Engineering Electromagnetics

W.H. Hayt Jr. and J. A. Buck

Chapter 5:

Conductors and Dielectrics



5.1 Current and Current Density
B d(Q : Movement of positive (hole) and/or

" Current/[A] T = At negative (electron) charges
=>» In textbook, explained in positive charge

= Current density f . current flowing unit area [A/m?]

= Incase] is normal to the surface, Al = JyAS
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Current Density as a Vector Field

* In reality, the direction of current flow may not be normal to the
artificial surface.

- Increment of current (A/) crossing an incremental surface (AS)
normal to the current density :

Al = JyAS =]-AS  where AS = ASay

- Total current

e
I = / J - dS — =<
> \
\
: general description even \ | J
when the current density is not \//
AS

perpendicular to the surface. 3/40



Relation of Current to Charge Velocity

* Consider a charge AQ, occupying volume Av, moving in the
positive x direction at velocity v,.

AQ = p,Av = p, AS AL in Fig. (a): 15}t 2

- For time interval At, the element of charge has moved a distance Ax,

AQ = p, AS Ax : TSt SZHZE (As HHO| Ax 2HE 20| A
AR Av7b MZACHD 71

* Motion of charge: current

A Q A= p Ay A A

A= Ar S At NG
2

_i‘f Y &

where v : x-component a5 A / ey

of velocity @ ® 4/42



Relation of Current Density to Charge Velocity

]
S

- Hote] 730 T&/O| OjX[= S&:1

j)=

= PvV  : convection current density

f %1, then] 1
- HEOA A=At SutSErtMEH HE St Akskt =5 St

b

- %EIXI—_’Xl-:]p,drift — qpﬁ — pvv_d’
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5.2 Continuity of Current

* Suppose that charge Q; 1s escaping from a volume through closed

surface S. Total current 1s:

10, d
I:fJ-dS:—gz—— oy, dv
\ dt dt vol

- Outward flow of positive charge
- 9|9 closed surface Bt 2 2 abSh= T SHo| ¢t
- Closed surface LH & & X SIo| A

(EE STIsle| BTN

—]— L O -

* By the divergence theorem,
(<[, pydv = [(V-D)dv= [, D-dS)

///’—\\\\ d ] d
JodS= [ (v -Pav =9 L[ 4
S VOl\\\——/// dt dt vol

e, e

// dpv \\\\ apv
= — dv V - —
Lo(l( dt ) v > V- D) ot

~_————

: Continuity
Equation
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[Ex] J=Ye'd [A/m’]
r

" Total outward current (@ ¢t =1 sec and » = 5 m:
I.=JS8= (% e ) (475)=23.1[A]
- Total outward current (@ ¢ =1 sec and » = 6 m:

I =JS= (% e )4r6°)=277[A] DI, <I,  Why???

- Because
O - 1 . 1 0 |
— pv:V-J:v-(—e tar)z—z—(l”z—et
Ot 4 r< or r
1 _ R oD
=—e" edivD:%Q(rzDr)Jr 1 a(sin0D9)+ 1 ’
p ) r-or rsin@ 06 rsin@ 0¢

O, = —jize_tdt + K(r) = Lze_'f + K(7)
r v
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 Assumption: p, = 0 as t — o
1

(J=—e"a, OlMt—oO|H J=0 © p=0)
v
Spl_, =K()=0
I
P, =3¢
r
J=p,v
1 _
e
_Yr __F _
vV, = 0 - 1 =7 — (Vr)r:5 < (Vr)r:6
v _e_t
2
r
2> <[ 2 O|7= OffH EO0[X] 5= &0f 2fsf HtZ dde =
A= Moo £ 7t 7h5k|7| W= O| L.
r=5L M EC},=6 Y 2| vO| AE=E r=6 & I convection
REX7IH 5
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5.3 Metallic conductors

* Quantization energy level

Energy

—-3.4eV n=3
EnH=—1.51eV

Energy gap —

Ynid Energy gap
Filled Filled Filled
valence valence

band band

Conductor Insulator Semiconductor
(a) (b) (c)
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Electron Flow in Conductors
* Applied force on an electron of charge Q =-e¢: F = —¢E

