Engineering Electromagnetics

W. H. Hayt, Jr. and J. A. Buck

Chapter 1:
Vector Analysis

1.1 Scalars and Vectors

- Scalar : magnitude or quantity
- Complex scalar (or phasor): a set of scalar

$$
\text { Ex.] } M \angle \theta, R+j X
$$

- Vector : identity having magnitudes and directions in the \boldsymbol{n} dimensional spaces

1.2 Vector Algebra

1.2.1 Addition and Subtraction

- The addition of vectors follows the parallelogram law.

Communicative Law: $\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}}=\overrightarrow{\boldsymbol{B}}+\overrightarrow{\boldsymbol{A}}$
Associative Law: $\quad \overrightarrow{\boldsymbol{A}}+(\overrightarrow{\boldsymbol{B}}+\overrightarrow{\boldsymbol{C}})=(\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}})+\overrightarrow{\boldsymbol{C}}$
Subtraction: $\overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}=\overrightarrow{\boldsymbol{A}}+(-\overrightarrow{\boldsymbol{B}})$

1.2.2 Multiplication and Division

- Multiplication of vectors by scalar

$$
\begin{aligned}
\text { Distributive Law: } & (r+s)(\mathbf{A}+\mathbf{B})=r(\mathbf{A}+\mathbf{B})+s(\mathbf{A}+\mathbf{B}) \\
& =r \overrightarrow{\boldsymbol{A}}+r \overrightarrow{\boldsymbol{B}}+s \overrightarrow{\boldsymbol{A}}+s \overrightarrow{\boldsymbol{B}}
\end{aligned}
$$

- Division of vector by a scalar

$$
\frac{\vec{A}}{r}=\frac{1}{r} \vec{A}
$$

- Equal: $\quad \overrightarrow{\boldsymbol{A}}=\overrightarrow{\boldsymbol{B}} \quad$ or $\quad \overrightarrow{\boldsymbol{A}}-\overrightarrow{\boldsymbol{B}}=\mathbf{0}$

1.3 Rectangular Coordinate System

- Right-handed coordinate system: Three coordinate axes are located mutually at right angle to each other. $(x \rightarrow y \rightarrow z \rightarrow x \rightarrow \cdots)$
(Ex.] Fleming's right hand rule)

Point Locations in Rectangular Coordinates

Ex.] $\left(x_{1}, y_{1}, z_{1}\right) \rightarrow x=x_{1}, y=y_{1}, z=z_{1}$

Differential Elements

- Differential lengths: $d x, d y, d z$

$$
d l_{p p^{\prime}}=\sqrt{(d x)^{2}+(d y)^{2}+(d z)^{2}}
$$

- Differential areas: $d S=d x d y, d y d z, d z d x$
- Differential volume:

$$
d v=d x d y d z
$$

1.4 Vector Components and Unit Vectors

- Orthogonal Vector Components

$$
\vec{x} \perp \vec{y}, \quad \vec{y} \perp \vec{z}, \quad \vec{z} \perp \vec{x}
$$

$$
\vec{r}=\vec{x}+\vec{y}+\vec{z}
$$

- Unit vector : A vector having unit magnitude directed along the direction of the arbitrary vector

Ex.] $\overrightarrow{a_{x}}, \overrightarrow{a_{y}}, \overrightarrow{a_{z}}, \overrightarrow{a_{\boldsymbol{A}}}$, etc,

- Vector representation in terms of orthogonal rectangular components

$$
\mathbf{R}_{P=,}^{4}=\mathbf{r}_{Q}-\mathbf{r}_{P}=(2-1) \mathbf{a}_{x}+(-2-2) \mathbf{a}_{y}+(1-3) \mathbf{a}_{z}
$$

$$
\text { target }-\cdots=\mathbf{a}_{x}-4 \mathbf{a}_{y}-2 \mathbf{a}_{z}
$$

- Vector expressions in rectangular coordinates

General vector, B:
$\mathbf{B}=B_{x} \mathbf{a}_{x}+B_{y} \mathbf{a}_{y}+B_{z} \mathbf{a}_{z}$

