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Simple Summary: Over the years, the identification of individual cattle has assumed a pivotal role
in health monitoring, reproduction management, behavioral research, and performance tracking.
In this study, we propose a method based on artificial intelligence for identifying known and new
(unknown) individual Hanwoo cattle, a native breed of Korea, by utilizing cattle’s face images.
To accomplish this, we strategically positioned a network of CCTV cameras within a closed farm,
demonstrating the efficacy of non-intrusive sensors in capturing real-world data. Furthermore, we
devised open-set techniques to tackle challenges such as varying illumination, overlapping objects,
and fluctuations in cattle’s face orientations. Our research method not only demonstrated excellent
recognition performance in complex real-world cattle’s datasets, but can also be applied to open-set
scenarios, wherein unmarked or new cattle may join the herd. Our proposed method can be readily
adapted to identifying various livestock species, offering real-time individual recognition, which
yields valuable insights for farm management. This deep learning approach amplifies the efficiency
of farm operations, thus playing a pivotal role in advancing the agriculture industry as a whole.

Abstract: Accurate identification of individual cattle is of paramount importance in precision livestock
farming, enabling the monitoring of cattle behavior, disease prevention, and enhanced animal
welfare. Unlike human faces, the faces of most Hanwoo cattle, a native breed of Korea, exhibit
significant similarities and have the same body color, posing a substantial challenge in accurately
distinguishing between individual cattle. In this study, we sought to extend the closed-set scope
(only including identifying known individuals) to a more-adaptable open-set recognition scenario
(identifying both known and unknown individuals) termed Cattle’s Face Open-Set Recognition
(CFOSR). By integrating open-set techniques to enhance the closed-set accuracy, the proposed method
simultaneously addresses the open-set scenario. In CFOSR, the objective is to develop a trained
model capable of accurately identifying known individuals, while effectively handling unknown or
novel individuals, even in cases where the model has been trained solely on known individuals. To
address this challenge, we propose a novel approach that integrates Adversarial Reciprocal Points
Learning (ARPL), a state-of-the-art open-set recognition method, with the effectiveness of Additive
Margin Softmax loss (AM-Softmax). ARPL was leveraged to mitigate the overlap between spaces of
known and unknown or unregistered cattle. At the same time, AM-Softmax was chosen over the
conventional Cross-Entropy loss (CE) to classify known individuals. The empirical results obtained
from a real-world dataset demonstrated the effectiveness of the ARPL and AM-Softmax techniques in
achieving both intra-class compactness and inter-class separability. Notably, the results of the open-set
recognition and closed-set recognition validated the superior performance of our proposed method
compared to existing algorithms. To be more precise, our method achieved an AUROC of 91.84 and
an OSCR of 87.85 in the context of open-set recognition on a complex dataset. Simultaneously, it
demonstrated an accuracy of 94.46 for closed-set recognition. We believe that our study provides
a novel vision to improve the classification accuracy of the closed set. Simultaneously, it holds the
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potential to significantly contribute to herd monitoring and inventory management, especially in
scenarios involving the presence of unknown or novel cattle.

Keywords: cattle’s face recognition; deep learning; open-set recognition; animal welfare; precision
livestock farming

1. Introduction

The demand for livestock products, including meat and dairy, is experiencing nearly
exponential growth due to the expanding global population and increased affordability of
these commodities. To enhance productivity, minimize resource wastage, promote animal
welfare, and facilitate sustainable and efficient livestock farming practices, the precision
livestock farming approach has been developed (https://geopard.tech/blog/precision-
livestock-farming-technologies-benefits-and-risks/ (accessed on 16 November 2023)). In
the context of precision livestock farming management, the identification of individual cat-
tle assumes a pivotal role, encompassing tasks such as health monitoring [1], reproduction
management [2], behavior research [3–5], and individual cattle’s performance tracking [6].
The widely adopted cattle’s identification technology, Radio Frequency Identification
(RFID) [7,8], faces various challenges in practical use, including a limited recognition area,
instances of collisions, and the potential for tag duplication and loss. Consequently, the
labor costs associated with the application of RFID technology are notably high. As a result,
the use of RFID is gradually revealing inefficiencies and cost-related drawbacks. In recent
times, the advent of deep-learning-based approaches for cattle identification tasks [9–11]
has led to notable advancements, driven by their low-cost, non-invasive, and stress-free
nature, and efficacy.

Nonetheless, the application of deep-learning-based methods for automated cattle’s
face recognition encounters numerous challenges in real-world farm settings, such as issues
related to varying illumination, weather conditions, overlapping objects, and fluctuations
in cattle’s face orientations. While collecting data during cattle’s feeding, multiple cattle
often share the same feeding trough, resulting in overlapping cattle’s faces. Additionally,
as cattle move their heads while eating, only partial images of their faces are captured.
Moreover, cattle assume various postures and orientations during feeding, leading to
significant variations in the angles. Furthermore, since the data are obtained during three
distinct feeding times, the same cattle may feed at different troughs, causing variations in
the distances between the cattle and the cameras. As a result, the collected data may also
feature differences in their characteristics, including variations in head size. These factors
present substantial challenges for accurately identifying cattle’s faces. Some examples of
the challenges addressed in this study can be illustrated in the dataset collection subsec-
tion. Furthermore, these cattle recognition tasks primarily function under the closed-set
assumption, which typically implies that the source (training) and target (testing) datasets
share the same classes (known classes). This closed-set assumption, while suitable for some
scenarios, encounters limitations in real-world farm applications, particularly concerning
the emergence and re-identification of new cattle (unknown) within the herd.