- v, drift velocity
(X0l E -field7t T K| H &£ 7t M 7| =0, material L £ X2t SE0f
ofgff B 5= & 1H5H{OF &)

Vg = — [LeE ’ (Conductivity = Charge density X

. Electron (or Hole) mobility)
where u, [mu] : mobility of electron

* (Drift) Current density
J=pyvg = —pepte b = cE

J=0KE

where p,: free-electron charge defisity (negative value)
o [sigma] : conductivityA[mho/m] or [S/m])
o = —pefte + Pty | I semiconductor

o= 3.8 X 107 for aluminum,
5.8 x 107 for copper, 6.17 x 107 for silver 10/42



Resistance

* Consider cylindrical conductor with voltage V applied across ends.
. f and E : uniform

Conductivity o
B . B Area= S |
I—LJ dS = JS [= S me —
Vap = _f E - dL ——
b
—_— —E’ dL a ’ ’
b
= —E -Lyq = E - Ly, (" E :uniform) R="
or V=EL ("“E //L) 7
] i V L
= — =0L = 0 — — —o 1 = : ,
. L:>V aSI IR : Ohm’s law
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General Expression for Resistance

R_Vab_—fbaE-dL
Iy fSaE-dS

* Resistance : Ratio of potential difference between two ends of

cylinder to current entering more positive potential end.
(W& Y EHH AO[o] HRXIQt =2 TRE 4= HR = Y= A7 H))

— = X - - —

Conductivity o
—
Area= S
[= S m—

A

a b 12/42



|Ex.]

* AWG (American Wire Gauge) #16: d = 0.0508’=1.291 X 107 [m]
(: diameter)

3 ~
S=m? = zx(1.291x10 A)z ~1.308x10° [m?]

* Resistance of a wire 1 mile (1609m):

1609
R= 7 =6
(5.8x10")x(1.308x107)

=21.2 [Q]

If T=10[A],

I 10
S 1.308x10°°

V=IR=10 x 21.2=212[V], E=V/L=0.132 [V/m]

J =

=7.65x10°[A/m°]=7.65[A/mm”]
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5.4 Conductor properties and boundary conditions

* Characteristics of a good conductor
1) Charge can exist only on the surface as a surface charge density, p..

AN /
© ©
© ©

e N

© O
0JO0,

Electric field at the surface
points in the normal direction

solid conductor /t o

3) The surface of a conductor 1s an equipotential. 14/42



- Relationship between external fields and the charge on the
surface of the conductor

- External electric field intensity

1. Tangential component to the conductor surface

(2tf <0°Of OFL[2tH E- fieldQ| H-FZ0| #HASIO| S S
0 228 22 7|1 non-staticO| =)

2. Normal component: D, = p¢ by Gauss’s law

(EHO| 0|APNS Eqste D = 0|2EHO| EXots
Mot 59
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1001 1] 14dl1gllitidl CICCLLIC T'ICIU Doullddly COIIUILIOII

+D =0 = E at inside of conductor

E,Aw — Ey ap3Ah + Ey ya3 A =0

These become negligible as A/ approaches zero.

~—

«AsAh — 0, EAw =0

* More formally:

>

(close path %Q— HO 2 FolE T

OIOI .LL]B I:Ml:l

furfgrfur/ =0 <« Aw= ab= cd, Ah=bc

L,

Exn{S:

b=

dielectric EN

______ |
Aw b ,'
Ah ,'

C
conductor

Aw

in free space

HE Ol AlZ| =0

ad
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Proof 2] Boundary Condition for the Normal Component of D

 Gauss’ Law 1s applied to the cylindrical surface shown below:

?g D-dS = f + y n — 0
S top bottom sides

bettom =0 ( lTlSlde — 0) fsr,de =0 ( Dt = 0 &Ah — O)

s DNAS — Q — pSAS D dielectric

“| Dy = ps

* More formally:

conductor

D-n s — Ps
17/42




Summary

* Desired boundary conditions for the conductor—{ree space
boundary 1n electrostatics

