
1

Vol.:(0123456789)

Scienti昀c Reports |        (2024) 14:17900  | https://doi.org/10.1038/s41598-024-66958-2

www.nature.com/scientificreports

The impact of 昀ne‑tuning 
paradigms on unknown plant 
diseases recognition
Jiuqing Dong 1,2, Alvaro Fuentes 1,2, Heng Zhou 1, Yongchae Jeong 1, Sook Yoon 3* & 
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Plant diseases pose signi昀cant threats to agriculture, impacting both food safety and public health. 
Traditional plant disease detection systems are typically limited to recognizing disease categories 
included in the training dataset, rendering them ine昀ective against new disease types. Although out‑
of‑distribution (OOD) detection methods have been proposed to address this issue, the impact of 昀ne‑
tuning paradigms on these methods has been overlooked. This paper focuses on studying the impact 
of 昀ne‑tuning paradigms on the performance of detecting unknown plant diseases. Currently, 昀ne‑
tuning on visual tasks is mainly divided into visual‑based models and visual‑language‑based models. 
We 昀rst discuss the limitations of large‑scale visual language models in this task: textual prompts are 
di٠恩cult to design. To avoid the side e昀ects of textual prompts, we futher explore the e昀ectiveness of 
purely visual pre‑trained models for OOD detection in plant disease tasks. Speci昀cally, we employed 
昀ve publicly accessible datasets to establish benchmarks for open‑set recognition, OOD detection, 
and few‑shot learning in plant disease recognition. Additionally, we comprehensively compared 
various OOD detection methods, 昀ne‑tuning paradigms, and factors a昀ecting OOD detection 
performance, such as sample quantity. The results show that visual prompt tuning outperforms fully 
昀ne‑tuning and linear probe tuning in out‑of‑distribution detection performance, especially in the 
few‑shot scenarios. Notably, the max‑logit‑based on visual prompt tuning achieves an AUROC score 
of 94.8% in the 8‑shot setting, which is nearly comparable to the method of fully 昀ne‑tuning on the full 
dataset (95.2% ), which implies that an appropriate 昀ne‑tuning paradigm can directly improve OOD 
detection performance. Finally, we visualized the prediction distributions of di昀erent OOD detection 
methods and discussed the selection of thresholds. Overall, this work lays the foundation for unknown 
plant disease recognition, providing strong support for the security and reliability of plant disease 
recognition systems. We will release our code at https:// github. com/ Jiuqi ngDong/ PDOOD to further 
advance this 昀eld.
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Plant disease recognition is critical for farmers and agricultural researchers, as diseases can rapidly spread across 
crops, causing substantial yield and economic losses. Annually, plant diseases result in an estimated global 
economic cost of USD 220 billion, primarily due to bacteria, fungi, nematodes, and  viruses1,2. To mitigate these 
impacts, the application of deep learning in general computer vision tasks has been extended to plant disease 
recognition, demonstrating signi�cant  potential3,4.

Deep learning methods learn the feature representations by utilizing multiple processing layers such as 
perceptrons, convolutional layers, or transformers. �is end-to-end approach is particularly advantageous for 
its e�ectiveness in capturing complex patterns and features directly from the raw data. Among these methods, 
Convolutional Neural Networks (CNNs) have been particularly transformative, eliminating the need for manual 
feature extraction from images. We have witnessed impressive achievements in the application of deep learning 
for plant disease detection, where the classi�cation accuracy o�en exceeds 90%5–8. However, most existing studies 
focus on �xed disease categories of speci�c species with all available annotations during the training phase. In 
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this case, the model is more likely to classify a suspicious sample as one of the categories it has already learned 
rather than indicating the presence of an abnormal disease type, which adds potential risks to the  system9.

In an open-world scenario, the assumption that test set categories mirror training set categories is o�en 
unrealistic in practical applications, particularly in complex plant diseases. For instance, unforeseen diseases 
and pests can emerge during plant growth cycle. We demonstrate examples of the aforementioned potential 
risks, as shown in Fig. 1: �e model trained on healthy leaves from 12 di�erent species classi�es disease sam-
ples as one of the known categories with a high con�dence score. We argue that a reliable model should assign 
lower con�dence scores to these samples, indicating that they belong to unknown categories not in the training 
 dataset10. �is attribute is crucial for the safety and reliability in plant disease recognition systems. �is challenge 
is referred to as out-of-distribution (OOD) detection or open-set recognition (OSR)11,12. Although there may be 
terminological di�erences, OOD detection and OSR (sometimes referred to as “novelty detection”) essentially 
pursue the same goal: detecting and excluding unknown samples. �e di�erences in experimental settings 
between OOD detection and OSR are not the focus of this paper. �erefore, we uniformly use “OOD detection” 
to avoid terminological confusion.