To tackle these challenges and overcome the limitations of the closed-set assumption,
we embraced a more-adaptable open-set [12] perspective for recognizing known and un-
known individual cattle, relying on highly distinguishable cattle’s facial features, termed
Cattle’s Face Open-Set Recognition (CFOSR). At the same time, we enhanced the perfor-
mance of the closed-set classification task by integrating open-set techniques to obtain a
good classifier. In Open-Set Recognition (OSR), the training phase involved known indi-
viduals, while the test phase accommodated the presence of new (unknown) individuals.
Specifically, the model, having been trained solely on known individuals, was expected
to accurately identify recognized individual cattle or effectively distinguish previously
unseen individuals during the testing stage. As an instance, consider the scenario where a

https://geopard.tech/blog/precision-livestock-farming-technologies-benefits-and-risks/
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new individual is introduced to the barn. In contrast, in the context of closed-set identi-
fication, an unknown individual might erroneously be categorized as one of the known
individuals, thereby impeding the accurate monitoring and tracking of individual cattle
within real-world farm settings. For instance, this issue becomes particularly pronounced
when unidentified cattle carry infectious diseases; the failure to promptly recognize them
and institute appropriate measures can potentially inflict significant harm on the entire
cattle herd.

A prominent challenge in OSR pertains to the absence of unknown individuals during
the training phase, thereby confining the model’s learning solely to known individuals’
information [13]. Moreover, the complexity of CFOSR surpasses that of conventional OSR in
the realm of computer vision, predominantly due to the subtle disparities observed among
most cattle’s faces. In contrast, prevalent computer vision datasets utilized to evaluate
OSR tasks [12,14,15], such as TinyImageNet and CIFAR10, encompass semantically distinct
known and unknown classes, such as cats and dogs. In the context of CFOSR, where
Hanwoo cattle’s faces have a similar appearance, to obtain a good open-set classifier, a
prevailing approach involves cultivating a more-compressed feature space for known
individuals, thereby affording greater expansiveness to unknown individuals [16,17]. The
whole architecture is shown in Figure 1.
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Figure 1. Architecture of our proposed CFOSR method. In the training phase, only known images are
fed into the feature extractor. After training the model with three loss functions, the known reciprocal
points (PK , where K is the number of known individuals) are learned. In the evaluation phase,
unknown ones are identified based on the distance between the features and the known reciprocal
points. d is a distance function, and τ is a threshold.

To address the challenges in CFOSR, on one front, we opted for a straightforward, yet
impactful loss function known as the Additive Margin Softmax loss (AM-Softmax) [18].
This choice amplifies the separability of distinct individual features, while concurrently
compacting the distance between the features of the same individual. This, in turn, facili-
tates the provision of additional feature spaces for accommodating unknown individuals.
On the other hand, we harnessed the potential of the distance-based Adversarial Recipro-
cal Point Learning (ARPL) loss to curtail the overlap between the known and unknown
distributions. Specifically, the reciprocal point for each known class was derived within an
extra-class space, followed by the imposition of an adversarial margin constraint, which
confined the extent of the latent open space established by these reciprocal points [17].

Prior investigations [15] posited that a good closed-set classifier can offer valuable
support for open-set recognition tasks. Within this research, we harnessed transfer learning
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to acquire an adept closed-set classifier, a strategic move that notably enhanced the per-
formance in the subsequent tasks [19,20]. We opted for a Vision Transformer (ViT) model,
pretrained on the ImageNet21K dataset, instead of the more-conventionally employed
ImageNet1K dataset. Moreover, we harnessed a ViT model that was pretrained on the
plant-relevant dataset PlantCLEF2022 [21]. Interestingly, we observed that the datasets
focused on plants also contributed to enhancing the accuracy of the cattle’s face recognition.
Additionally, we employed transfer learning with a pretrained ResNet50 model sourced
from the ImageNet1K dataset.

The remainder of this paper is organized as follows: In Section 2, we formally define
the cattle’s face open-set recognition, introduce our dataset, and provide detailed insights
into the proposed method. Section 3 presents the implementation details and experimental
results, showcasing the performance of our model and highlighting the significance of our
findings. In Section 4, we outline the limitations and highlight key contributions. Finally,
in Section 5, we conclude the paper by summarizing the key techniques and suggesting
avenues for future research.

2. Materials and Methods
2.1. Problem Definition

In this research, our goal was to develop a robust classifier for Cattle’s Face
Open-Set Recognition (CFOSR) using a real-world farm dataset. This subsection
is devoted to formally defining the open-set recognition, specifically CFOSR. Let
Dtrain = {(xi, yi)}N

i=1 ⊂ Xtrain × Ytrain denote the training dataset, where Xtrain represents
the input image space and Ytrain signifies the corresponding label space. Here, N corresponds
to the total inputs in the training dataset. Similarly, let Dtest = {(xi, yi)}M

i=1 ⊂ Xtest × Ytest
characterize the test dataset, with M denoting its overall inputs. Operating under the
Closed-Set Assumption (CSA), both the training and test datasets share a common label
space, Ytest = Ytrain. However, in real-world testing scenarios, novel individual cattle may
emerge, a situation that poses a risk when current methods classify the new cattle among
the known cattle in Xtrain. Consequently, there arises a desire to extend the closed-set
paradigm to embrace the open-set realm.

Mathematically, the test dataset in CFOSR is expressed as Ytest = Ytrain + Yunknown,
where Yunknown 6= ∅ pertains to the domain of unknown or new individual cattle. A well-
trained model is mandated to adeptly categorize a testing image, assigning it to either the
known individuals in Ytrain or the unknown individual Yunknown.

2.2. Dataset Collection and Preprocessing

Dataset collection: This study solely utilized video data. No physical experiments or
intrusive devices that could disrupt the animals’ normal conditions were employed in our
research. The dataset comprises video recordings obtained from the “Baksagol” private
Hanwoo cattle farm located in Imsil, South Korea. This farm is situated in a temperate
climate with distinct seasons, experiencing cold, dry winters and hot, humid summers in
South Korea. Spring and autumn are relatively brief, offering mild and generally pleasant
temperatures. The animal housing facility was designed with semi-open compartments,
allowing for external air ventilation. Additionally, each compartment is equipped with
indoor ventilators. The floor is covered with sawdust on a basic concrete foundation,
while the ceiling consists of opaque Styrofoam steel sheets in some areas and transparent
polycarbonate in others.

