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Chapter 3:

Electric Flux Density, Gauss’ Law,

and Divergence



3.1 Electric Flux Density

3.1.1 Faraday’s Experiments on Electric Displacement

* Experimental steps

1.

With the equipment dismantled, the inner sphere was given a known positive
charge.

The hemispheres were then clamped together around the charged sphere with
about 2 cm of dielectric material between them.

The outer sphere was discharged by connecting it momentarily to ground.

The outer space was separated carefully, using tools made of insulating material
in order not to disturb the induced charge on it, and the negative induced charge
on each hemisphere was measured.
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5. The mner charge, O, induces an equal and opposite charge, -0,
on the inside surface of the outer sphere. This phenomenon is
maintained for intermediate materials.

Faraday conclusion: There was some sort of “displacement” from
the inner sphere to the outer which was independent of the
medium =¥ Displacement flux or Electric flux: W [psi]

LY =0




3.1.2 Electric Flux Density

= At the surface of the inner sphere, ¥ coulombs of electric flux are
produced by the charge O (= V) coulombs distributed uniformly
over a surface having an area of 47a” [m?].

= Electric Flux Density (D) : density of flux at the specific surface
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Radially-Dependent Electric Flux Density

= Electric flux densities:

Y -

—~ . — Metal \ Insulating or

D —y — D a, conducting dielectric
- da spheres material

(@ surface of inner sphere

D = Qza,,
r=bAxb

(@ surface of outer sphere

D= ch_i,, @a<r<b
47r




Point Charge Fields

" Let the inner sphere make smaller and smaller, still retaining a
charge of Q, it becomes a point charge.

* Electric flux density for a point charge

D=-2 a | [CmY] (0<r<o)

- r
41?2

: symmetrically directed outward from the point and pass
through an imaginary spherical surface of area 4 7.

* Compare with | E = Z a, [[V/im] (@0<r<w),

— r
47'[601”2

then | D = ¢yE | (free space only)




Finding E and D from Charge Distributions

* In chapter 2,

E f pudv (f Iy)
= a ree Spdace on
vol 47'[6() R2 R p y

= As similar manner,

f pvdv
D= ar
vol 477R2
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3.2 Gauss’ Law

The electric flux passing through any closed surface is equal
to the total charge enclosed by that surface

"= AS':incremental (surface) element of surface at P
AS = ASa,
D, : angled about & with AS



Development of Gauss’ Law

AW = flux crossing AS = Dg normAS = DgcosOAS = Dg - AS

Electric flux density2|
AS gFsEMEE [C/m?2]

** Tangential & 2F &= 9]

— . (@)
vector = 2| €2 «(”»

0 > RA 7ks)

» Total flux passing through the closed surface:

v = / dV = - Dgs-dS where dS = dxdy, pdpdz,
f//\ \ r?sin0dOdg , -

El 4 (radial MHZ O|R20Z closed surfac?| T
T4 % 1 normal HE d&




Mathematical Statement of Gauss’ Law

U — % Ds - dS = charge enclosed = Q
8

Several point charges: @ = Z G
Line charge: Q= / pr. dL

(Open) Surface charge: Q = f psdS

Volume charge: Q= f o, dv

density =
HotE gh

__ WA L} 7F= electric flux
%SDS 5 = / vy ity2] o = T 20 Lo
VO




Ex. 3.1] Check the results of Faraday’s experimental

F=—Y ~a,
e, r
D=¢FE = Q2Eir

47r

At the surface of the sphere,

b, =-2
41a
dS = r*sin Od Gd ¢ = a’sin ad 6d ¢

Dy -dS = ( Q th (a? sin6d6d ga, )= %sin aibdy”

2
4ma T

2al”

.. Total charge = §S D, -dS = j:jﬂ j:_oﬁ%sin 6d 0d ¢
=0 90=0 47

B ¢=zﬂg B - _ ¢:2ﬂ2
=] 47{[ cosd], d¢ o 2;;d¢
_2 b= _ 2 27z:
L e 0| -0

0




3.3 Application of Gauss Law:
Some Symmetrical Charge Distributions

" Gauss’ Law 0 = 551)5 . dS
S

* The solution can be obtained easily if

1. Dy is everywhere either normal or tangential to the closed surface, so that
Dy - dS becomes either DgdS or zero, respectively.