Recent OOD detection methods focused on large vision-language  models13–15. For example, Ming et al.13 
proposed a method to identify unknown samples, called Maximum Concept Matching (MCM). MCM utilizes 
aligned visual and semantic information, using conceptual features as classi�cation weights for zero-shot pre-
dictions during the inference process. �e performance of MCM even surpasses that of methods based on �ne-
tuning11,16–18, depending on the generalization capabilities of large-scale vision-language models. However, we 
argue that employing large-scale vision-language models like CLIP directly for OOD detection in plant disease 
recognition proves impractical. As shown in Fig. 2, we attempt to compare the common datasets settings  from13 
and plant disease datasets in the OOD detection task by using the  CLIP19 model. It can be observed that CLIP can 
better separate ID and OOD data in common datasets rather than plant disease datasets. We further compared the 
performance of large-scale vision-language models in OOD detection for plant disease under various language 
prompt settings. As shown in Table 1, di�erent language prompts have varied e�ects on the performance of the 
vision-language models, but none perform well. �e failure of this approach stems from two key factors: (i). 
�e pre-training data of CLIP and the training data for the downstream task of plant disease detection have a 
signi�cant domain gap. Plant disease recognition involves a more �ne-grained classi�cation task as leaf samples 
can be highly similar, making it di�cult for the vision language model to distinguish between di�erent diseases 
without training; (ii). Language prompts are crucial for vision language models, but it is challenging to design 
e�cient prompts for plant disease. Despite these limitations, the study by Ming et al.13 has opened new avenues 

Figure 1.  �e risks faced by the existing model. We provide four case with the so�max probability distribution. 
�e model classi�es four diseased leaves as one of the training categories with a high con�dence score. Note that 
the model was pre-trained on ImageNet-21k and �ne-tuned on healthy leaves from 12 di�erent species. �e 
horizontal axis shows the names of the training categories.
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in OOD detection by leveraging the rich visual-semantic information of large-scale models. �is approach has 
inspired us to explore the potential of large-scale pre-training models.

Language prompts are crucial for visual language models, but disease categories are not as common and 
straightforward as ‘cat’ or ‘dog’. Although some text-prompt-based �ne-tuning  methods20,21 can automatically 
generate language prompts for the text branch, we still observe some limitations, such as ID accuracy may be 
lower than that of unimodal models. We will elaborate on these details further in the discussion. Due to the dif-
�culty in designing language prompts speci�cally for plant diseases, we rethink a question: How can we leverage 
unimodal visual models to achieve the out-of-distribution detection for plant diseases? To our knowledge, we 
are the �rst to comprehensively discuss the impact of �ne-tuning paradigms on the performance of Open Set 
Recognition (OSR), Out-of-Distribution (OOD) detection, and few-shot learning tasks in plant disease recogni-
tion. Our main contributions are as follows:

• We experimentally demonstrate that zero-shot visual language models perform poorly in plant diseases’ 
�ne-grained OOD detection tasks. To avoid the cumbersome task of designing language prompts, we �rst 

Figure 2.  Kernel density estimation plot for zero-shot out-of-distribution detection using a visual-language 
model CLIP. CLIP can better separate ID and OOD data in common datasets (Top) rather than plant disease 
datasets (Bottom). Note that the language prompt type is:“a photo of a Class names”. �e model used for training 
is CLIP-ViT-base-16. Uncertainty scores are calculated using maximum concept matching (MCM)13. OOD 
datasets and evaluation metrics are added to the top le� corner of each subplot.

Table 1.  Results of Zero-Shot Out-of-Distribution Detection by using di�erent language prompts. �e class 
names for in-distribution data are shown in Fig. 1. We present the average test results on six out-of-distribution 
datasets. ↓ indicates that lower values are preferable, and conversely for ↑.

