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Chapter 3:
Electric Flux Density, Gauss’ Law,

and Divergence



3.1 Electric Flux Density
3.1.1 Faraday’s Experiments on Electric Displacement 

§ Experimental steps



5. The inner charge, Q, induces an equal and opposite charge, -Q, 
on the inside surface of the outer sphere. This phenomenon is 
maintained for intermediate materials.    

Faraday conclusion: There was some sort of “displacement” from 
the inner sphere to the outer which was independent of the 
medium  è Displacement flux or Electric flux: Y [psi]

⸫ Y =  Q



3.1.2 Electric Flux Density
§ At the surface of the inner sphere, Y coulombs of electric flux are 

produced by the charge Q (= Y) coulombs distributed uniformly 
over a surface having an area of 4πa2 [m2].

§ Electric Flux Density (    ) : density of flux at the specific surfaceD
r



Radially-Dependent Electric Flux Density

+Q

r

§ Electric flux densities:

@ surface of inner sphere

@ surface of outer sphere
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Point Charge Fields

[C/m2]    (0 < r <∞ )

[V/m]  (@ 0 < r <∞ )

§ Let the inner sphere make smaller and smaller, still retaining a
charge of Q, it becomes a point charge.

§ Electric flux density for a point charge

: symmetrically directed outward from the point and pass 
through an imaginary spherical surface of area 4pr2.

§ Compare with                                                                 ,  

then     



Finding E and D from Charge Distributions

§ In chapter 2,

§ As similar manner,



Ex.] (임의의가상원통면을관통하여밖으로나가는) = ?
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3.2 Gauss’ Law

The electric flux passing through any closed surface is equal 
to the total charge enclosed by that surface

§ ∆S : incremental (surface) element of surface at P

: angled about θ with
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Development of Gauss’ Law

∆S의 수직방향성분 고려

** Tangential 방향성분의
vector 들의합은 “0” 
è무시가능)

§ Total flux passing through the closed surface:

내부로부터 밖(radial
방향)으로 향하는 flux

실제로 이루어진 closed surfac의 단위
면적 및 그 normal 벡터 성분



Mathematical Statement of Gauss’ Law

Line charge:

(Open) Surface charge:

Volume charge:

Several point charges:

⸫
(폐곡면을수직으로
빠져나가는 electric flux 
density의합 = 폐곡면내부의
전하량합)



Ex. 3.1] Check the results of Faraday’s experimental
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§ Gauss’ Law

§ The solution can be obtained easily if

So that:

3.3 Application of Gauss Law: 
Some Symmetrical Charge Distributions



3.3.1  Point Charge Field

§ is everywhere normal to the surface and its magnitude is 
constant. 

§ Since r may have any value and 
is radially outwarded,
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3.3.2 Line Charge Field
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3.3.3  Coaxial Transmission Line

§ Surface charge distribution at outer surface (r = a) of inner 
conductor: rS [C/m2]

§ Total electric flux by coaxial cylindrical conductor which is of 
length L and radius ρ, where a < ρ < b:

§ Total charge on a length L of the inner conductor:
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Coaxial Transmission Line (continued)

§ The previous result might be expressed in terms of line charge 
per unit length.

ç L = 1 [m]SSL aaL rprpr 22 ==

a
L

S p
rr
2

=

rrr pr
r

r
p
r

r
r aaa

a
aaD L

L

S rrrr
2

2 ===



Coaxial Transmission Line: Exterior Field

§ At r > b, 
(⸪ Total enclosed charge would be zero.)

§ Because every line of electric flux starting from the charge on the
inner cylinder must terminate on a negative charge on the inner
surface of the outer cylinder
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§ At r < a, 
(⸪ Total enclosed charge would be zero.)0
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Ex.] L = 50 cm, rinner = 1 mm (= a), router = 4 mm (= b), e0 (in 
intermediate space).

§ Total charge on the inner conductor: 30 nC

§ Internal fields:
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3.4  Gauss’s Law in Differential Form: Divergence
§ at point P
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§ Since the surface element is very small,
is essentially constant over this 

portion of the entire closed surface.
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§ Therefore:
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§ By exactly the same process,

§ All assembled results :

§ Charge enclosed within volume Dv

× volume  ∆v
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Ex. 3.3] 
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.∙. Charge enclosed within volume Dv =  2∆v

If Dv = 10-9 m3, then volume charge is 2 nC.



3.4.2 Divergence and Maxwell’s First Equation

§ As a limit,
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Point form of Gauss’s law: 
Maxwell’s first equation



Divergence Expressions in the Three Coordinate Systems

Ex. 3.4]
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[Ex.]

3.4.3 Maxwell’s First Equation: Gauss’s Law in Point Form
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3.5  Divergence Theorem
3.5.1  The Del Operator 

=  div D=

Note that:



§ In other coordinate systems,

(cylindrical coordinate)
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3.5.3  Divergence Theorem

§ Maxwell’s first equation (or the point form of Gauss’ Law) :

§ Gauss’s Law in large-scale (or integral) form 

§ Divergence theorem



Statement of the Divergence Theorem

(면적분ó체적적분, 이중적분ó삼중적분)



Ex. 3.5]

Solution I)
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Since                       and                           

Solution II)
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(⸫직육면체안에 12 [C]의전하가존재)