1. The static electric field intensity inside a conductor is zero. — D, =FE,=0(

2. The static electric field intensity at the surface of a conductor is everywhere
directed normal to that surface. — D, =¢,E\ = pq

3. The conductor surface is an equipotential surface. — E,=0=-V}
- At the surface:
E x n|s = 0 : Tangential E is zero
D- H{S = Ps  : Normal D 1s equal to the surface charge density
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[Ex.]* V'=100(x*—)?)
P (2, -1, 3) : in boundary between conductor and free space
= V,=100 X (22-1%)=300[V]
* Conductor surface 1s an equipotential plane of V', =300 [V].
= 300 = 100(x* — y?), x> — y* = 3 : equipotential equation

E:—VV——IOOV(X —y?) =-200xa, +200ya,

E, =-400d, — 2004,

D, =¢,E, =8.854x10 " E,

=-3.54d_—1.771d, [nC/m’]
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P, =Dy =3.96 [nC/m’] : surface charge density
E, 200y y _dy

E  —200x x dx

X

dy N dx 0

Iny+lnx=C,

Lxy=C, «—P(@2,-1,3)

C,=2x(-1)=-2

—L

Xy =-2 (E -field2| &)
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5.5 Method of Images

e Qe

+Qe +Q e
Equipotential surface, }'=0 Conducting plane, J'=0
_ Q Y
(a) (b)

Figure 5.6 (a) Two equal but opposite charges may be replaced by (b) a single charge and a conducting
plane without affecting the fields above the V' = 0 surface.

4 —4 o
+1 @ P +1® p
- -
Conducting plane, J' =0 B Equipoteﬁntﬁiail sqrface, V:,,O, o N
=~
_1 ®
+4e
(@) (b)

Figure 5.7 (a) A given configuration above an infinite conducting plane may be replaced by (b) the
given charge configuration plus the image configuration, without the conducting plane. 21/42



30 nC/m

E 30 nC/m
[ X.] - Conducting plane
F—— /'/ = i 4 v ey
/p(z,s,"a) //
—30 nC/m
7
(@) " )
R-l— — 2a)€ — 332 R_ = 2ax —+ 3az
o1 30 x 107 2a, — 3a.
" E_|_ |

A 2mepn/13 /13
- _-30 x 10~° 2a, + 3a,
- 2meV/13 0 V13
—180 x 10~ °a.

E — — —24932 V/m
2men(13)

B 27TE()R_|_

—

D=¢g,E=-22d. [nC/m?]
sop, =—2.2 [nC/m?] atP
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5.6 Semiconductors

* Valanced band0f| /= ™AV IEEEH S&0t P e
O| .4 X| & 2tOf Conduction bandZ =27} XSS A| :
S 20| = FXh-e)7t £ 2L, XF7H HO0|8H 2 My |
H| X2 7|- I HE hole(+e)Ef_' =13
Ev
Mobility: u, %
Mass: T AR} Ao &<
* Bonding model of intrinsic semiconductor
‘ S ‘ hole
|
OO~ O~ — O Q_ﬁ:
O O

23/42



 Both carriers (holes and electrons) move mn an electric field (l:?) ), and

they move m opposite directions. E

[=-
dt S
ojUA2 HH MFo| ek H— —()
H

I. —>»
SRRt hgrnti g, o —

* When both carriers contribute a component of the total current,

0= Pt -

Conductivity due to electron due to hole

Ex.] Intrinsic ~ Si: u, = 0.12, u, = 0.025 [m?/V-sec] (— u, > u,)
Ge:u,=0.36, u,=0.17 [m?/V-sec]
Si:-p,=p,=0.0024 [C/m?] and Ge:-p,=p,=3.0 @ 300°K
og. = -(-0.0024) X 0.12 +0.024 X 0.025=3.48 X 10* [mho/m]
o, =3.0 X (0.36+0.17) = 1.59 [mho/m] n4/42



- Extrinsic semiconductor

Donor (electron increasing)

—
IV+V=VI+1

IV+II=VIII -1
e

Acceptor (hole increasing)
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5.7 The Nature of Dielectric Materials
Electric Dipole and Dipole Moment

* In dielectric, charges are held in position (bound charges, and
ideally cannot move as not like free charges) and form a current.

