance on old tasks while learning

new ones.

Sample replay is relatively straightforward compared to other

techniques like parameter isolation or complex regularization

strategies. It periodically included old samples in the training

dataset, making integrating them into existing training pipelines

easy. The simplest form of sample replay is randomly retaining
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training samples. This paper follows the sample replay strategy

proposed by Joseph et al. (2021), which is the simplest way of

sample replay. After each incremental step, a balanced set of

samples is stored randomly, and the model is fine-tuned. To

ensure an adequate representation of each class, we guarantee a

minimum of Nsamples instances for each class in the sample set.

Generally, a larger Nsamples tends to result in better fine-tuning

performance (an extreme case being the use of the entire dataset).

However, this contradicts the original intention of dynamic

learning in an open-world setting. To ensure a fair comparison

among the models, we set Nsamples = 25 for fine-tuning the model.
3.8 Evaluation metrics

We present a comprehensive evaluation protocol to assess

the performance of an open-world detector in various aspects:

identifying unknown classes, detecting known classes, and

progressively learning new classes when labels are available for

some unknown samples.

3.8.1 Mean average precision score
mAP is the area under the precision-recall curve calculated for

all classes. To evaluate the detection performance of known classes,

we utilize the standard mean average precision (mAP) metric with

an intersection over union (IoU) threshold of 0.5 [mAP@50,

consistent with the existing literature (Joseph et al., 2021; Gupta

et al., 2022; Wu et al., 2022; Ma et al., 2023a; Ma et al., 2023b; Zohar

et al., 2023)].
FIGURE 2

Overview of our model where ResNet and FPN are constructed following the default approach in detectron2 (Wu et al., 2019). We illustrate the
unknown-aware RPN and class-agnostic ROI head in the diagram. Unknown aware RPN modifies the labels of background candidate boxes with the
highest object scores to ‘unknown’. The class-agnostic head focuses on regressing bounding boxes for disease regions without considering the
disease category.
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AP =
1
11or∈½0,0:1,…,0:9,1�P(r) (1)

P(r) = max
~r :~r≥r

p(~r) (2)

where, P(r) is the maximum precision for any recall values

greater than r, and p(~r) is the measured precision at recall ~r. Since

the problem setting of open-world detectors is different from that of

standard detectors, there are three forms of mAP, which are current

classes mAP, previous classes mAP, and known classes mAP.

3.8.2 Unknown recall
We employ recall as the main metric for unknown object

detection instead of the commonly used mAP. This is because all

possible unknown object instances in the dataset are not annotated.

Unknown recall is widely used in open-world object detection

(Gupta et al., 2022; Ma et al., 2023a; Ma et al., 2023b; Zohar

et al., 2023).

U − R =
TPU
AU

(3)

where, TPU is the true positive of unknown instances, and AU

denotes all unknown instances for the current task.

3.8.3 Absolute open-set error
In addition, we employ the Absolute open-set error (A-OSE)

(Miller et al., 2018) metric to report the number of unknown objects

that are misclassified as any of the known classes. This metric

implicitly measures how effective the model is in handling

unknown objects.

To facilitate readability, we use the abbreviations listed in

Table 2 to denote the evaluation metrics. The metrics include

Unknown Recall and A-OSE, which assess the performance of the

unknown classes, and Mean Average Precision (mAP), which

evaluates the model’s ability to detect the known classes. By

employing these metrics, we can comprehensively evaluate and

compare the model’s performance across both known and

unknown classes, providing a comprehensive assessment of its

detection capabilities.
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4 Results

4.1 Implementation details

In the training task sequence, the model can only access the data

from the current task. Known classes are defined as the classes in the

current task as well as the previous tasks, while other classes are

defined as unknown classes. For each image, the model generates

only one unknown instance. We adopted the contrastive clustering

loss proposed by ORE (Joseph et al., 2021) and used stochastic

gradient descent to optimize the model, with a batch size set to 4.