Pre-trained model Language prompt FPR@95↓ AUROC↑ AUPR↑

CLIP-ViT-base-16

{Class names} 95.52 49.23 49.66

�is is a photo of {Class names} 89.61 52.61 50.83

a photo of a {Class names} 91.41 52.48 52.12

CLIP-ViT-large-14

{Class names} 95.56 49.02 55.92

�is is a photo of {Class names} 95.63 45.62 52.19

a photo of a {Class names} 97.51 53.03 59.54
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investigate the impact of di�erent �ne-tuning paradigms on the pure vision pre-trained model in plant disease 
OOD detection.

• We are the �rst to establish a comprehensive benchmark of unknown plant disease recognition. Our bench-
mark covers results of fully �ne-tuning (FFT), linear probe tuning (LPT), and visual prompt tuning (VPT) 
across �ve public datasets under various experimental conditions. To our knowledge, there is currently no 
related work studying the impact of �ne-tuning paradigms on out-of-distribution detection for plant diseases.

• We employ various OOD detection methods to evaluate the e�ectiveness of di�erent �ne-tuning paradigms. 
�e research results demonstrate the promising prospects of visual prompts in open-set detection, OOD 
detection, and few-shot learning tasks for plant disease classi�cation, providing robust support for the safety 
and reliability of plant disease recognition systems.

�e organization of the paper is as follows: Section  “Related work” states the related work including post-hoc 
OOD detection methods and �ne-tuning paradigms. Secion “Materials and methods” introduces the problem 
statement and plant disease datasets in our benchmark. Additionally, we proposed our framework, a brief over-
view of the current popular �ne-tuning paradigms, post-hoc OOD detection methodologies, and evaluation 
metrics. Section “Experiments and results” presents the experimental results under open-set, OOD, and few-shot 
learning settings. Finally, we discuss the advances and limitations of this work and potential future directions.

Related work
Post‑hoc‑based OOD detection
In the latest review on OOD detection, Yang et al.22 highlight the advantages of post-hoc OOD detection methods, 
noting their ease of integration without altering training procedures and objectives. �is characteristic is crucial 
in real-world applications where indirect retraining costs can be signi�cant. An early approach, the maximum 
so�max probability (MSP)  method11, assumes that ID samples typically have higher maximum so�max prob-
abilities than misclassi�ed or OOD samples. �is method also involves estimating uncertainty scores through 
information entropy derived from so�max probability distributions. Another seminal  work23 enhances the dis-
tinction between in-distribution (ID) and OOD samples through temperature scaling and input perturbation. 
Hendrycks et al.24 argue that reliance on so�max con�dence scores may lead to overcon�dence in the posterior 
distribution of OOD data, and propose using maximum logits (ML) for more e�ective OOD detection. In con-
trast, Liu et al.25 demonstrate that the energy score, which aligns with the input’s probability density, is less prone 
to overcon�dence. �ey advocate that energy can function both as a scoring mechanism for pre-trained neural 
classi�ers and as a trainable loss function to speci�cally tailor the energy surface for OOD detection. Lin et al.26 
theoretically support this approach, suggesting that lower energy scores indicate ID samples and higher scores 
suggest OOD samples, equating energy scores with uncertainty measures.

A recent study by Ming et al.13 introduces a novel zero-shot OOD detection approach using the large-scale 
vision-language model  CLIP19. Test images and ID class labels are embedded into respective visual and text 
encoders, generating visual and textual features. Cosine similarity between these features is then used as logits, 
and maximum so�max probability is employed for OOD detection, a method termed “Maximum Concept 
Matching (MCM).” Miyai et al.15 proposed using local regularization techniques and �ne-tuning the CLIP model 
to enhance the out-of-distribution detection performance of MCM. �e e�ectiveness of this technique is con-
tingent upon the generalization capabilities of large-scale vision-language models.