The experimental barn had a size of 30 × 12 m and housed 21 cattle, ranging in age
from 1 to 7 y, including 3 calves. To capture continuous video data for face recognition,
three Hikvision (HIK) surveillance camera devices with 4 K resolution (3840 × 2160) were
installed in the barn facing the longest area of the barn with a clear view of the animal faces.
Figure 2 illustrates the corresponding camera setup. It is important to highlight that we
deployed these three cameras at various locations to capture the data during three distinct
feeding periods: morning, noon, and night, as illustrated in Figure 3. To standardize the
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data, we extracted image frames from the three video cameras at a rate of 15 frames per
second (fps). We employed the upper left and lower right coordinates to effectively label
the cattle’s face data, distinctly indicating the face’s position, as depicted in the lowermost
row of Figure 3. Furthermore, we tracked and annotated each of the cattle based on video
data to determine their exact location.

3.3m

6m

6.6m

Figure 2. Illustration of camera installation. This figure illustrates the installation diagram of one of
the cameras. We positioned a camera on the wall facing the cowshed, placing it at a height of 3.3 m
above the ground and at a distance of 6 m from the cowshed.

Figure 3. One example of the collected dataset for the morning feeding time. The first row is the
images captured by the three cameras, respectively. The second row is the corresponding annotated
images with bounding boxes.

Preprocessing: For the collection of cattle’s face datasets, precise annotations of the
bounding boxes were applied to accurately pinpoint the cattle’s faces within the original
images. Subsequently, the face images were obtained through cropping based on these
annotations. It is important to note that this aspect of the work was not our primary
focus; we extend our gratitude to our research collaborator for providing the cattle-to-face
image datasets. Our dataset encompasses a span of three days, during which we captured
face images across three distinct feeding instances. To enhance the model training, we
merged the images from all three feeding times for a given day, as illustrated in the parity
examples displayed in Figure 4. As shown in the figure, it is clear that each of the cattle’s
faces exhibited multiple angles and orientations, and some images were taken in foggy
conditions, which added complexity to the dataset. Notably, the figure also illustrates that
distinct cattle often share remarkably similar facial features, significantly augmenting the
challenge of accurate cattle identification. In our experimental setup, images from one day
were allocated as the training dataset, while the other two days’ images were the testing
datasets (Testing Dataset 1 and Testing Dataset 2). In Testing Dataset 2, there are relatively
few instances of overlapping images of two cattle and a few images containing only a tiny
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portion of the cattle’s faces. Further details regarding the number of images corresponding
to each of the individual cattle in both the training and testing datasets can be found
in Table 1.

Figure 4. Five instances of cattle are showcased in the training datasets as examples, with each of
the cattle encompassing images captured during three distinct feeding instances. Those examples
illustrate the challenges faced in this study, including illumination, overlapping cattle’s faces, captured
partial cattle’s faces, various postures and orientations, and varying sizes of heads.

Table 1. The number of images of each of the cattle in the training datasets and the testing datasets.
Compared to Testing Dataset 1, there are relatively few instances of overlapping images of two cattle
and a few images containing only a tiny portion of the cattle’s faces in Testing Dataset 2.

Training Dataset Testing Dataset 1 Testing Dataset 2

1 2959 2838 2652
2 2000 2845 2688
3 2670 2501 3000
4 3000 3000 2986
5 3000 3000 3000
6 3000 3000 2656
7 3000 2127 2644
8 3000 2920 2952
9 3000 3000 2645
10 2923 2787 2708
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Table 1. Cont.

Training Dataset Testing Dataset 1 Testing Dataset 2

11 3000 1181 1627
12 2948 3000 2929
13 3000 2797 2817
14 2930 2910 2973
15 2990 2276 2457
16 3000 2839 2977
17 2966 3000 2000

total 49,386 46,021 45,711

2.3. Proposed Method

To achieve a well-trained open-set classifier within the CFOSR context, we devised a
unified algorithm by incorporating two strategies into a method for open-set recognition of
cattle faces.

2.3.1. Cattle’s Face Open-Set Recognition

In this section, our aim was to introduce a baseline approach for CFOSR. We leveraged
Adversarial Reciprocal Points Learning (ARPL) [17], one of the state-of-the-art techniques
in the domain of open-set recognition. The architectural layout, as depicted in Figure 1,
encompasses the learning of K known reciprocal points during the training phase, where
K signifies the count of known individuals. At its core, each input image x traverses
through the feature extractor f to yield feature representations, denoted as f (x). These
learned features for the known entities are strategically positioned to exhibit a notable
separation from their corresponding reciprocal points. During the evaluation phase, a
given sample is allocated to either the known or unknown category based on the calculated
distance between its features and the reciprocal points. To elaborate, if the distance to all
reciprocal points falls below a predefined threshold τ, the model designates the sample as
an unknown entity. Conversely, the model assigns samples to specific known classes based
on the maximum distance between the feature and all reciprocal points. The ARPL loss
is combined with the cross-entropy loss and Adversarial Margin Constraint (AMC) loss.
Notably, given sample x and reciprocal point Pk, their distance d( f (x),Pk) is calculated
by combining the Euclidean distance and dot product when using the cross-entropy loss,
while the AMC loss only uses the Euclidean distance de( f (x),Pk) to mitigate the overlap
between the distributions of known and unknown individuals, which is given by:

LAMC = max(de( f (x),Pk)− R, 0), (1)

where R is a learnable margin.