Magnitude of B:

$$
|\mathbf{B}|=\sqrt{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}
$$

Unit vector in the direction of \mathbf{B} :

$$
\mathbf{a}_{B}=\frac{\mathbf{B}}{\sqrt{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}}=\frac{\mathbf{B}}{|\mathbf{B}|}
$$

Example

Specify the unit vector extending from the origin toward the point $G(2,-2,-1)$

$$
\begin{aligned}
& \mathbf{G}=2 \mathbf{a}_{x}-2 \mathbf{a}_{y}-\mathbf{a}_{z} \\
& |\mathbf{G}|=\sqrt{(2)^{2}+(-2)^{2}+(-1)^{2}}=3
\end{aligned}
$$

$$
\mathbf{a}_{G}=\frac{\mathbf{G}}{|\mathbf{G}|}=\frac{2}{3} \mathbf{a}_{x}-\frac{2}{3} \mathbf{a}_{y}-\frac{1}{3} \mathbf{a}_{z}=\underline{0.667 \mathbf{a}_{x}-0.667 \mathbf{a}_{y}-0.333 \mathbf{a}_{z}}
$$

1.5 Vector Field

We are accustomed to thinking of a specific vector:

$$
\mathbf{v}=v_{x} \mathbf{a}_{x}+v_{y} \mathbf{a}_{y}+v_{z} \mathbf{a}_{z}
$$

A vector field is a function defined in space that has magnitude and direction at all points:

$$
\begin{aligned}
& \mathbf{v}(\mathbf{r})=v_{x}(\mathbf{r}) \mathbf{a}_{x}+v_{y}(\mathbf{r}) \mathbf{a}_{y}+v_{z}(\mathbf{r}) \mathbf{a}_{z} \\
& \quad \text { where } \mathbf{r}=(x, y, z)
\end{aligned}
$$

1.6 The Dot Product (or Scalar Product)

$\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos \theta_{A B}$

$$
=|\vec{A}||\vec{B}| \cos \left(-\theta_{B A}\right)=|\vec{B}||\vec{A}| \cos \left(\theta_{B A}\right)=\vec{B} \cdot \vec{A}
$$

Commutative Law: $\mathbf{A} \cdot \mathbf{B}=\mathbf{B} \cdot \mathbf{A}$

$$
\begin{aligned}
\vec{A} \cdot \vec{A} & =|\vec{A}||\vec{A}| \cos (0)=|\vec{A}|^{2} \\
\vec{a} \cdot \vec{a} & =|\vec{a}||\vec{a}| \cos (0)=1
\end{aligned}
$$

$\vec{A} \cdot \vec{a}=|\vec{A}||\vec{a}| \cos \left(\theta_{A a}\right)=|\vec{A}| \cos \left(\theta_{A a}\right)$
$(\vec{A} \cdot \vec{a}) \overrightarrow{\boldsymbol{a}}=\left\{|\vec{A}||\vec{a}| \cos \left(\theta_{A a}\right)\right\} \vec{a}=|\vec{A}| \cos \left(\theta_{A a}\right) \vec{a}$

- (Vector) Projection using the dot product: Finding the magnitude component of a vector in given direction

B•a gives the component of in the horizontal directioñ ${ }^{-1}$

($\mathbf{B} \cdot \mathbf{a}$) a gives the vector component (of \mathbf{B} in the horizontal direction
$\overrightarrow{\boldsymbol{a}}$

Magnitude of $\overrightarrow{\boldsymbol{B}}$ in direction of $\overrightarrow{\boldsymbol{a}}$