Fine‑tuning paradigm
Hendrycks et al.27 contend that pre-training signi�cantly boosts a model’s adversarial robustness, outperforming 
state-of-the-art methods in robustness and uncertainty tasks. Recent large-scale pre-training models like  CLIP19 
and  SAM28 exhibit impressive stability in zero-shot tasks. Consequently, we argue that transfer learning is a prom-
ising strategy that can maximize the utility of pre-trained models under limited training data. To e�ectively har-
ness the robustness of large-scale pre-trained models, we investigated three di�erent transfer learning strategies: 
fully �ne-tuning (FFT), linear probe tuning (LPT)29, and visual prompt tuning (VPT)30. We brie�y summarize 
these three �ne-tuning paradigms as follows: FFT involves updating all parameters for extensive adaptation, 
though it requires more resources. Linear probe tuning only updates classi�cation head parameters, keeping 
the backbone frozen. LPT is particularly suited for few-shot learning as it helps prevent over�tting on small 
training sets; Visual prompt tuning introduces a small number of trainable tokens into the input space, keeping 
the backbone intact. Following Jia et al.30, we incorporate ten learnable prompt tokens in each transformer layer.

Materials and methods
�is section outlines the datasets, including their splits and experimental settings. We also discuss the vision 
 transformer31, a popular feature extractor in recent research. However, we will not delve into its speci�c param-
eters, layers, or self-attention mechanism. Instead, our focus will be on the advantages of the visual sensor and 
the rationale for its selection. Lastly, we will describe various �ne-tuning methods, OOD detection methods, 
and evaluation metrics used in our study.

Problem statement
In this section, we de�ne the anomaly detection problem. �e training set is Dtrain = {xi , yi}

N
i , i ∈ N , where x, y and 

N denote the sample, label, and the number of images. We de�ne the set of known classes as K = {k1, k2, k3, ...kt} , 

so yi ∈ K . In particular, for few-shot settings we have training set Dtrain = {xi , yi}
M∗kt
i=1 ,M ∈ {2, 4, 8, 16} , where M 

and kt denote the number of training samples of each known class and the number of classes. We assume that there 
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exists a set of unknown classes U = {kt+1, ...} , which the model does not witness during training but may encoun-
ter during inference, and K ∩ U = ∅ . �at means unknown samples should not have labels that overlap with the 
training data. We can de�ne anomaly detection as a binary classi�cation problem which is formalized as Eq. 1:

where a higher score S(xi) for a sample xi indicates higher uncertainty. A sample with a score greater than the 
threshold γ will be classi�ed as unknown classes, and vice versa.

Datasets
For our experiments on open-set recognition, we employ the  Cotton32,  Mango33,  Strawberry34, and  Tomato35 
disease datasets. We illustrate samples from these datasets in Fig. 3 and provide the detailed training and testing 
splits in Table 2. Additionally, the Plant Village  dataset35 is utilized for our OOD detection and few-shot OOD 
detection experiments. In addition to the ID categories shown in Fig. 1, we present the OOD categories in Table 5 
of the experimental section. Due to the extensive range of categories within the Plant Village dataset, they are 
not all displayed here. We con�rm that all aspects of our study, including both experimental research and �eld 
studies on plants, have been conducted in strict accordance with the relevant guidelines and legislation. �is 

(1)Decisionγ (xi) =

{

Unknown Class S(xi) > γ

Known Class S(xi) ≤ γ
,

Table 2.  Classes information of the dataset. We have assigned an ID to each category to facilitate the 
representation of known and unknown classes.

ID
Cotton
Class name (Images)

Mango
Class name (Images)

Strawberry
Class name (Images)

Tomato
Class name (Images)

1 Healthy (800) Healthy (500) Healthy (456) Healthy (1591)

2 Powdery mildew (800) Sooty Mould (500) Powdery mildew leaf (533) Early blight (1000)

3 Target spot (800) Anthracnose (500) Anthracnose fruit rot (97) Leaf Mold (952)

4 Aphids (800) Powdery Mildew (500) Leaf spot (615) Spider mites (1676)

5 Bacterial blight (800) Bacterial Canker (500) Powdery mildew fruit (135) Septoria leaf spot (1771)

6 Army worm (800) Die Back (500) Blossom blight (208) Mosaic virus (373)

7 – Cutting Weevil (500) Angular leafspot (435) Bacterial spot (2127)

8 – Gall Midge (500) Gray mold (477) Late blight (1909)

9 – – – Yellow Leaf Curl Virus (5357)

10 – – – Target Spot (1404)

Figure 3.  Dataset examples used for open-set recognition. Class numbers are provided at the bottom. Please 
refer to Table 2 for class names.
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compliance covers institutional protocols as well as national and international regulations about plant research. 
For further details, please refer to our repository.