2.3.2. Additive Margin Softmax to Enhance Compactness within the Known Feature Space

Our first strategy was to employ the additive margin softmax loss rather than the cross-
entropy loss, to obtain a compact feature space. Different from closed-set classification,
OSR models are tasked with generating an unknown score to indicate the likelihood of
an input sample belonging to the unknown category. Fine-tuning a threshold can make
a decision based on this unknown score. In this case, the advantage of a compact feature
space for known classes becomes apparent since it allocates more space for unknown ones.
Inspired by this idea, the Additive Margin Softmax loss (AM-Softmax) [18] function was
employed, which can be formalized as

LAM = − 1
n

n

∑
i=1

log
es·(WT

ĉ fi−m)

es·(WT
ĉ fi−m) + ∑C

c=1,c 6=ĉ es·WT
c fi

, (2)
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where n is the total number of samples, C is the total number of known classes, and ĉ is
the correct class. The hyperparameter margin m is only used for the correct class, and s
is a scaling hyperparameter. In the equation, f denotes extracted features for an input
sample, and W is the weights in the classifier layer. Notably, the feature vector fi and
weight vector W need to be normalized. The AM-Softmax with the margin m added to the
decision boundary increases the separability of the classes and makes the distance between
the same classes more compact in CFOSR, as shown in Figure 5.

Figure 5. Contrast between decision boundaries: softmax loss (cross-entropy) and AM-Softmax [18].
For the softmax loss, the decision boundary is at P0. For AM-Softmax, the decision boundaries for
Class 1 and Class 2 are at P1 and P2, respectively.

2.3.3. Transfer Learning

Our second strategy was utilizing transfer learning to boost the classification perfor-
mance. Transfer learning aims to leverage the knowledge learned from source tasks in
different domains to adapt to target tasks, so it does not need to learn from scratch with
large amounts of data [22–24]. Benefiting from transfer learning, the model can attain
enhanced performance within a relatively short training period. In this study, we leveraged
a large ViT model pretrained on the ImageNet21K dataset. This dataset contains a greater
diversity of classes and images compared to the ImageNet1K dataset. Better performance
in the target task is often observed when the source dataset comprises a wider array of
classes and substantial images [25]. Moreover, we opted for a ViT model that was pre-
trained on the plant-relevant dataset PlantCLEF2022 [21]. Interestingly, we observed that
the plant-relevant datasets also contributed to enhancing the performance of the cattle’s
face identification. In the case of the CNN-based model, utilizing a pretrained model on
ImageNet1k led to improved accuracy. As such, we employed the ResNet50 model, initially
pretrained on the ImageNet1k dataset, and subsequently, fine-tuned it using the cattle’s
face dataset.

3. Results
3.1. Evaluation Metrics

AUROC: CFOSR encompasses two core tasks: distinguishing unknown individuals
from known ones and accurately classifying known individuals. Due to the unique nature
of these tasks, the conventional metrics utilized in generic image classification may not
be suitable for assessing CFOSR’s performance [26]. An initial challenge in evaluating
CFOSR stems from the fact that varying thresholds for identifying unknown from known
individuals can yield disparate performance outcomes. An effective metric for addressing
this concern is the Area Under the Receiver Operating Characteristic (AUROC) curve [27],
which remains robust to threshold variations. The computation of the AUROC involves
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consolidating all known individuals into a super-known individual class, effectively trans-
forming the task into binary classification alongside a super-unknown individual class
encompassing the unknown individuals. Within this framework, the True Positive Rate
(TPR) and False Positive Rate (FPR) are calculable for the super-known individual. As
implied by the term AUROC, it represents the area under the curve formed by TPRs and
FPRs. A higher AUROC value typically indicates a superior model performance.

OSCR [28]: This assessment methodology simultaneously addresses both CFOSR tasks,
with the objective of yielding a singular value for evaluating the trained models. The test
datasets are partitioned into distinct known individuals Dknown and unknown individuals
Dunknown. Regarding samples originating fromDknown, the Correct Classification Rate (CCR)
signifies the proportion of samples for which the unknown scores fall below a designated
threshold s, while the learned classifier maintains accurate classification. Conversely, for
samples stemming from Dunknown, the False Positive Rate (FPR) corresponds to the fraction
of samples with unknown scores below s. Similar to the AUROC, the OSCR metric denotes
the area under the curve traced by CCRs and FPRs.

CSA: While the AUROC and OSCR provide valuable insights into assessing known
and unknown performance, they lack the capacity to evaluate the model’s precision in
classifying known classes accurately. To address this aspect, the concept of Close-Set
Accuracy (CSA) [15,27] proves useful. CSA can be employed conjointly with the former
metrics, ensuring that a proficient open-set classifier maintains its efficacy in closed-set
scenarios. By exclusively considering known classes for model training, CSA equates to
the conventional accuracy metric. Hence, the combined utilization of the AUROC, OSCR,
and CSA offers a comprehensive framework for evaluating models while simultaneously
considering both tasks.

3.2. Implementation Details

As previously noted, our training dataset comprises images from three feeding times
for 5 November 2021, while the testing dataset encompasses images from November 6 and
9 November 2021. From the entire pool, ten known individuals were chosen randomly,
leaving seven individuals as unknown entities. For data augmentation, we employed
RandAugment [29] with parameter AUGm set at 30 and parameter AUGn set at 2. The
images were subsequently resized to dimensions of 224. Regarding the AM-Softmax
function, initial experimentation guided the selection of parameters s and m, which were
set at 10.0 and 0.5, respectively.

In the training process, a batch size of 32 was utilized, along with 16 workers, lever-
aging a single NVIDIA (Santa Clara, CA, USA) RTX 3090 GPU equipped with 24 GB
of memory. The network underwent training for 100 epochs, guided by a learning rate
of 0.0001. Following the conventional experimental setup for OSR, each model was sub-
jected to training across five distinct random splits of known and unknown entities within
the dataset. The mean and variance of the model’s performance across these splits are
subsequently reported.

We trained our model end-to-end by incorporating both the LAMC and LAM loss
functions. The LAMC loss function was employed to mitigate the overlap between the
known class space and the remaining space (unknown class space), while LAM was utilized
for classifying known individuals.

3.3. Compared Methods

In order to validate the effectiveness of our approach, we conducted comparisons with
several methods. The specific introductions of the comparative methods are outlined as follows:

• RN50. A ResNet50 model was trained from scratch with the cattle’s face datasets.
• RN50-IN1k. A ResNet50 model was pretrained with the ImageNet-1k (IN1k) dataset

in a supervised way and, then, fine-tuned in the cattle’s face datasets.
• ViT-L. A large ViT [30] model was trained from scratch with the cattle’s face datasets.
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• ViT-MAE. A large ViT model was pretrained with the IN1k dataset in a self-
supervised way [31].