2. On that portion of the closed surface for which Dy - dS is not zero, Dy =
constant.

fDS-dS:?{DSc%’:Dst{dS:Q
S JS N s

Condition 1 Condition 2

o Q
- $.dS

So that: |D,




3.3.1 Point Charge Field

—

= Dy is everywhere normal to the surface and its magnitude is
constant.

Q - §S DS . dS - SphereDSdS - DsﬁdS
- 27 pm B ) \\\\\
_DS.[O jo a s1n9d9d¢—DSjo 2rede N\
i 4727/'2DS \\
0
S D =
ST 42

" Since  may have any value and
Dy 1s radially outwarded,
Q a E _ Q

4’ " dre,r’

wl!

al/'



3.3.2 Line Charge Field

D= ( a, directional radiate)
= dS Dy %’S+OtdS+O dS
sides op
=D Sg’g D L:o Ls:o pd gz
= D 2rmpL
D, =D = 2 «— QO=p,L
? 2npL
_ Pr N D _ Pr a
2P 2np
E IOL AN E — IOL C_i

Line charge

Pr

\,
O .

b




3.3.3 Coaxial Transmission Line

» Surface charge distribution at outer surface (o = a) of inner
conductor: pg [C/m?]

» Total electric flux by coaxial cylindrical conductor which 1s of
length L and radius p, where a < p < b:

L 27
%DS.dS:/ Dgsa,-a,pdpdz =2rpDgL = Q)
S 0 JO N—-—

ds
» Total charge on a length L of the mnner conductor:

L 2r
Q — L:O 4o pSad¢dz = 27z'aLpS — DS 272',0L /
Conducting

cylinders
- |

\

DS — aIOS
Jo,

“D=F5G (a<p<b)
p p=




Coaxial Transmission Line (continued)

* The previous result might be expressed 1n terms of line charge
per unit length.

p;, =2malp, =2map, € [ =1 [m]

Pr
Ps .
a/OL
l_j:apSC_i _ 272'6167 _ 193 a



Coaxial Transmission Line: Exterior Field

* Because every line of electric flux starting from the charge on the
inner cylinder must terminate on a negative charge on the inner
surface of the outer cylinder

Conducting

7 cylinders

Qouter cyl = _272- aLIOS.inner cyl

= 272' bL,OS_outel’ cyl

a
IOS.outer cyl — _Z pS.inner cyl /

= Atp>b, 0= D2rpl  (p > b)
Ds =0 (o > b) (' Total enclosed charge would be zero.)

" Atp<a, 0=D_ 2npL

DS =0 (*." Total enclosed charge would be zero.)



Ex.]L=50cm, p,,,,.,= 1 mm (=a), p,,... =4 mm (= b), & (in
intermediate space).

» Total charge on the inner conductor: 30 nC

Qinner. cyl 30 X 10_9

= =9.55 [uC/m”
2mal 27rx107° x0.5 [ |

IOS.inner —

= Internal fields:

-3 —6
D, - ap, 107x9.55x10° _9.55 nC/m’
P P P
o D, 9.55x107/p 1079
7 g,  8.854x107"

E,=D,=0 (p<l, p>4mm)

[V/m] (1< p <4 mm)



3.4 Gauss’s Law 1n Differential Form: Divergence
. D at point P

Dy=Da,+Da, +D.a.
0= § D, -dS
= j D -dS + +  + +  + _[
front back left right top bottom
» Since the surface element 1s very small, *  ru,.5

D is essentially constant over this
portion of the entire closed surface.

D=Dy=Dya,+Dya,+D,a,

=D, -AyAzd =D

X X. front

AyAz

=D a. +D a +szr0nt a.)

X, front =" x v, front™y



D, 4o =D, +gx rate of change D_ with x
2

_p oD, o
2 ox '
j = (on Ax 6D 1 )
front 2 Ox |

» Consider the integral over the back surface,

—_ N o . = - /;\\
J. back DbaCk -AS back — ~back (\TAy Ma ¥ <«
ack )
= _Dx,backAyAZ

* Therefore: [ 4 f = .
front back 0x

h-’
D
l F e

B normat = D/Cofa
g0 S 6:0

7/
' Df.nor'MAQ =D

A D,
2 ox

Ir
S

D x.back



* By exactly the same process,

oD
I right +.[ lefi = @yy AxAyAz

oD
j top +I bottom = 822 AXAyAZ

= All assembled results :
. oD )
§ D-dS = D, 98y D I\ ApA
S ox oy 0z )
oD, 0D, oD, )
= + +
ox oy 0z )

Av

=0
* Charge enclosed within volume Av

@D, , D, oD

+ +—) X
Pn oy 82) volume Av

|12




Ex. 3.3]

—

D=e"sinya, -e” cosyd, +2za, [C/'m®] (=D.a_+ D, +D.a,)

oD

X — —¢ " sin
Ox 4
oD o
~=e¢ "siny
Oy
oD 5
0z

.. Charge enclosed within volume Av = 2Av

If Av =10 m?, then volume charge is 2 nC.