- Operational Use of the Dot Product

Given $\left\{\begin{array}{l}\mathbf{A}=A_{x} \mathbf{a}_{x}+A_{y} \mathbf{a}_{y}+A_{z} \mathbf{a}_{z} \\ \mathbf{B}=B_{x} \mathbf{a}_{x}+B_{y} \mathbf{a}_{y}+B_{z} \mathbf{a}_{z}\end{array}\right.$
Find $\vec{A} \cdot \vec{B}=\left(A_{x} \overrightarrow{a_{x}}+A_{y} \overrightarrow{a_{y}}+A_{z} \overrightarrow{a_{z}}\right) \cdot\left(B_{x} \overrightarrow{a_{x}}+B_{y} \overrightarrow{a_{y}}+B_{z} \overrightarrow{a_{z}}\right)$

$$
\begin{aligned}
= & A_{x} B_{x} \overrightarrow{a_{x}} \cdot \overrightarrow{a_{x}}+A_{x} B_{y} \overrightarrow{a_{x}} \cdot \overrightarrow{a_{y}}+A_{x} B_{z} \overrightarrow{a_{x}} \cdot \overrightarrow{a_{z}} \\
& +A_{y} B_{x} \overrightarrow{a_{y}} \cdot \overrightarrow{a_{x}}+A_{y} B_{y} \overrightarrow{a_{y}} \cdot \overrightarrow{a_{y}}+A_{y} B_{z} \overrightarrow{a_{y}} \cdot \overrightarrow{a_{z}} \\
& +A_{z} B_{x} \overrightarrow{a_{z}} \cdot \overrightarrow{a_{x}}+A_{z} B_{y} \overrightarrow{a_{z}} \cdot \overrightarrow{a_{y}}+A_{z} B_{z} \overrightarrow{a_{z}} \cdot \overrightarrow{a_{z}} \\
= & A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

where $\quad\left\{\begin{array}{l}\mathbf{a}_{x} \cdot \mathbf{a}_{y}=\mathbf{a}_{y} \cdot \mathbf{a}_{z}=\mathbf{a}_{x} \cdot \mathbf{a}_{z}=0 \\ \mathbf{a}_{x} \cdot \mathbf{a}_{x}=\mathbf{a}_{y} \cdot \mathbf{a}_{y}=\mathbf{a}_{z} \cdot \mathbf{a}_{z}=1\end{array}\right.$
Note also: $\mathbf{A} \cdot \mathbf{A}=A^{2}=|\mathbf{A}|^{2}$

1.7 Cross Product (or Vector Product)

$$
\mathbf{A} \times \mathbf{B}=\mathbf{a}_{-N}|\mathbf{A}||\mathbf{B}| \sin \theta_{A B}
$$

right-handed screw direction
Since $\sin \boldsymbol{\theta}_{\boldsymbol{A} \boldsymbol{B}}=-\sin \boldsymbol{\theta}_{\boldsymbol{B} \boldsymbol{A}}$,

$$
\begin{aligned}
\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}} & =-|\overrightarrow{\boldsymbol{A}}||\overrightarrow{\boldsymbol{B}}| \sin \theta_{B A} \overrightarrow{\boldsymbol{a}_{\boldsymbol{N}}} \\
& =-|\overrightarrow{\boldsymbol{B}}||\overrightarrow{\boldsymbol{A}}| \sin \theta_{B A} \overrightarrow{\boldsymbol{a}_{\boldsymbol{N}}} \\
& =-(\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{A}})
\end{aligned}
$$