For each training task, we iterated 18,000 times, and for each fine-

tuning task, we iterated 4,000 times. We used ResNeXt101 (Xie

et al., 2017) as the final backbone. The entire training process for the

project, conducted on 4 NVIDIA GeForce RTX 3090 GPUs, was

completed in less than 12 hours. For more details, please refer to

our code.
4.2 Overall results

Table 3 compares our method with Faster RCNN (Ren et al.,

2015) and ORE (Joseph et al., 2021) using the proposed open-world

evaluation protocol. The 1-3 row in Table 3 showcases the result

obtained by the standard Faster-RCNN. Note that we used the

ResNet50 backbone on the ImageNet1K dataset as a pretraining

backbone. We provide a brief overview of the training approach for

Faster RCNN. Row 1: We trained Faster-RCNN using a static

closed-set training strategy for a fair comparison. As anticipated,

Faster-RCNN trained with the closed-set strategy demonstrated

optimal results in closed-set evaluation metrics, because the model

retrained with all known datasets for each task. However, the

model’s focus remains limited to known categories, incapable of

identifying unknown targets, which contradicts the open-world

setting. This experimental set allows researchers to grasp the

upper-performance limits of the model in known-category

recognition tasks. Hence, we employ ‘Upper’ to denote the results

of this experiment. Row 2: We trained the standard Faster-RCNN

on Task 1, followed by Task 2, Task 3, and Task 4. After completing

each task, the model’s performance was evaluated through testing.

In this scenario, the model was also unable to identify unknown

diseases. We observed a significant decline in detection

performance for previous classes during subsequent task learning

with the standard Faster RCNN, which indicates that new

knowledge quickly replaced old knowledge throughout the

training process. In contrast, our method can successfully detect

unknown classes and continuously learn new categories without the

need to train from scratch. Row 3: We employed a sample replay

strategy to train Faster-RCNN dynamically. This experimental set

allows researchers to understand how much sample replay

preserves the model’s memory capabilities. We denote the results

of this experiment as ‘Faster-RCNN*’ in Table 3.

Furthermore, our four variants, labeled as Ours (a), Ours (b),

Ours (c), and Ours (d) utilized the ResNet-50-FPN backbone, but
TABLE 2 Abbreviation and meaning of the evaluation metrics.

Abbreviation Meaning Others

P mean average precision score of previous
task classes

↑

C mean average precision score of current task
classes

↑

K mean average precision score of all known
classes

↑

A Absolute open-set error ↓

U-R Unknown-Recall ↑
Arrows indicate expected trends. Up means that the larger the value, the better, and vice versa.
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were pretrained on different datasets. Specifically, Ours (a) used

Imagenet-1k (Deng et al., 2009), Ours (b) used COCO (Lin et al.,

2014), Ours (c) used Object-365-v2 (Shao et al., 2019), and Ours (d)

used the LVIS (Gupta et al., 2019) dataset. These experiments

demonstrate that our method consistently outperforms the ORE

(Joseph et al., 2021) baseline across all evaluation metrics.

Additionally, we explored the ResNeXt101(Xie et al., 2017)

architecture, an extension of ResNet, which introduced cardinality

to enhance feature representation, making it potentially more

powerful in capturing complex patterns and achieving better

performance compared to ResNet101. To further improve the

model’s performance, we trained the ResNeXt-101-FPN on the

LVIS dataset. The final row in the table shows the results of our

method using the ResNeXt-101-FPN backbone pre-trained on the

LVIS dataset, denoted as Ours* in Table 3. Note that A-OSE scores

and unknown recalls cannot be measured for Task 4 because of the

absence of unknown ground truths. For a visual comparison with

the baseline, we present the detection results for Task 1 in Figure 3.

Our model outperformed ORE in terms of known disease detection,

demonstrating higher accuracy in Figures 3A, B. Furthermore,

when it comes to unknown diseases, our model excelled in

reducing false positives as seen in Figures 3C, D. Additionally,

our model achieved precise localization for unknown diseases, as

evident in Figure 3E–H.

Furthermore, in Figure 4, we present additional qualitative

results, showcasing a batch of images that were tested on our

model across three tasks. Case A and Case E highlight the

model’s ability to remember previously learned classes, accurately

classifying and locating diseases learned in Task 1. Cases B, C, and

D demonstrate the model’s capability to detect unknown diseases

and progressively learn them. Although these instances were

unknown in Task 1, the model gradually learned them in Task 2

and Task 3. Additionally, we include a set of failed cases where the

model started to exhibit confusion in localizing old classes as new

knowledge is introduced. These challenges will be addressed in

future studies.
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4.3 Ablation experiment

To analyze the individual contributions of each component in

our method, we conducted meticulous ablation experiments, and

the results are presented in Table 4.