Cotton disease dataset32 comprises �ve plant diseases, including Aphids, Army Worm, Bacterial Blight, Pow-
dery Mildew, and Target Spot. Its primary focus is on leaf diseases, with no images of diseases a�ecting stems, 
buds, �owers, or bolls. �e dataset features a balanced class distribution, with around 800 images per category, 
and was collected in real-world conditions, Besides, it also provides 800 images for healthy leaves.

Mango leaves disease dataset33 compiled by Ahmed et al., is a comprehensive collection of 4000 mango leaf 
images, each with a resolution of 240x320 pixels. �e dataset encompasses seven speci�c mango leaf diseases 
and healthy leaves. Each disease category contains roughly 500 images, ensuring a balanced distribution across 
the eight classes. �e images, mainly captured using mobile phone cameras, originate from four mango orchards 
in Bangladesh.

Strawberry disease dataset34 released by Afzaal et al., this dataset includes 2500 images that capture vari-
ous strawberry diseases. �e data were collected using camera-equipped mobile phones in both real-�eld and 
greenhouse settings, mainly across multiple greenhouses in South Korea. �is dataset, encompassing the early, 
middle, and late stages of the diseases, was designed to enhance disease detection and segmentation. To ensure 
consistency with other datasets, we have supplemented it with images of healthy strawberry leaves from the 
Plant Village  dataset35.

Tomato disease dataset35 focuses on tomato diseases. It includes ten categories of tomato leaves, encompassing 
nine disease types and one healthy leaf category. �is dataset is notable for its imbalanced sample distribution, 
ranging from 300 to 5000 samples per category, which adds complexity to the analysis. For comprehensive evalu-
ation, we have utilized color, grayscale, and segmented images.

Plant village dataset35 is a vast collection of 54,309 images, covering 14 crop species and a wide range of 
diseases, including fungal, bacterial, oomycete, viral, and mite-induced diseases. It also features healthy leaves 
for twelve crop species. For our study, we used images of 12 types of healthy leaves as an in-distribution (ID) 
dataset and constructed six out-of-distribution (OOD) datasets based on species categorization: apple (3 types), 
corn (3), grape (3), potato (2), tomato (9), and others (6). We also evaluated OOD detection performance under 
a few-shot learning setting using this partitioning approach.

Overview of framework
We present an overview of the framework for this study in Fig. 4. �e post-hoc out-of-distribution detection 
method consists of two steps. �e �rst step involves training or �ne-tuning the model on a training set. In the 
second step, post-hoc OOD detection methods are deployed to obtain uncertainty scores, such as those based 
on energy and maximum so�max probability.

In our study, we employed the ViT-base model as a feature extractor to assess the e�ectiveness of various 
�ne-tuning paradigms in open-set recognition (OSR), out-of-distribution (OOD) detection, and few-shot OOD 
detection. One of the signi�cant advantages of ViT is its ability to achieve remarkable performance on large-scale 
image datasets with minimal architectural modi�cations. For example, a Transformer model trained on textual 
data can be directly used for �ne-tuning visual tasks. It can be easily �ne-tuned for speci�c tasks such as object 

Figure 4.  �e architecture of three �ne-tuning paradigms for OOD detection. Step 1 compares three �ne-
tuning paradigms for ViT model, where visual prompts �ne-tune the model by adding a set of learnable tokens 
to the input space. Step 2 indicates the pipeline of post-hoc OOD detection methods.
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 detection36, key-point detection  localization37, and image  segmentation28, further demonstrating its �exibility 
and ability to generalize across di�erent vision tasks.

In Step 1, we use ViT-B/16, pre-trained on ImageNet-21k, as our pre-trained model. To address the problem of 
OOD detection, we explored two traditional �ne-tuning paradigms (FFT and LPT), and an e�cient �ne-tuning 
paradigm (VPT). �e three di�erent �ne-tuning paradigms are illustrated in Fig. 4. It can be observed that all 
of them involve �ne-tuning the classi�er head. In Step 2, the logits output by the classi�er head are transformed 
into uncertainty scores S(xi) using di�erent post-processing out-of-distribution (OOD) detection methods. If 
S(xi) exceeds a threshold γ , the sample is treated as an OOD sample, thus achieving out-of-distribution detection.