- Atoms and molecules may be polar (having separated positive and
negative charges), and be polarized by the external electric field.

* From equation (36) in sec. 4.7
p=0Qd
where p : dipole momentum
O : positive charge of two bound charges composing dipole

d : vector from negative to positive charges

O
d{ p=0Qda,

26/42



Model of a Dielectric

* A dielectric can be modeled as an ensemble of bound charges in free space,
associated with the atoms and molecules that make up the material.

* Some of these may have intrinsic dipole moments, others not. In some materials
(such as liquids), dipole moments are in random directions.

\@ A m@‘\é?

‘\ @ @
@‘\\@\
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* If there are n dipoles per unit volume and we deal with a volume
Av, then theAre are nAv dipoles. Total dipole moment 1s below.

n
Prow = D  FH volumeS AvO| BHAIO 2 7}
=1

=0 (@ without E - field (random align)

unit volume

o ©
NS N e,
(P 3 @,\

I et
e
ki



Polarization Field (with Electric Field Applied)

* By introducing an electric field, the charge separation in each dipole
possibly re-orient dipoles so that there 1s some aggregate alignment,
as shown here.

e
Sl -
Salelallalelo(vlulo o/ 9 0 8(ale oA i
e
BOOABEDABOBABADABE e cal

* Our immediate goal is to show that the bound volume charge
(density) acts like the free volume charge density in producing
an additional external field. =» Similar to Gauss’s law 29/42

* The eftect 1s to increase P.




Migration of Bound Charge

- Assume that a dielectric contains nonpolar molecules before applymg
E - filed.

—

P=0
- After applying E - filed. 5

= Qd : Dipole momentums

Dipole on the surtface (red dots) will transter charg‘é.acrloss" the
surface about (1/2) d cos@ above or below.

Dielectric

material :r
/ f _____
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* Net total bound charge that crosses the elementary surface in an
upward direction:

AQ;, =nQdcosfAS =nQd-AS =P-AS  «n [molecules/m’]

/\— volume /\_ k

Bound charge Dipole momentumO| Polarization (*." TH$%
Not free charge CHHAM ASO| normal

T volumeOi| n7 2] dipoleO|
LR OX= 8= QLD 7hHsIH oD 2)

where AS: an element of closed surface inside dielectric material
direction of AS: outward
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Polarization Flux Through a Closed Surface

* The accumulation of positive bound charge within a closed surface
means that the polarization vector must be pomting inward.

Qb:—fP-dS
S

- Total enclosed charge: S
® P
Qr = ¢, D-dS « Gauss’s Law © ® @f ©
- % EoE - dS
S

=0, + 0 ©
T ™

bound charge free charge

©

where Q: total free charge enclosed by surface 32/42



Bound and Free Charge

* Now consider the charge within the closed surface consisting of
bound charges, g,, and free charges, g.

" Free charge: | Q = Or — Q) = yg(eoE + P)-dS
S

* Let define D m more general form E
Q
D=¢E+P AN '
Rleio® .
-® @©-
Q = jﬁ D -dS : free charge enclsed \@@f/, (
S
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- Several volume charge densities with divergence theorem

Bound Qp = ,obdv — j{P dS = f —(v- P)dv—>v P=—p
Charge: S
Total [ %e -dS = f(V - goﬁ)dv =/ . €0E = OT1
Charge: >
Free Q=f,0udv :ygp.dszf(v-f)’)dv = | V.D = p,
Charge: v S
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Electric Susceptibility and the Dielectric Constant

- A stronger electric field results in a larger polarization in the medium.