4.3.1 Backbone
We compared the FPN module with the C4 module on ResNet-

50 (Row 1 and Row 2). The inclusion of FPN significantly enhanced

the model’s learning ability and memory capacity, as evidenced by

improved performance in Task 1 (63.55% vs. 67.67%) and Task 3

(48.27% vs. 51.50%). Based on this observation, all subsequent

experiments were performed using ResNet with FPN as the

backbone network instead of the C4 structure.

4.3.2 Class-agnostic head
Our class-agnostic head played a crucial role in the model’s

performance. By not assigning specific class labels to detected

objects, the class-agnostic head enabled the model to treat all

objects as potential unknown classes. This means that if a

detected object does not match any known class, it is more likely

to be classified as an unknown object rather than misclassified into a

known class. Consequently, the class-agnostic head improved the

model’s ability to recognize and recall unknown objects, thus

enhancing overall performance in open-world scenarios. Table 4

demonstrates that the class-agnostic head significantly improved

the recall of unknown classes across different pretraining data.

Moreover, Table 5 indicates that the class-agnostic head remains

effective even when used with larger networks.
4.3.3 Pretraining datasets
In order to investigate the influence of different pre-training

datasets on our model, we conducted a series of experiments as

outlined in Table 6. Our findings reveal that the model trained on

the Imagenet-1k dataset exhibited better performance on the initial
TABLE 3 Overall results of our method compared with the baseline approach.

Methods
Task 1 Task 2 Task 3 Task 4

Parameter
C A U-R P C K A U-R P C K A U-R P C K

Upper 63.9 2044 – 69.20 60.54 64.91 1706 – 67.06 48.66 60.93 705 – 63.88 84.40 69.02 33M

Faster RCNN 63.9 2044 – 6.6 42.9 24.8 – – 3.6 25.5 10.9 – – 1.8 54.3 14.9 33M

Faster RCNN* 63.9 2044 – 62.8 40.3 51.6 2386 – 50.7 32.2 44.5 1226 – 44.7 62.2 49.1 33M

ORE 63.5 2002 14.2 62.6 39.1 50.9 2303 4.7 48.2 31.0 42.5 1228 5.1 42.9 62.7 47.9 33M

Ours (a) 65.4 2124 22.6 63.2 43.2 53.2 2190 12.4 50.6 29.3 43.5 1572 13.1 44.5 61.5 48.8 41M

Ours (b) 60.7 1827 24.0 63.1 46.3 54.7 3144 8.9 52.4 28.2 44.4 1638 38.3 45.3 67.0 50.7 41M

Ours (c) 62.4 1932 25.3 62.7 44.9 53.8 1961 13.0 52.7 29.5 45.0 1211 13.0 47.1 67.1 52.1 41M

Ours (d) 65.2 1880 23.8 63.2 47.0 55.1 1960 13.7 54.4 31.3 46.7 1418 15.7 46.8 66.9 51.8 41M

Ours* 66.3 1559 22.7 64.0 48.9 56.5 1854 13.4 54.5 35.8 48.3 1123 10.8 48.2 70.0 53.6 104M
fr
For the notation of evaluation metrics, please refer to Table 2. Bold font represents the optimal results. “Upper” represents training using the entire dataset, which theoretically serves as the
performance upper bound. “Faster RCNN*” represents training using a dynamic paradigm.
Ours* is a larger model than ours (d), other settings are the same.
'-' indicates that the evaluation metric is not applicable to the current experimental setup.
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tasks. However, as the tasks progressed, this advantage gradually

diminished. On the other hand, the model trained on the LVIS

dataset showed an advantage in terms of unknown recall, with no

significant drop in performance (mAP) for known class detection.

Similarly, the model trained on the COCO dataset exhibited a

similar trend, albeit with slightly lower performance.