1.7.2 Operational Definition of the Cross Product

$$
\begin{aligned}
\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{B}}= & \left(\boldsymbol{A}_{\boldsymbol{x}} \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}+\boldsymbol{A}_{\boldsymbol{y}} \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}+\boldsymbol{A}_{\boldsymbol{z}} \overrightarrow{\boldsymbol{a}_{\boldsymbol{z}}}\right) \times\left(\boldsymbol{B}_{\boldsymbol{x}} \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}+\boldsymbol{B}_{\boldsymbol{y}} \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}+\boldsymbol{B}_{z} \overrightarrow{\boldsymbol{a}_{\boldsymbol{z}}}\right) \\
= & \boldsymbol{A}_{\boldsymbol{x}} \boldsymbol{B}_{\boldsymbol{x}} \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}} \times \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}+\boldsymbol{A}_{\boldsymbol{x}} \boldsymbol{B}_{\boldsymbol{y}} \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}} \times \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}+\boldsymbol{A}_{\boldsymbol{x}} \boldsymbol{B}_{\boldsymbol{z}}^{\boldsymbol{a}_{\boldsymbol{x}}} \overrightarrow{\boldsymbol{a}_{\boldsymbol{z}}} \\
& A_{x} B_{x} \mathbf{a}_{x} \times \mathbf{a}_{x}+A_{x} B_{y} \mathbf{a}_{x} \times \mathbf{a}_{y}+A_{x} B_{z} \mathbf{a}_{x} \times \mathbf{a}_{z} \\
& +A_{y} B_{x} \mathbf{a}_{y} \times \mathbf{a}_{x}+A_{y} B_{y} \mathbf{a}_{y} \times \mathbf{a}_{y}+A_{y} B_{z} \mathbf{a}_{y} \times \mathbf{a}_{z} \\
& +A_{z} B_{x} \mathbf{a}_{z} \times \mathbf{a}_{x}+A_{z} B_{y} \mathbf{a}_{z} \times \mathbf{a}_{y}+A_{z} B_{z} \mathbf{a}_{z} \times \mathbf{a}_{z} \\
\text { where } & \mathbf{a}_{x} \times \mathbf{a}_{y}=\mathbf{a}_{z} \mathbf{a}_{y} \times \mathbf{a}_{z}=\mathbf{a}_{x}, \mathbf{a}_{z} \times \mathbf{a}_{x}=\mathbf{a}_{y}
\end{aligned}
$$

Therefore:
$\underline{\mathbf{A} \times \mathbf{B}}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \mathbf{a}_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \mathbf{a}_{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \mathbf{a}_{z}$

$$
\text { Or... } \mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

1.8 (Circular) Cylindrical Coordinates

- Point P has coordinately specified by $P(\rho, \phi, z)$.
- Right-handed coordinate
- $\rho \rightarrow \phi \rightarrow z \rightarrow \rho \rightarrow \cdots$

- Orthogonal unit vectors in cylindrical coordinates

$$
\overrightarrow{a_{\rho}} \times \overrightarrow{a_{\phi}}=\overrightarrow{a_{z}}, \quad \overrightarrow{a_{\phi}} \times \overrightarrow{a_{z}}=\overrightarrow{a_{\rho}}, \quad \overrightarrow{a_{z}} \times \overrightarrow{a_{\rho}}=\overrightarrow{a_{\phi}}
$$

Differential elements in Cylindrical Coordinates

- Differential lengths: $d \rho, \rho d \phi, d z$
- Differential areas: $d S=\rho d \rho d \phi, \rho d \phi d z, d z d \rho$
- Differential volume:
$d v=\rho d \rho d \phi d z$

Relation between Cartesian and cylindrical Coordinates

Ex.] $x=-3, y=4 \rightarrow 2^{\text {nd }}$ quadrature plane $\rho=5, \phi=180^{\circ}-53.1^{\circ}=126.9^{\circ}$ $x=3, y=-4 \rightarrow 4^{\text {th }}$ quadrature plane $\rho=5, \phi=-53.1^{\circ}$

Relation between Cartesian and cylindrical Coordinates

$$
\vec{A}=A_{x} \overrightarrow{a_{x}}+A_{y} \overrightarrow{a_{y}}+A_{z} \overrightarrow{a_{z}}=A_{\rho} \overrightarrow{a_{\rho}}+A_{\phi} \overrightarrow{a_{\phi}}+A_{z} \overrightarrow{a_{z}}
$$