• ViT-PlantCLEF. We pretrained the large ViT model from the MAE with the Plant-
CLEF2022 dataset once again in a supervised way [32] and, then, fine-tuned it with
the cattle’s face datasets.

• ViT-IN21k. A large ViT model was pretrained with the ImageNet-21k (IN21k) dataset
in a supervised way.

• ViT-IN21k-AM (ours). A large ViT model was pretrained with the ImageNet-21k
(IN21k) dataset in a supervised way. Furthermore, the AM-Softmax was leveraged
instead of the cross-entropy loss.

• RN50-IN1k-AM (ours). A ResNet50 model was pretrained with the ImageNet-1k
(IN1k) dataset in a supervised way. Furthermore, the AM-Softmax was leveraged
instead of the cross-entropy loss.

3.4. Results for Open-Set Scenario
3.4.1. Main Results

As one of our main objectives was to achieve cattle’s face open-set recognition in a
real-world dataset, we first compared our method to other strategies. Tables 2 and 3
denote the main results of different comparison methods with 10 and 7 cattle as known
classes, respectively.

As shown in Table 2, the experimental results showed that our methods signifi-
cantly outperformed other methods. In Testing Dataset 1 (TD1), our proposed method,
ViT-IN21k-AM, attained a performance of 94.49 CSA, 91.84 AUROC, and 87.85 OSCR.
This reflects a significant improvement of 16.78 CSA, 13.47 AUROC, and 21.93 OSCR
in comparison to the ViT-MAE method. Furthermore, our CNN-based approach,
RN50-IN1k-AM, also exhibited favorable results with 93.61 CSA, 90.84 AUROC, and 87.22
OSCR. Notably, the AM-Softmax function played a crucial role in promoting CFOSR. Specif-
ically, the AM-Softmax significantly enhanced the CSA, AUROC, and OSCR by 4.45, 5.73,
and 8.02, respectively, in the CNN-based method. More detail will be shown in the ablation
study section.

Table 2. Main results with different methods. We utilized 10 cattle as known classes and 7 cattle as
unknown classes. TD1 and TD2 denote Testing Dataset 1 and Testing Dataset 2, respectively. The
boldface represents the best results in the cattle’s face dataset for the specific evaluation metrics.

TD Method Training Strategies CSA AUROC OSCR

TD1

RN50 - 30.50 ± 0.04 57.15 ± 0.05 19.94 ± 0.03
RN50-IN1k ImageNet1k 89.16 ± 0.03 85.11 ± 0.03 79.20 ± 0.03

RN50-IN1k-AM (ours) ImageNet1K 93.61 ± 0.02 90.84 ± 0.03 87.22 ± 0.02
ViT-L - 34.42 ± 0.09 55.35 ± 0.05 23.21 ± 0.07

ViT-MAE ImageNet1k 77.71 ± 0.03 78.37 ± 0.05 65.92 ± 0.04
ViT-PlantCLEF PlantCLEF2022 82.56 ± 0.04 82.10 ± 0.03 72.41 ± 0.02

ViT-IN21k ImageNet21k 93.57 ± 0.02 91.24 ± 0.02 87.35 ± 0.01
ViT-IN21k-AM (ours) ImageNet21k 94.49 ± 0.02 91.84 ± 0.01 87.85 ± 0.02

TD2

RN50 - 30.89 ± 0.06 51.92 ± 0.04 18.68 ± 0.05
RN50-IN1k ImageNet1k 92.16 ± 0.02 86.48 ± 0.02 82.81 ± 0.03

RN50-IN1k-AM (ours) ImageNet1K 95.98 ± 0.01 90.65 ± 0.03 88.95 ± 0.03
ViT-L - 45.01 ± 0.06 60.43 ± 0.05 32.78 ± 0.05

ViT-MAE ImageNet1k 88.48 ± 0.03 80.88 ± 0.04 75.95 ± 0.04
ViT-PlantCLEF PlantCLEF2022 89.69 ± 0.03 87.31 ± 0.02 81.35 ± 0.02

ViT-IN21k ImageNet21k 97.81 ± 0.01 95.02 ± 0.01 93.81 ± 0.01
ViT-IN21k-AM (ours) ImageNet21k 98.74 ± 0.01 95.12 ± 0.02 94.33 ± 0.02

In the evaluation of Testing Dataset 2 (TD2), the effectiveness of our proposed
approach, ViT-IN21k-AM, was evident as it attained a performance of 98.74 CSA,
95.12 AUROC, and 94.33 OSCR, benefiting from the refined data. Meanwhile, the
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RN50-IN1k-AM method yielded results of 95.98 CSA, 90.65 AUROC, and 88.95 OSCR.
Figure 6 shows the known and unknown density distribution with different methods.
In contrast to the ViT-MAE approach (depicted in Figure 6d), our proposed method,
ViT-IN21k-AM (illustrated in Figure 6a), effectively distinguished between known and
unknown individuals. Considering the effect of the AM-Softmax, both the ViT-IN21k-AM
(Figure 6a) and RN50-IN1k-AM (Figure 6e) methods exhibited enhanced discrimination
between known and unknown individuals, outperforming the ViT-IN21K (Figure 6b) and
RN50-IN1k (Figure 6f) methods.

Table 3. Main results with 7 cattle as known classes and 10 cattle as unknown classes. TD1 and TD2
denote Testing Dataset 1 and Testing Dataset 2, respectively. The boldface represents the best results
in the cattle’s face dataset for the specific evaluation metrics.