We attribute the benefits brought by the LVIS-based pre-

trained models to two main factors. Firstly, the consistency of pre-

training objectives played a significant role. The LVIS-based pre-

trained models utilize training objectives that align closely with

the target detection task, encompassing multi-label classification

and bounding box regression. In contrast to ImageNet pre-trained

models, these objectives are better suited for the target detection

task, resulting in improved performance. Secondly, the richness of

the data is a contributing factor. LVIS encompasses over 1,200

categories, whereas COCO only includes 80 categories. The

significantly larger number of categories in LVIS provided a

more diverse and comprehensive representation of objects

across various domains. Consequently, this allowed the LVIS-

based pretrained models to learn more comprehensive features

and contextual information for different categories. Based on these

observations, we argue that the pre-training model based on LVIS

exhibited greater potential for subsequent tasks due to the

alignment of training objectives and the broader representation

of object categories.

Furthermore, we also trained and released these three models

on the Object365 dataset using the Detectron2 framework. The
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Object365-v2 dataset (Shao et al., 2019) contains nearly 2 million

images with over 10 million annotated bounding boxes. In terms of

scale, Object365-v2 contains a greater number of instances

compared to LVIS. However, we observed that pre-trained on the

Object365-v2 dataset significantly boosts the performance of the

COCO dataset in open-world evaluation settings, but its

performance on plant disease datasets is slightly lower than the

model pre-trained on LVIS dataset. As a result, we opted for the

LVIS-based pre-trained model as the final choice for our work.

Please note that fine-tuning the COCO dataset results using the

Object365-v2 dataset is not the focus of this paper. We presented

these results in our code repository.

Additionally, we performed experiments using larger models

to enhance the performance of our model, as presented in Table 5.

It was challenging to improve all performance metrics across all

tasks simultaneously. However, in general, employing larger

models, leveraging well-pretrained Region Proposal Networks

(RPNs), and incorporating class-agnostic heads tended to yield

better results.
4.4 Sensitivity analysis on training order

In the context of incremental learning tasks, the order in which

tasks are presented to the model can significantly impact its

performance and the overall learning process. The learning

sequence plays a crucial role in addressing challenges such as
A B D

E F G H

C

FIGURE 3

Visualization results comparison between ORE and our model, both trained on Task 1. We present eight pairs of examples (A-H). Best view in color.
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knowledge forgetting, conflicting information, and fluctuations in

performance. Recognizing the importance of the learning order, we

conducted an investigation to understand the model’s sensitivity to

different training sequences.

By analyzing the results in Table 3, we observed that Faster

RCNN achieved the highest performance on Task 1 and the lowest

on Task 3 when detecting tomato diseases. This observation led us

to infer that Task 1 might be relatively simpler, while Task 3 could

pose more challenges in disease detection.
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Following the principle of human learning from easy to difficult,

we believe that the model should start learning from simple tasks.

Therefore, in previous experimental settings, the default learning

order was from Task 1 to Task 3. After learning the diseases of one

species, the model continued to learn the cross-species detection

task (Task 4).

However, to explore the sensitivity of our research model to the

training order, we decided to deviate from the default sequence and

adopt a different approach. We opted to initiate the learning process
A B

D E F

C

FIGURE 4

Qualitative results of our method on example images from our plant disease dataset. We present six groups of examples (A-F) from Task 1 to Task 3.
Best view in color.
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with the more difficult Task 3. By doing so, we aimed to observe

how the model adapts and performs when confronted with the most

challenging task from the start. Therefore, in this study, we

rearranged the task sequence as follows: Task 3, Task 2, Task 1,

and finally, Task 4.

This alternative task sequence enabled us to investigate the

model’s ability to learn and transfer knowledge in a non-

conventional order, offering insights into its adaptability and

potential for early tackling of more complex tasks.