where

$$
\begin{aligned}
& A_{\rho}=\vec{A} \cdot \overrightarrow{a_{\rho}}=\left(A_{x} \overrightarrow{a_{x}}+A_{y} \overrightarrow{a_{y}}+A_{z} \overrightarrow{a_{z}}\right) \cdot \overrightarrow{a_{\rho}} \\
&=A_{x} \overrightarrow{a_{x}} \cdot \overrightarrow{a_{\rho}}+A_{y} \overrightarrow{a_{y}} \cdot \overrightarrow{a_{\rho}} \\
& A_{\phi}=\vec{A} \cdot \overrightarrow{a_{\phi}}=A_{x} \overrightarrow{a_{x}} \cdot \overrightarrow{a_{\phi}}+A_{y} \overrightarrow{a_{y}} \cdot \overrightarrow{a_{\phi}} \\
& A_{z}=\vec{A} \cdot \overrightarrow{a_{z}}=\left(A_{x} \overrightarrow{a_{x}}+A_{y} \overrightarrow{a_{y}}+A_{z} \overrightarrow{a_{z}}\right) \cdot \overrightarrow{a_{z}}=A_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{a}_{\boldsymbol{\rho}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}=\cos \boldsymbol{\phi} \\
& \overrightarrow{\boldsymbol{a}_{\boldsymbol{\rho}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}=\cos \left(90^{\circ}-\phi\right)=\sin \phi \\
& \overrightarrow{\boldsymbol{a}_{\boldsymbol{\phi}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}=-\cos \left(90^{\circ}-\phi\right)=-\sin \phi \\
& \overrightarrow{\boldsymbol{a}_{\boldsymbol{\phi}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}=\sin \left(90^{\circ}-\phi\right)=\cos \phi
\end{aligned}
$$

Table 1.1 Dot Products of Unit Vectors in Cylindrical and Rectangular Coordinate Systems

	\mathbf{a}_{ρ}	\mathbf{a}_{ϕ}	\mathbf{a}_{z}
\mathbf{a}_{x}.	$\cos \phi$	$-\sin \phi$	0
\mathbf{a}_{y}.	$\sin \phi$	$\cos \phi$	0
\mathbf{a}_{z}.	0	0	$\mathbf{1}$

Example

Transform the vector,

$$
\mathbf{B}=y \mathbf{a}_{x}-x \mathbf{a}_{y}+z \mathbf{a}_{z}
$$

into cylindrical coordinates:

Transform the vector,

$$
\mathbf{B}=y \mathbf{a}_{x}-x \mathbf{a}_{y}+z \mathbf{a}_{z}
$$

into cylindrical coordinates:
Start with:

$$
\begin{aligned}
& B_{\rho}=\mathbf{B} \cdot \mathbf{a}_{\rho}=y\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}\right)-x\left(\mathbf{a}_{y} \cdot \mathbf{a}_{\rho}\right) \\
& B_{\phi}=\mathbf{B} \cdot \mathbf{a}_{\phi}=y\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\phi}\right)-x\left(\mathbf{a}_{y} \cdot \mathbf{a}_{\phi}\right)
\end{aligned}
$$

Transform the vector,

$$
\mathbf{B}=y \mathbf{a}_{x}-x \mathbf{a}_{y}+z \mathbf{a}_{z}
$$

into cylindrical coordinates:
Then:

$$
\begin{aligned}
B_{\rho} & =\mathbf{B} \cdot \mathbf{a}_{\rho}=y\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}\right)-x\left(\mathbf{a}_{y} \cdot \mathbf{a}_{\rho}\right) \\
& =y \cos \phi-x \sin \phi=\rho \sin \phi \cos \phi-\rho \cos \phi \sin \phi=0 \\
B_{\phi} & =\mathbf{B} \cdot \mathbf{a}_{\phi}=y\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\phi}\right)-x\left(\mathbf{a}_{y} \cdot \mathbf{a}_{\phi}\right) \\
& =-y \sin \phi-x \cos \phi=-\rho \sin ^{2} \phi-\rho \cos ^{2} \phi=-\rho
\end{aligned}
$$