3.4.2 Divergence and Maxwell’s First Equation

The divergence of the vector flux density A is the outflow of flux from a small closed surface
per unit volume as the volume shrinks to zero

op, D, ap, _§D-dS o

=+ ==
Ox 8)/ 82 Av  Av

As a limi an+6Dy+aD hm§D s hm§Q D,
salimit, — o o A Ay A Ay =p,)
P A-dS
Divergence of A = div A = lim
Av—0 Av

oD, oD, oD D-dS

— + L1+ =)= lim ySS = Iim — =p, =divD

dx  dy 0z A0 Ay Av=0 Ay

~Point form of Gauss’s law: >
Sl Maxwell s first equation -~

N\
)



Divergence Expressions in the Three Coordinate Systems

: oD, 0D, 0D,
divD = + — (rectangular)
0x ay 0z

v LD py LD D

1V — = — p — — e Cyln rica

pop " p 0¢

div D = — (2D) L9 (sin0 Do)+ B (i)

ivD=— —@°D, : sin : spherica
25 - sind 30 P o P

Ex.34] D=e"sinyd, —e " cosyd, +2za,

oD oD
x_l__y_l_ Z

divD =
0x oy 0z

= —e *siny+e *siny+2=2






3.4.3 Maxwell’s First Equation: Gauss’s Law in Point Form

divD =P,
[Ex.] D= 472QT2 a,
- oD
Since divD:izi(rzD,,H 1 é (sméD,) + 1 -,
r° Or rsinf 06 rsinf 0¢

sop, =0 @r#0 (everywhere except at the origin,
where 1t 1s infinite)



3.5 Divergence Theorem
3.5.1 The Del Operator

* The del operator (V) 1s a vector differential operator, and defined as,

g0 . 0 . 0
= —a, +—a,+ —a
dx dy ° 9z

Note that:

0 0 0
VD= (aax + aay + a—zaz) -(Dya, + Dya, + D;a,)

oD, 0D, 0D,
0x 0y 0z

= divD




" In other coordinate systems,

_ 1 6 10D, oD o .
V-D=——(pD,)+ ANt (cylindrical coordinate)
0 0p p 09 Oz
. oD
V.Dzizﬁ(rz ) 1 g (sin@D,) + 1 ’
r° or rsiné 06 rsinf 0¢

(spherical coordinate)



3.5.3 Divergence Theorem

= Maxwell’s first equation (or the point form of Gauss’ Law) :

divD =V -D = p,

* Gauss’s Law 1n large-scale (or integral) form

fD-dS:Q:/ pvdv:[ V-Ddv
S vol vol

* Divergence theorem f D-dS = f V-Ddv
S vol




Statement of the Divergence Theorem

The integral of the normal component of any vector field over a closed surface is equal to
the integral of the divergence of this vector field throughout the volume enclosed by the

closed surface.
fD'dS :[ V:.Ddv
S vol

/ Closed surface S
< /

/
N~ —
£ ™ \\
Volume v



Ex.3.5] D= 2xya._ + xzc_iy [C/m”]

Solution I)

R

D-dS|.., =0a, - (+dxdyd.) = 0 /
z=3

§D-dS = j + j + + j
s back front left right

T LB

N ;5‘y20 (~dvdza,)+ [ | ;D\yzz (dxdzd,)

32 3p2
=—[ | D) pdvdz+| | (D), dyz
o 1
0

3pel
| (D), ydxdz+[ | (D)), dxdz




Since (D,),, =0 and (D,),,=(D,),.,,

3 2
f D-dS = f f (2xY) y=1dy dz

—f 21édz = [4z]¢=12

Solution II)

V. D——(2xy)+—(x )=2y
Ox oy

V- Ddv = jo IO IO 2ydxdydz

vol

X

3 2 3
:jo .[o 2ydde:J-O [V 1odz =[4z], =12

(. A= HKN 2Hoj 12 [C1Q] T3¢

Z=1h)