The detection results of the model on the tomato disease dataset

and the paprika disease dataset under different training orders are

presented in Table 7. Due to different task sequences, we can only

compare the model’s performance in detecting known classes after

learning 15 tomato diseases. We also compared the model’s

memory ability to capture disease patterns and learning ability in

cross-species detection tasks such as paprika. The memory ability is

reflected in the mAP of previous classes (P), while the learning

ability is reflected in the mAP of current classes (C). As expected,

learning from more challenging task orders led to a slight

performance degradation in the model for all aspects, even

though the impact is not significant. This finding serves as a

reminder to practitioners that the learning order of models

should follow a progression from simpler to more difficult tasks

in order to achieve optimal performance.
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4.5 Cross-species detection

Our research has uncovered a fascinating discovery regarding

the capabilities of our model, particularly in the context of cross-

species disease detection. Despite being trained solely on a dataset of

tomato diseases, ourmodel exhibited the remarkable ability to identify

and provide an initial assessment of affected regions in paprika fruit

diseases.This intriguingfinding is illustrated through twospecific cases

showcased in Figure 5A, namely Case 1 and Case 2.

Please note that our model has never been exposed to or trained

on any tomato fruit diseases, only leaves, making its performance in

detecting paprika fruit diseases all the more intriguing. The fact that

the model can generalize its knowledge and effectively apply it to a

different species highlights its versatility and potential for cross-

species disease detection, which also demonstrates that our method

learns the fundamental features of disease.

Furthermore, we conducted a similar experiment in which we

trained a separate model using a paprika disease dataset and

evaluated its performance on a test dataset consisting of tomato

plants. The results were equally compelling. Our paprika-trained

model successfully detected pests present on tomato leaves, as

demonstrated by Case 8 in Figure 5B. This further reinforces the

model’s ability to transfer its learned knowledge across species

boundaries and adapt it to different contexts.
TABLE 4 Ablation results. PTD and CAH denote pre-trained dataset and class-agnostic head, respectively.

Architecture PTD CAH
Task 1 Task 2 Task 3 Task 4

C A U-R P C K A U-R P C K A U-R P C K

R-50-C4 IN1k x 63.5 2002 14.2 62.6 39.1 50.9 2303 4.7 48.2 31.0 42.5 1228 5.1 42.9 62.7 47.9

R-50-FPN IN1k x 67.6 2173 14.7 63.6 42.9 53.3 2176 13.2 51.5 30.0 44.3 1688 7.8 44.8 65.7 50.0

R-50-FPN IN1k √ 65.4 2124 22.6 63.2 43.2 53.2 2190 12.4 50.6 29.3 43.5 1572 13.1 44.5 61.5 48.8

R-50-FPN COCO x 59.0 1906 12.4 60.3 44.9 52.6 2075 10.4 52.9 28.1 44.6 1468 4.1 45.6 67.3 51.0

R-50-FPN COCO √ 60.7 1827 24.0 63.1 46.3 54.7 3144 8.9 52.4 28.2 44.4 1638 38.3 45.3 67.0 50.7

R-50-FPN Object365 x 62.0 2066 10.5 62.1 47.1 54.6 1971 9.8 53.2 36.4 47.6 1300 5.1 47.8 69.1 53.1

R-50-FPN Object365 √ 62.4 1932 25.3 62.7 44.9 53.8 1961 13.0 52.7 29.5 45.0 1211 13.0 47.1 67.1 52.1

R-50-FPN LVIS x 64.6 2036 13.0 61.9 46.9 54.4 2156 13.5 55.0 32.9 47.6 1566 9.1 47.1 69.1 52.6

R-50-FPN LVIS √ 65.2 1880 23.8 63.2 47.0 55.1 1960 13.7 54.4 31.3 46.7 1418 15.7 46.8 66.9 51.8
fr
ontiers
IN1k denotes the Imagenet-1k dataset. For the notation of evaluation metrics, please refer to Table 2.
'√' and 'x' respectively indicate model with or without the class-agnostic head.
TABLE 5 Results of our method using larger model.

Architecture PTD CAH
Task 1 Task 2 Task 3 Task 4

C A U-R P C K A U-R P C K A U-R P C K

R-50-C4 IN1k x 63.5 2002 14.2 62.6 39.1 50.9 2303 4.7 48.2 31.0 42.5 1228 5.1 42.9 62.7 47.9

R-50-FPN IN1k x 67.6 2173 14.7 63.6 42.9 53.3 2176 13.2 51.5 30.0 44.3 1688 7.8 44.8 65.7 50.0