Transform the vector,

$$
\mathbf{B}=y \mathbf{a}_{x}-x \mathbf{a}_{y}+z \mathbf{a}_{z}
$$

into cylindrical coordinates:
Finally:

$$
\begin{aligned}
B_{\rho} & =\mathbf{B} \cdot \mathbf{a}_{\rho}=y\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\rho}\right)-x\left(\mathbf{a}_{y} \cdot \mathbf{a}_{\rho}\right) \\
& =y \cos \phi-x \sin \phi=\rho \sin \phi \cos \phi-\rho \cos \phi \sin \phi=0 \\
B_{\phi} & =\mathbf{B} \cdot \mathbf{a}_{\phi}=y\left(\mathbf{a}_{x} \cdot \mathbf{a}_{\phi}\right)-x\left(\mathbf{a}_{y} \cdot \mathbf{a}_{\phi}\right) \\
& =-y \sin \phi-x \cos \phi=-\rho \sin ^{2} \phi-\rho \cos ^{2} \phi=-\rho
\end{aligned}
$$

$$
\mathbf{B}=-\rho \mathbf{a}_{\phi}+z \mathbf{a}_{z}
$$

1.9 Spherical Coordinate System

- Point P has coordinately specified by $P(r, \theta, \phi)$.
- Right-handed coordinate $\quad r \rightarrow \theta \rightarrow \phi \rightarrow r \rightarrow \cdots$

Constant Coordinate Surfaces in Spherical
 Coordinates

Unit Vector Components in Spherical Coordinates

$$
\overrightarrow{a_{r}} \times \overrightarrow{a_{\theta}}=\overrightarrow{a_{\phi}}, \quad \overrightarrow{a_{\theta}} \times \overrightarrow{a_{\phi}}=\overrightarrow{a_{r}}, \overrightarrow{a_{\phi}} \times \overrightarrow{a_{r}}=\overrightarrow{a_{\theta}}
$$

Differential Elements in Spherical Coordinates

- Differential lengths: $d r, r d \theta, r \sin \theta d \phi$

$$
\leftarrow(r+d r) d \theta \approx r d \theta,(r+d r) \sin \theta d \phi \approx r \sin \theta d \phi
$$

- Differential areas: $d S=r d r d \theta, r \sin \theta d r d \phi$, $r^{2} \sin \theta d \theta d \phi$
- Differential volume:

$$
d \nu=r^{2} \sin \theta d r d \theta d \phi
$$

$$
\begin{array}{lll}
x=r \sin \theta \cos \phi & r=\sqrt{x^{2}+y^{2}+z^{2}} & (r \geq 0) \\
y=r \sin \theta \sin \phi & \theta=\cos ^{-1} \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} & \left(0^{\circ} \leq \theta \leq 180^{\circ}\right) \\
z=r \cos \theta & \phi=\tan ^{-1} \frac{y}{x} &
\end{array}
$$

$$
\vec{A}=A_{x} \overrightarrow{a_{x}}+A_{y} \overrightarrow{a_{y}}+A_{z} \overrightarrow{a_{z}}=A_{r} \overrightarrow{a_{r}}+A_{\theta} \overrightarrow{a_{\theta}}+A_{\phi} \overrightarrow{a_{\phi}}
$$

$$
\overrightarrow{\boldsymbol{a}_{\boldsymbol{r}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}=\sin \boldsymbol{\theta}\left(\cos \boldsymbol{\phi} \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}+\sin \boldsymbol{\phi} \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}\right) \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}=\sin \boldsymbol{\theta} \cos \boldsymbol{\phi}
$$

$$
\overrightarrow{\boldsymbol{a}_{\boldsymbol{r}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}=\sin \boldsymbol{\theta}\left(\cos \boldsymbol{\phi} \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}+\sin \boldsymbol{\phi} \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}\right) \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}=\sin \boldsymbol{\theta} \sin \boldsymbol{\phi}
$$

$$
\overrightarrow{\boldsymbol{a}_{r}} \cdot \overrightarrow{\boldsymbol{a}_{z}}=\cos \theta \overrightarrow{\boldsymbol{a}_{z}} \cdot \overrightarrow{\boldsymbol{a}_{z}}=\cos \theta
$$