OOD detection methods
�e classi�cation head can be considered as a feature mapping that aims to map the input image’s features F ∈ R

d 
to the label space L ∈ R

c , where c represents the number of classes in ID dataset, and L represents the logic values 
for each class. Post-hoc methods for OOD detection estimate the distributions of ID and OOD data by processing 
these logic values as an uncertainty score, thereby separating them. �e advantages of post-hoc methods lie in 
their ease of use and the fact that they do not require any modi�cation of the training process and loss function. 
Consistent with the OOD detection methods used  in13, in this paper, we employed �ve commonly used post-hoc 
processing methods:  energy25,  entropy11,  variance38, maximum so�max probability (MSP)11, and maximum logits 
(ML)24. �e conversion formula from logical values to uncertainty scores is shown in Eq. 2 to Eq. 6.

where zi denotes the logits of class i, and T denotes the temperature scaling factor. In this paper, we used T = 1 
as default.

Evaluation metrics
FPR@959: FPR@95 can be interpreted as the probability that a negative (out-of-distribution) example is misclas-
si�ed as positive (in-distribution) when the true positive rate (TPR) is as high as 95% . �e true positive rate can 
be computed by TPR = TP/(TP + FN), where TP and FN denote true positives and false negatives, respectively. 
�e false positive rate (FPR) can be computed by FPR = FP/(FP + TN), where FP and TN denote false positives 
and true negatives, respectively.

�e area under the receiver operating characteristic curve (AUROC)39: By treating ID data as positive and 
OOD data as negative, various thresholds can be applied to generate a range of true positive rates (TPR) and 
false-positive rates (FPR). From these rates, we can calculate AUROC.

�e area under the precision-recall curve (AUPR)39: Using the precision and recall values, we can compute 
metrics of AUPR. Please note that for AUROC and AUPR, higher values indicate better OOD detection perfor-
mance, while a lower FPR@95 value indicates better OOD detection performance.

In-Distribution Accuracy (ID Acc.)40: OOD detection and open-set recognition also require evaluating the 
model’s performance on ID samples. �erefore, we use Accuracy as the evaluation metric for ID samples.

Experiments and results
Implementation details
Our experiments used a pre-trained Vision Transformer (ViT-base-16) model on the ImageNet-21k  dataset41 
as the feature extractor. We assessed the e�ectiveness of three di�erent �ne-tuning strategies-fully �ne-tuning, 
linear probe tuning, and visual prompt �ne-tuning-in the context of OSR, OOD detection, and few-shot OOD 
detection for plant diseases. �e speci�c class indices for the datasets are detailed in Table 2. �ese indices were 
crucial for distinguishing between known and unknown classes in open-set recognition tasks.

We employed ten learnable visual prompts for the visual prompt �ne-tuning method, which is the default 
setting  in30. An advantage of our method is its modest computational resource requirement. All experiments 
were conducted on a single Nvidia RTX 3090 GPU. We used PyTorch version 1.10.0 as our training framework. 
�e uncertainty scores and distribution analyses were computed using the scikit-learn and numpy libraries. We 

(2)Energy = −log
∑K

j=1
zj/T

(3)Entropy = Entropy

(

ezi/T
∑K

j=1
ezj/T

)

(4)Variance = −Variance

(

ezi/T
∑K

j=1
ezj/T

)

(5)MSP = −Max

(

ezi/T
∑K

j=1
ezj/T

)

(6)Max − Logits = −Max

(

zi/T
∑K

j=1
zj/T

)
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searched for the optimal learning rate and weight decay within a speci�c range to explore the best ID accuracy. 
All experimental results are reported based on the optimal ID accuracy.