R-50-FPN LVIS √ 65.2 1880 23.8 63.2 47.0 55.1 1960 13.7 54.4 31.3 46.7 1418 15.7 46.8 66.9 51.8

R-101-FPN LVIS √ 64.8 1815 24.0 65.4 44.1 54.7 2448 9.3 54.2 34.5 47.6 1418 7.6 48.3 71.8 54.1

X-101-FPN LVIS √ 66.3 1559 22.7 64.0 48.9 56.5 1854 13.4 54.5 35.8 48.3 1123 10.8 48.2 70.0 53.6
For a fair comparison, we show the results of the baseline (R50-C4) and Resnet-50 with FPN (R50-FPN).
'√' and 'x' respectively indicate model with or without the class-agnostic head.
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To provide a comprehensive visualization of the model’s cross-

species detection capabilities, Figure 5 presents qualitative results of

these experiments. These visual examples offer a glimpse into the
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model’s ability to identify diseases and pests in species it has not

been explicitly trained on, demonstrating its potential for broader

applicability and practical use in real-world scenarios.
TABLE 6 Results of different pre-training data in the open-world disease detection tasks.

(A)

Architecture PTD CAH
Task 1 Task 2 Task 3 Task 4

C A U-R P C K A U-R P C K A U-R P C K

R-50-FPN IN1k x 67.6 2173 14.7 63.6 42.9 53.3 2176 13.2 51.5 30.0 44.3 1688 7.8 44.8 65.7 50.0

R-50-FPN COCO x 60.9 1950 11.8 59.4 44.0 51.7 2238 9.4 51.5 27.6 43.5 1731 1.3 44.9 66.3 50.2

R-50-FPN Object365 x 62.0 2066 10.5 62.1 47.1 54.6 1971 9.8 53.2 36.4 47.6 1300 5.1 47.8 69.1 53.1

R-50-FPN LVIS x 64.6 2036 13.0 61.9 46.9 54.4 2156 13.5 55.0 32.9 47.6 1566 9.1 47.1 69.1 52.6

(B)

R-101-FPN IN1k x 66.7 2042 14.9 63.2 44.0 53.6 2038 13.2 52.1 31.0 45.0 1538 3.7 44.9 62.4 49.2

R-101-FPN COCO x 61.5 1842 10.5 61.9 45.1 53.5 2367 6.7 52.1 28.4 44.2 1538 2.7 45.5 69.3 51.4

R-101-FPN Object365 x 62.6 2077 11.6 62.5 44.1 53.3 2035 10.0 53.7 31.8 46.4 1546 8.2 47.7 65.4 52.1

R-101-FPN LVIS x 64.1 1910 12.7 63.8 45.9 54.8 2338 5.5 53.7 32.2 46.6 1583 4.8 47.6 72.1 53.8

(C)

X-101-FPN IN1k x 69.0 1832 18.1 65.0 46.4 55.7 1894 8.7 52.8 37.3 47.6 1231 1.1 45.9 66.8 51.1

X-101-FPN COCO x 58.0 1594 11.5 60.6 47.4 54.0 2029 4.1 52.5 33.5 46.2 1542 6.3 45.7 66.7 51.0

X-101-FPN Object365 x 61.0 1774 15.9 63.6 47.3 55.5 1864 9.6 51.8 33.6 45.7 1140 7.8 46.5 69.1 52.2

X-101-FPN LVIS x 63.5 1668 12.7 62.9 48.4 55.6 1907 5.5 54.4 36.1 48.3 1398 4.5 48.8 71.8 54.6
f
rontiers
We compared three different network models: ResNet50 with FPN, ResNet101 with FPN, and ResNetX101 with FPN. Bold font indicates the best results among each comparison group.
'x' denotes the model without the class-agnostic head.
TABLE 7 Sensitivity analysis on the task training order.