TD Method Training Strategies CSA AUROC OSCR

TD1

RN50-IN1k ImageNet1k 91.32 ± 0.02 87.26 ± 0.04 83.68 ± 0.04
RN50-IN1k-AM (ours) ImageNet1K 93.99 ± 0.01 90.47 ± 0.02 87.58 ± 0.03

ViT-MAE ImageNet1k 83.87 ± 0.05 83.19 ± 0.04 73.65 ± 0.04
ViT-PlantCLEF PlantCLEF2022 84.50 ± 0.04 84.29 ± 0.04 76.41 ± 0.04

ViT-IN21k ImageNet21k 91.62 ± 0.03 89.05 ± 0.02 85.23 ± 0.01
ViT-IN21k-AM (ours) ImageNet21k 92.42 ± 0.01 89.42 ± 0.03 85.47 ± 0.02

TD2

RN50-IN1k ImageNet1k 94.90 ± 0.02 91.38 ± 0.03 88.30 ± 0.04
RN50-IN1k-AM (ours) ImageNet1K 97.55 ± 0.01 93.96 ± 0.01 92.57 ± 0.02

ViT-MAE ImageNet1k 90.72 ± 0.03 86.80 ± 0.04 81.64 ± 0.05
ViT-PlantCLEF PlantCLEF2022 94.12 ± 0.02 90.47 ± 0.03 87.43 ± 0.04

ViT-IN21k ImageNet21k 97.61 ± 0.01 94.42 ± 0.01 93.06 ± 0.01
ViT-IN21k-AM (ours) ImageNet21k 98.61 ± 0.00 94.91 ± 0.01 94.17 ± 0.01

(c) (d) (f)

(e)(a) (b)

Figure 6. An instance showcasing both known and unknown density distributions in CFOSR.
Figures (a–d) in the black frame indicate ViT-IN21k-AM, ViT-IN21k, ViT-PlantCLEF, and ViT-MAE,
respectively. Figures (e,f) in the blue frame denote RN50-IN1k-AM and RN50-IN1k, respectively.
Zoom in to see the details.

In terms of the influence of transfer learning, both the CNN-based and ViT-based
methods notably surpassed the results obtained by training the ResNet50 and ViT models
from scratch in the context of CFOSR. A phenomenon worthy of attention in Table 2 is that,
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even when pretrained on plant-related datasets (PlantCLEF2022), the ViT model continued
to achieve superior performance when fine-tuned on the cattle’s face dataset. The same
phenomenon can be found in Figure 6c,d. In this context, it was plausible that the features
related to texture and color could be transferred to the cattle’s face dataset [33]. When
compared to being pretrained on ImageNet1k, the ViT model pretrained on the larger
dataset ImageNet21k demonstrated significantly improved performance. To be specific,
the ViT-IN21k method exhibited a notable improvement of 15.86 CSA, 12.87 AUROC, and
21.43 OSCR compared to the ViT-MAE method on Testing Dataset 1 (TD1). The preliminary
experimental results indicated that fine-tuning played an important role in enhancing the
performance of open-set cattle’s face recognition.

Table 3 illustrates a similar trend to Table 2. Furthermore, our proposed methods
exhibited comparable performance when dealing with a reduced number of known classes.
The influence of openness on CFOSR will be detailed in the openness section.

3.4.2. Ablation Study and Visualization in CFOSR

For the purposes of evaluating our method, this section primarily focuses on analyzing the
influence of the AM-Softmax function on open-set scenarios based on Testing Dataset 1 (TD1).
Table 4 displays the results of four methods employing the cross-entropy loss or AM-
Softmax. Thanks to the utilization of the AM-Softmax, we attained both intra-class com-
pactness and inter-class separability, resulting in improved identification accuracy and
enhanced performance in open-set scenarios. The RN50-IN1k method, incorporating
the AM-Softmax function, attained results of 93.61 CSA, 90.84 AUROC, and 87.22 OSCR.
This demonstrated a notable improvement of 4.45 in the CSA, 5.73 in the AUROC, and
8.02 in the OSCR compared to using the cross-entropy loss. The AM-Softmax also
played a crucial role in advancing the ViT-based model. Figure 7 illustrates the ob-
served improvement trend in the AUROC and OSCR subsequent to the implementation
of the AM-Softmax.
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CE AM

79.20

75.23

87.22

78.74
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Figure 7. Comparison of AUROC and OSCR results utilizing the cross-entropy loss and AM-Softmax.
The ViT-based results represent the average outcomes across ViT-MAE, ViT-PlantCLEF, and ViT-IN21k.

To analyze the influence of the AM-Softmax in more detail, we attained the confusion
matrix of known individuals from the ViT-IN21k and RN50-IN1k methods, as shown in
Figure 8. The application of the AM-Softmax enhanced the accuracy of individual cattle
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identification for both the ViT-IN21k and RN50-IN1k methods. Especially for the Cattle 7 ,
with the utilization of the ViT-IN21k-AM and RN50-IN1k-AM methodologies, the indi-
vidual cattle were precisely identified with probabilities of 98% and 92%, respectively.
Another notable phenomenon was that, compared to the RN50-IN1k-AM method, the
ViT-IN21k-AM method could correctly identify most individual cattle with high probabili-
ties. Especially for Cattle 1, the ViT-IN21k-AM method recognized this individual with a
probability of 90%, while RN50-IN1k-AM only identified it with a probability of 72%.

Table 4. Ablation study with different loss functions on Testing Dataset 1 (TD1). Xindicates the
adoption of this loss function.