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{a}_{\boldsymbol{\theta}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}=\cos \theta \cos \phi \\
& \overrightarrow{\boldsymbol{a}_{\boldsymbol{\theta}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}=\cos \theta \sin \phi \\
& \overrightarrow{\boldsymbol{a}_{\boldsymbol{\theta}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{z}}}=-\cos \left(90^{\circ}-\theta\right)=-\sin \theta
\end{aligned}
$$

$\overrightarrow{\boldsymbol{a}_{\boldsymbol{\phi}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{x}}}, \overrightarrow{\boldsymbol{a}_{\boldsymbol{\phi}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{y}}}, \overrightarrow{\boldsymbol{a}_{\boldsymbol{\phi}}} \cdot \overrightarrow{\boldsymbol{a}_{\boldsymbol{z}}}$: Table 1.1

Table 1.2 Dot Products of Unit Vectors in the Spherical and Rectangular Coordinate Systems

	\mathbf{a}_{r}	\mathbf{a}_{θ}	\mathbf{a}_{ϕ}
\mathbf{a}_{x}.	$\sin \theta \cos \phi$	$\cos \theta \cos \phi$	$-\sin \phi$
\mathbf{a}_{y}.	$\sin \theta \sin \phi$	$\cos \theta \sin \phi$	$\cos \phi$
\mathbf{a}_{z}.	$\cos \theta$	$-\sin \theta$	0

Example: Vector Component Transformation

Transform the field, $\mathbf{G}=(x z / y) \mathbf{a}_{x}$, into spherical coordinates and components

$$
\begin{aligned}
G_{r} & =\mathbf{G} \cdot \mathbf{a}_{r}=\frac{x z}{y} \mathbf{a}_{x} \cdot \mathbf{a}_{r}=\frac{x z}{y} \sin \theta \cos \phi=\frac{\boldsymbol{r} \sin \boldsymbol{\theta} \cos \boldsymbol{\phi} \times \boldsymbol{r} \cos \boldsymbol{\theta}}{\boldsymbol{r} \sin \boldsymbol{\theta} \sin \boldsymbol{\phi}} \times \sin \boldsymbol{\theta} \cos \boldsymbol{\phi} \\
& =r \sin \theta \cos \theta \frac{\cos ^{2} \phi}{\sin \phi} \\
G_{\theta} & =\mathbf{G} \cdot \mathbf{a}_{\theta}=\frac{x z}{y} \mathbf{a}_{x} \cdot \mathbf{a}_{\theta}=\frac{x z}{y} \cos \theta \cos \phi=\frac{\boldsymbol{r} \sin \boldsymbol{\theta} \cos \boldsymbol{\phi} \times \boldsymbol{r} \cos \boldsymbol{\theta}}{\boldsymbol{r} \sin \boldsymbol{\theta} \sin \boldsymbol{\phi}} \times \cos \boldsymbol{\theta} \cos \boldsymbol{\phi} \\
& =r \cos ^{2} \theta \frac{\cos ^{2} \phi}{\sin \phi} \\
G \phi & =\mathbf{G} \cdot \mathbf{a}_{\phi}=\frac{x z}{y} \mathbf{a}_{x} \cdot \mathbf{a}_{\phi}=\frac{x z}{y}(-\sin \phi)=\frac{\boldsymbol{r} \sin \boldsymbol{\theta} \cos \boldsymbol{\phi} \times \boldsymbol{r} \cos \boldsymbol{\theta}}{\boldsymbol{r} \sin \boldsymbol{\theta} \sin \boldsymbol{\phi}} \times(-\sin \boldsymbol{\phi}) \\
& =-r \cos \theta \cos \phi \\
& \underline{\mathbf{G}}=r \cos \theta \cos \phi\left(\sin \theta \cot \phi \mathbf{a}_{r}+\cos \theta \cot \phi \mathbf{a}_{\theta}-\mathbf{a}_{\phi}\right)
\end{aligned}
$$