Architecture PTD Order

Task 1~3
(Tomato)

Task 4 (cross-species task)
(Paprika)

K D P D C D K D

R-50-C4 IN1k Task 1, Task 2, Task 3, Task 4 42.52 – 42.96 – 62.78 – 47.92 –

R-50-C4 IN1k Task 3, Task 2, Task 1, Task 4 41.37 -1.15 40.8 -2.16 63.03 0.25 46.4 -1.52

R-50-FPN IN1k Task 1, Task 2, Task 3, Task 4 44.35 – 44.80 – 65.70 – 50.03 –

R-50-FPN IN1k Task 3, Task 2, Task 1, Task 4 42.38 -1.97 42.37 -2.43 58.64 -7.06 46.44 -3.59

R-50-C4 COCO Task 1, Task 2, Task 3, Task 4 44.24 – 45.90 – 64.24 – 50.48 –

R-50-C4 COCO Task 3, Task 2, Task 1, Task 4 41.46 -2.78 41.33 -4.57 62.16 -2.08 46.54 -3.94

R-50-FPN COCO Task 1, Task 2, Task 3, Task 4 43.58 – 44.92 – 66.31 – 50.27 –

R-50-FPN COCO Task 3, Task 2, Task 1, Task 4 42.04 -1.54 41.84 -3.08 65.97 -0.34 47.87 -2.40

R-50-FPN LVIS Task 1, Task 2, Task 3, Task 4 47.69 – 47.19 – 69.12 – 52.67 –

R-50-FPN LVIS Task 3, Task 2, Task 1, Task 4 43.17 -4.52 43.9 -3.29 68.23 -0.89 49.98 -2.69

R-101-FPN LVIS Task 1, Task 2, Task 3, Task 4 46.63 – 47.68 – 72.13 – 53.80 –

R-101-FPN LVIS Task 3, Task 2, Task 1, Task 4 44.48 -2.15 44.37 -3.31 68.17 -3.96 50.32 -3.48

X-101-FPN LVIS Task 1, Task 2, Task 3, Task 4 48.31 – 48.87 – 71.86 – 54.61 –

X-101-FPN LVIS Task 3, Task 2, Task 1, Task 4 47.26 -1.05 46.56 -2.31 71.57 -0.29 52.81 -1.80
We alternately show the performance of different training orders in the same model. D represents the differences caused by the order of learning. For the notation of evaluation metrics, please
refer to Table 2.
'-' indicates that the difference is not applicable to the current situation.
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5 Discussion

The task of object detection is typically divided into two

subtasks: classification and localization. In this section, we discuss

the limitations of our method in these two subtasks, including

open issues. Finally, we present several potential avenues for

future research.
5.1 Localization

Addressing the localization problem of unknown objects is a

key challenge in open-world object detection. The main difficulty
Frontiers in Plant Science 14
lies in the lack of prior knowledge about the unknown classes in the

model. As a result, it is challenging to directly learn their features

and location information from the training data. Our method

improved the model’s ability to detect unknown diseases.

However, qualitative experimental results showed that the

unknown recall is still below 30%. A unified unknown detection

evaluation protocol is even more difficult than finding unknown

diseases. As shown in Figure 6, these unknown detection results are

treated as false positive boxes under the current ground truth, even

though our model has already localized these suspicious regions.

The controversy surrounding the evaluation criteria for

unknown class localization stems from the lack of consistent

standards and consensus. This controversy is formed when
A

B

FIGURE 5

Qualitative results on cross-species detection study. (A). Training on tomato dataset and test on paprika dataset. (B). Training on paprika dataset and
test on tomato dataset. The sample number is indicated in the top left corner of each subplot. Best view in color.
A B DC

FIGURE 6

Qualitative results for unknown instances from our dataset. We present four pairs of examples (A–D). The first row displays the image and
annotations, while the second row represents our detection results. Best view in color.
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annotating datasets. Our previous work (Dong et al., 2022)

discussed how to efficiently label plant diseases. We believe that

different disease symptoms should adopt different labeling

strategies, and we verified this scheme’s effectiveness through

several experiments. However, these annotation strategies and

evaluation schemes were designed for known categories. To the

best of our knowledge, no related work discusses the localization of

unknown classes in plant disease detection tasks. Additionally, the

definition and scope of unknown classes also introduce subjectivity

and uncertainty, further contributing to the controversy of

evaluation criteria. Therefore, further research and consensus-

building are needed to establish consistent and fair evaluation

criteria for assessing the localization performance of

unknown classes.
5.2 Classification

We developed a dynamic open-world detector since plant

growth is a dynamic process. However, plant disease dynamics

are more complex than we imagined. Some diseases may exhibit

different symptoms at different stages of growth, leading to a

challenging feature expression. Additionally, different diseases

may also exhibit similar symptoms at different stages, which can

be due to different pathogens (such as bacteria, fungi, viruses, etc.)

or environmental factors. We list some common examples of

tomato diseases with similar symptoms:

Yellowing symptoms: Yellowing is a common symptom of

many plant diseases, including viral infections, fungal diseases,

and nutrient deficiencies. Different pathogens or causes may lead

to yellowing of plant leaves or other tissues, but their pathological

processes and treatment methods may differ completely.