Method Cross-Entropy AM-Softmax CSA AUROC OSCR

RN50-IN1k X 89.16 ± 0.03 85.11 ± 0.03 79.20 ± 0.03
X 93.61 ± 0.02 90.84 ± 0.03 87.22 ± 0.02

ViT-MAE X 77.71 ± 0.03 77.37 ± 0.05 65.92 ± 0.04
X 82.21 ± 0.04 77.70 ± 0.04 67.74 ± 0.03

ViT-PlantCLEF X 82.56 ± 0.04 82.10 ± 0.03 72.41 ± 0.02
X 89.48 ± 0.03 85.46 ± 0.03 80.64 ± 0.03

ViT-IN21k X 93.57 ± 0.02 91.24 ± 0.02 87.35 ± 0.01
X 94.49 ± 0.02 91.84 ± 0.01 87.85 ± 0.02

(a) (b)

(c) (d)

Figure 8. One of the examples of the confusion matrix of known individuals in CFOSR. Figures (a–d)
indicate ViT-IN21k with AM-Softmax (ViT-IN21k-AM), ViT-IN21k with cross-entropy loss (ViT-
IN21k-CE), RN50-IN1k with AM-Softmax (RN50-IN1k-AM), and RN50-IN1k with cross-entropy loss
(RN50-IN1k-CE), respectively. The green font indicates the number of recognized instances of cattle,
while the red font indicates the recognition percentage. Zoom in to see the details.
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Furthermore, based on the RN50-IN1k-AM method, we conducted an analysis of
the effect of the margin m on the AM-Softmax function. As depicted in Table 5, the
parameter m had limited influence on model performance. The model achieved relatively
good performance when the m value was set to 0.5, leading us to select 0.5 as the final
value for m.

Table 5. Influence of the margin m on the AM-Softmax function. For this ablation study, we
conducted experiments using Test Dataset 2 (TD2) with 7 cattle as the known classes and
10 cattle as the unknown classes.

Method m CSA AUROC OSCR

RN50-IN1k-AM
0.4 97.31 ± 0.01 93.14 ± 0.01 92.59 ± 0.02
0.5 97.55 ± 0.01 93.96 ± 0.01 92.67 ± 0.02
0.6 97.01 ± 0.01 93.75 ± 0.01 92.75 ± 0.01

3.4.3. Openness

To analyze the impact of openness on CFOSR, we introduced openness based on the
ratio of the numbers of individuals in the training and test sets [13].

openness = 1−

√
ktrain
ktest

, (3)

where ktrain and ktest are the number of individuals in the training dataset and the test
dataset, respectively.

For a more-comprehensive examination of the impact of known ones on CFOSR, we
introduced a novel sampling method to regulate the count of known and unknown indi-
viduals. Analogous to our previous experiments, we subjected the “known and unknown”
individual allocations to random division in five distinct trials. In addition, we incorporated
a distinctive approach by maintaining a consistent number of unknown individuals across
all trials while progressively reducing the number of known individuals. Specifically, for
the cattle’s face dataset, we upheld seven unknown individuals as a constant, while varying
the known individuals’ count from ten down to one. This configuration ensured that a
higher degree of openness was achieved with fewer known individuals, underscoring a
pronounced relationship between known and unknown individuals.

Figure 9 depicted the impact of different degrees of openness on performance. As the
count of known individuals diminished, both the AUROC and OSCR values exhibited a
corresponding decline. Notably, when openness reached 64.64%, with one of the cattle was
included in the training dataset, a rapid performance deterioration was observed. This
outcome was attributed to the heightened challenge of discerning unknown entities in the
absence of substantial known information.

Conversely, in scenarios characterized by a reduced number of known individuals
during training, the classifier adeptly achieved precise classifications of these known entities.
Consequently, the CSA value experienced an upward trajectory. This phenomenon was
indicative of the classifier’s enhanced ability to accurately categorize known individuals
under the circumstances of limited known individuals in the training data.

3.5. A Well-Trained Open-Set Classifier Boosts Closed-Set Recognition

The integration of open-set techniques such as the ARPL loss and AM-Softmax in
CFOSR served to enhance the intra-class compactness and inter-class separability. This
strengthened the model’s capacity to precisely classify classes within closed-set cattle’s face
recognition. In this section, our primary focus is on comparing our methods with the
frequently employed cross-entropy loss in closed-set cattle’s face recognition. The com-
parative experiments were conducted based on the more-challenging Testing Dataset 1
(TD1). We mainly used the Accuracy (Acc) and F1-score as the metrics to evaluate
the models.
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As depicted in Table 6, when employing the classifier derived from the trained CFOSR
model, we attained both better performance on the CNN-based and ViT-based methods.
Specifically, we achieved an accuracy of 93.43 and an F1-score of 93.49 with the CNN-based
method (RN50-IN1k-AM). This signifies a notable improvement of 4.63 in accuracy and
4.91 in the F1-score compared to using the cross-entropy loss. Furthermore, our ViT-IN21k-AM
method achieved an accuracy of 94.46 and an F1-score of 94.53, surpassing the ViT-IN21k
method by 1.84 in accuracy and 2.03 in the F1-score.
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Figure 9. Model performance based on varying numbers of known cattle (openness) on the cattle’s
face dataset.

Table 6. Comparison results on closed-set cattle’s face recognition (17 cattle) with our CFOSR
method and the generic method. The comparative experiments were conducted based on the more-
challenging Testing Dataset 1 (TD1). Xindicates the adoption of this loss function. The boldface
represents the best results for the specific evaluation metrics.

Model Cross-Entropy ARPL AM-Softmax Acc F1-Score

RN50-IN1k X 88.80 ± 0.02 88.58 ± 0.02

RN50-IN1k-AM X X 93.43 ± 0.01 93.49 ± 0.01

ViT-IN21k X 92.62 ± 0.01 92.50 ± 0.01

ViT-IN21k-AM X X 94.46 ± 0.01 94.53 ± 0.01

Examining the t-SNE distribution shown in Figure 10, it becomes obvious that the
utilization of the ARPL loss and AM-Softmax led to a greater distinction between the
feature spaces of different individuals and a more-condensed feature space for the same
individuals. This effect was particularly pronounced in the case of RN50-IN1k-AM, where
clear inter-class separability and intra-class compactness were visible. Benefiting from the
open-set techniques, the ViT-IN21k-AM and RN50-IN1k methods can accurately identify
individual cattle with high probabilities, as shown in the confusion matrix in Figure 11.
Utilizing cross-entropy loss, the RN50-IN1k-CE approach was able to identify Cattle 1 at
a mere 35% accuracy (Figure 11d). In contrast, the RN50-IN1k-AM method achieved a
significantly higher accuracy of 90% in identifying Cattle 1. Both Cattle 16 and Cattle 11
exhibited higher identification accuracy through the RN50-IN1k-AM method compared
to the RN50-IN1k-CE approach. Meanwhile, compared to the ViT-IN21k-CE method, the
ViT-IN21k-AM method was able to identify both Cattle 12 and Cattle 1 with higher accuracy.
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Figure 10. Visualization of t-SNE on cattle’s face dataset with all 17 individual cattle. Figure (a–d)
ViT-IN21k-AM with open-set techniques, ViT-IN21k with cross-entropy loss, RN50-IN1k-AM with
open-set techniques, and RN50-IN1k with cross-entropy loss, respectively. Zoom in to see the details.