* Relation between P and E in a /inear medium (1sotropic material)
P = eox.E —~ P /| E
where y,[chi] : electric susceptibility of material

D = ¢)E + x.€0E = (). + 1eoE

Let €, = xe + 1 | : relative permittivity or dielectric constant

— —

D = ¢gye . E = eE where ¢ = ¢g,¢, : permittivity
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Isotropic vs. Anisotropic Materials

* The dielectric constant of Anisotropic materials will vary as the
electric field 1s rotated in certain directions.
=» dielectric fensor.

D = ¢E

Dy| [&xx Exy Exz]|Ex Dy = €xxby + €xyby + €xc k-
Dy — ny Eyy gyZ Ey ) Dy — nyEx + Enyy + EyzEz
D,| Llézx €zy €zl |E, D, =€ E.+e,E,+¢€.E,

—>

D = EOE + P :valid for all 1sotropic materials

 Gauss’s law can be applied to the dieletric materials.
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|[Ex.] Teflon slab

-

Doyt = EOEOax , Pour =0 (. Kout — 0)

51:71 — STEOEOC_ix = 2.1€0E06_ix: 2.1€0§in

— —

in — Uin — Eoﬁin = (21 — 1)8051'-” — 1.180§in

NU

— — s
- If we know one of unknown variables (Ej;,, Dy, Pin), we can know
others.
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5.8 Boundary Condition for perfect dielectric materials

rRegion 1" L€t use the fact that E 1s conservative.

. 5&17: dL = 0
F E:,Jr ,+I(,+j(,_

E_Aw—-E Ah—FE_,Aw+E Ah=0

tanl tan 2

*AsAh — 0, Eian1 Aw — Egno Aw =0

* General vectorial form: (E; —E;) xn=0 38/47



* Boundary Condition for Normal Electric Flux Density

Gauss’ Law to the cylindrical volume which its height approaches
zero and charge density on the surface 1s p,.

Q:fDdS

DN-IAS — DNZAS — AQ — ,OSAS
(— (Ah — 0))

Dy1 — Dn> = ps

General vectorial form:

> | Dy = Dy

(D1 —D3) -n = p;

and ¢ Ey, = &Ey,
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- Reflection of D at a dielectric interface

1) Normal components of D will be continuous across the boundary.
DNI o D1 COS 91 o D2 COS 92 o DN2

2) Tangential components of E will be
continuous across the boundary.

Dun1 Dysinfy €

Dyny  Dosint, €

0
By(l)[Dl _D, COS 2)?

cos o,

. cosd, . .
&,D, sin, = &,D, ——=sin6, = ¢, D, sin b,
cos o,

sin@, /cosd, tand, g,

siné, /cosd, tand, &,

— Reflection and transmission angles are decided by dielectric constants of
composing boundary dielectric materials.
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* By assumption that ¢, > ¢, and 0, > 0,,

2
DZ = \/(DZ.tan )2 + (DZ.Nor )2 = \/(?Dl.tanJ + (Dl.Nor )2

1

7 2
— \/[‘%Dl sin Hlj + (D1 cos b, )2 = Dl\/cos2 o, +(€2j sin” 0, <D,

€ €

2
&
2 - 2
&, E, =&FE, [cos” B +| —=| sin” 6,
&
1

(If electric field intensity on one
. side of dielectric materials
g 18] cos?d 1sin?a > E boundary is knqwn, the.n we can
! £, I I I know the electric field intensity on
other side.)

2
£ g | .
E, =-LE |cos’ +| 2| sin’ 6,
&) €

- If81 < &y, then 52 B 51 and E)Z < El 41/42



— 5 E E C_i - —> - g
n=—2="X_0476Eyd, D=¢&E+P
5 £+
]3in = f)in — SOEin = f)out — goﬁin =g, E,a. —0476¢,Ea. =0.524¢,E a,
Zzin :gOEOax (ngga) (If we know E or D in one side of
s E

= 0476 F Oﬁx (() < x< a) dielectric materials boundary, then
R e can know E or D in other side.
> —0.5245,E,d, (0<x<a) " W )

!

.
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