Leaf spot diseases: Many pathogens can cause similar leaf spot

diseases, such as fungal and bacterial leaf spots. They produce

similar spots or patches on the leaves, but the pathogens and

pathogenic mechanisms behind them are different.

Rotting symptoms: Rotting is a common symptom caused by

various diseases or pathogens, including bacterial soft rot, fungal

rot, and rotting caused by certain environmental factors. Although

they manifest as the decay of plant tissues, the specific causes may

be different.

Similar symptoms may also occur in the detection of cross-

species diseases. In addition, the leaves of different plants are

different in a healthy state. However, diseases may force the

leaves of different species to deform to the same symptom at the

final state. In this case, even experts also struggle to distinguish

them. Therefore, deep learning models may still face the same

challenges in accurately differentiating them. Figure 7 shows some

cases with similar symptoms but different species. When testing for

diseases on paprika leaves using a model trained on the tomato

dataset, all suspicious regions should have been detected as

unknown. However, some unknown regions are mistakenly

detected as gray mold due to similar symptoms. Although the

category is correct, these instances of gray mold are treated as

false positives.
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These pieces of evidence prove that deep learning models can

offer advantages in distinguishing similar disease symptoms but are

not infallible. Domain expertise and collaboration with experts

remain critical in evaluating and validating the model’s

predictions. The model’s success still depends on the availability

of quality training data and the complexity of the differentiation

task. Another limitation we encountered is the challenge of

obtaining additional high-quality datasets for plant disease

detection to validate generalizability further. Despite this

constraint, we have conducted validation using the COCO dataset

to showcase the method’s performance. For more details, please

refer to our code repository.
5.3 Future works

We present some promising approaches to tackle classification

problems. Recently, Du et al. (2022a) introduced spatial-temporal

unknown distillation (STUD), a model designed to detect unknown

objects in videos by establishing spatial-temporal context. STUD

(Du et al., 2022a) utilizes time series features to evaluate the

relationship between the current frame and the reference frame,

reducing the occurrence of classification errors. In real-world

agricultural practices, the same species is commonly planted in

one area. Therefore, considering the spatial-temporal context to

determine the species category can effectively narrow down the

range of disease classifications. Another intriguing direction is

utilizing large visual language models (Radford et al., 2021),

renowned for their impressive zero-shot detection capabilities,

making them highly suitable for identifying unknown categories.

A recent study (Wortsman et al., 2022) demonstrated that fine-

tuning a large-scale visual language model through weight

integration performs well not only on specific downstream tasks

but also maintains its ability to recognize unknown targets.

Consequently, embedding a large language-vision model into

open-world detection tasks has the potential to enhance the

model’s robustness. We encourage the community to pay

attention to these promising methods and apply them to plant

disease detection tasks.
6 Conclusions

In this study, we introduced a new paradigm called open world

plant disease detector. This novel detection paradigm enables the

detection of unknown diseases and allows for the dynamic updating

of new knowledge. This paradigm breaks the closed-set, static open-

set settings of conventional plant disease detectors. We observed

that detectors trained on complex object detection datasets can

enhance the detection performance for unknown classes, and the

category-agnostic head further improved the recall rate for

unknown diseases. Additionally, cross-species disease detection

experiments have demonstrated that our model can comprehend

the concept of diseases and successfully detect them across different

species. Extensive ablation experiments validated the effectiveness
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of our proposed method. Furthermore, we thoroughly discussed the

existing open challenges in plant disease detection and offered

insightful perspectives. We strongly encourage researchers and

practitioners to address the current challenges that remain.
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FIGURE 7

Qualitative results for unknown instances from our dataset. These instances of gray mold should have been detected as unknown. The sample
number is indicated in the top left corner of each subplot. Best view in color.
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