(a) (b)

(c) (d)

Figure 11. Examples of confusion matrix of all 17 individual cattle. Figures (a–d) indicate ViT-IN21k-AM
with open-set techniques, ViT-IN21k with cross-entropy loss, RN50-IN1k-AM with open-set tech-
niques, and RN50-IN1k with cross-entropy loss, respectively. The green font indicates the number of
recognized instances of cattle, while the red font indicates the recognition percentage. Zoom in to see
the details.
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3.6. Computational Complexity

The quantity of parameters and the computational complexity are showcased in Table 7
for two basic architectures, namely the Convolutional Neural Network (CNN) and Vision
Transformer (ViT). It is worth noting that the training duration is likewise presented in the
table; however, we emphasize that this training duration was influenced by factors beyond
just the models themselves. Elements such as the datasets, hardware configurations, and
training parameters (e.g., the number of data reading workers in PyTorch) collectively
contributed to this training time variation. Additionally, the training time encompassed
the evaluation period due to the substantial volume of images within both the training
and testing datasets, consequently leading to a relatively extended time frame. From the
table, we observe that the ViT-L models required more time, but exhibited a higher level
of tolerance. When considering frames per second (fps), the ViT models met the real-time
demand, achieving 20 fps.

Table 7. Analyzing the metrics including the model Parameters (Params), Floating-Point Operations
(FLOPs), training time measured in hours (h), and frames per second (fps) in inference time, we found
that the ViT models boasted a larger parameter count and necessitated more time for training. Despite
these factors, the ViT models maintained real-time fps values, primarily due to the straightforward
nature of the image classification. ↓ indicates that a smaller value is better, while ↑ indicates that a
larger value is better.

Model Params (M) ↓ FLOPs (G) ↓ Training Time (h) ↓ fps ↑
ResNet50 23.533 4.109 2.13 173.51

large ViT 311.296 61.603 17.75 80.36

3.7. Limitations

The accessibility of appropriate open-source cattle’s face datasets is still a limitation,
prompting us to primarily depend on our proprietary cattle’s face dataset for the method’s
validation. Furthermore, leveraging a pretrained model from a substantial animal or animal
face dataset can significantly benefit the cattle’s face recognition tasks. However, locating
such public pretrained models is challenging.

4. Discussion

Accurate identification of individual cattle holds significant importance in farm man-
agement, facilitating the monitoring of cattle behavior, disease prevention, and improving
animal welfare. This approach allows managers to promptly understand the situation
of individual cattle, enabling them to respond promptly to identified issues. Therefore,
it can greatly enhance the efficiency, production performance, and health of livestock
management, contributing to the sustainability and profitability of the livestock industry.

In contrast to prior research employing wearable devices, the current study intro-
duced a non-invasive approach utilizing image data. This innovative method involved the
placement of multiple cameras on a real-world closed farm, capturing data during feeding
times, and promoting the use of non-invasive information for individual cattle’s identifi-
cation. The gathered data were subsequently processed by the proposed deep-learning-
based architecture to accurately identify individual cattle and, at the same time, recognize
unknown individuals.

The qualitative and quantitative results obtained from both closed-set and open-set
scenarios validated the effectiveness of the proposed techniques. Furthermore, employing
state-of-the-art classifiers and metrics allowed for comparative analysis, revealing signifi-
cant potential for further improvements in future research. However, a significant limitation
of the current model is that it identified all unknown classes as a single unknown class and
could not further differentiate among these unknown classes. Addressing this limitation
requires the incorporation of additional techniques to distinguish among unknown classes.
For instance, we can apply clustering techniques to classify unknown classes. Additionally,
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there is room for improvement in recognition accuracy when dealing with more-complex
datasets. Moreover, obtaining image annotations from video data has been proven to
be a complex and time-consuming task. Therefore, additional research and technology
are needed to replicate the proposed framework in a more-versatile system that can op-
erate across multiple farms. Our future research efforts will be dedicated to addressing
these challenges.

5. Conclusions

In this study, we proposed a method to achieve cattle’s face recognition in the open-set
scenario named CFOSR. Meanwhile, from a novel perspective, introducing an effective
open-set classifier has the potential to significantly enhance the classification performance
in closed-set scenarios. To obtain an effective classifier in the CFOSR context, two strategies
were utilized and incorporated with the state-of-the-art OSR method, the APRL. To be
more specific, the AM-Softmax was employed to have a compact intra-class feature space
that is beneficial to detect the unknown ones. A ViT-based model pretrained in a large-
scale dataset, ImageNet21k, was transferred for the downstream tasks, compared to the
commonly used small-scale dataset ImageNet1K. Furthermore, we observed that the plant-
relevant dataset PlantCLEF2022 also contributed to enhancing the performance of the
cattle’s face identification. Our strategies were executed on real-world cattle’s face datasets,
and the experimental results validated their effectiveness. More precisely, our method
achieved an AUROC of 91.84 and an OSCR of 87.85 in the context of open-set recognition
on a complex dataset. Simultaneously, it demonstrated an accuracy of 94.46 for closed-set
recognition. Notably, we achieved a 95.12 AUROC and a 94.33 OSCR on a less-challenging
dataset. In spite of the decent performance and some basic understanding of CFOSR, we
desire to improve our model for real-world applications. We hope our work will contribute
to the community, encourage more work, and offer a novel visual approach to enhance
closed-set classification accuracy.
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