Open‑set recognition settings
Open-set recognition (OSR) is one of the most related to OOD detection. OSR typically involves a single multi-
class dataset, where some categories are used as known classes for training. In contrast, the remaining categories 
are treated as unknown samples and included in the test set. Table 3 provides detailed experimental setups along 
with the corresponding divisions between known and unknown classes. We �rst evaluate the ID accuracy in 
these di�erent experiment settings. �e results show that the three �ne-tuning methods achieved nearly 100% 
ID accuracy across di�erent settings for cotton, mango, and strawberry disease datasets, as shown in Fig. 5. 
Furthermore, we evaluated the performance of three �ne-tuning paradigms in OSR settings using three data-
sets: cotton, mango, and strawberry. For example, there are �ve data splits for the cotton disease dataset, and we 
provide average results across these �ve experimental settings. Visual prompt tuning signi�cantly outperformed 
both fully �ne-tuning and linear probe tuning in OSR tasks. Our experiments indicate that no single method 
is consistently superior across di�erent benchmarks, and performance rankings can vary signi�cantly between 
datasets. For example, the OOD detection method based on maximum logits is more e�ective with visual prompt 
tuning, while the method based on maximum so�max probability performs best with fully �ne-tuning.

In addition, we also evaluated these methods on three versions of the Tomato disease datasets, including color, 
grayscale, and segmented versions. We present the dataset partitioning settings in Table 4. For a fair compari-
son, the image numbering remains consistent across all three versions. We present only the average results for 
all experimental settings to streamline the presentation and enhance readability. Regardless of the �ne-tuning 
paradigm, the model performs better on the original color dataset, which contains more information. In contrast, 

Table 3.  Open-set recognition experiments settings and results on cotton, mango, and strawberry disease 
datasets. A set of experiments were conducted for each dataset. We provide divisions between known and 
unknown classes for each experimental setting. �e results are based on the average across all experimental 
settings for each dataset. Bold indicates the best performance.

Experiment no.

Cotton disease dataset Mango disease dataset Strawberry disease dataset

Known classes Unknown classes Known classes Unknown classes Known classes Unknown classes

Plant disease dataset splits

1 1,2 3,4,5,6 1,2 3,4,5,6,7,8 1,2 3,4,5,6,7,8

2 1,2,3 4,5,6 1,2,3 4,5,6,7,8 1,2,3 4,5,6,7,8

3 1,2,3,4 5,6 1,2,3,4 5,6,7,8 1,2,3,4 5,6,7,8

4 1,2 5,6 1,2,3,4,5 6,7,8 1,2,3,4,5 6,7,8

5 1,2,3 5,6 1,2,3,4,5,6 7,8 1,2,3,4,5,6 7,8

6 – – 1,2 7,8 1,2 7,8

7 – – 1,2,3 7,8 1,2,3 7,8

8 – – 1,2,3,4 7,8 1,2,3,4 7,8

9 – – 1,2,3,4,5 7,8 1,2,3,4,5 7,8

Method

VPT LPT FFT

FPR@95↓ AUROC↑ AUPR↑ FPR@95↓ AUROC↑ AUPR↑ FPR@95↓ AUROC↑ AUPR↑

Cotton disease dataset

Energy 24.10 93.20 92.44 70.78 84.82 88.05 40.96 88.68 87.24

Entropy 23.01 93.66 92.93 63.52 83.23 79.87 26.20 92.57 91.52

Variance 23.03 93.67 92.95 72.63 70.28 65.57 28.61 88.79 82.84

MSP 22.97 94.45 92.95 72.63 70.10 65.44 29.84 88.22 81.86

ML 26.10 93.21 92.45 70.31 84.84 88.06 40.85 88.70 87.25

Mango disease dataset

Energy 12.60 97.05 94.89 39.42 87.48 84.96 21.34 92.62 89.94

Entropy 12.94 96.47 95.38 57.43 82.82 80.68 15.33 94.90 91.72

Variance 12.89 96.41 95.13 69.76 69.84 66.89 15.92 93.93 88.38

MSP 12.89 96.34 95.04 69.82 64.99 65.56 17.29 93.66 88.01

ML 12.57 96.56 95.06 39.36 87.48 84.96 21.28 92.64 89.95

Strawberry disease dataset

Energy 18.40 93.15 91.45 42.50 89.72 89.27 30.92 92.16 91.69

Entropy 18.45 94.31 92.26 52.27 85.69 86.05 19.81 95.97 95.94

Variance 18.72 94.33 92.27 61.55 76.34 75.89 21.14 94.19 90.73

MSP 18.87 94.33 92.27 61.95 72.33 73.15 23.18 93.60 89.76

ML 18.42 93.15 91.45 42.30 89.74 89.29 30.85 92.17 91.70
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the model’s performance signi�cantly declined when trained on grayscale images, especially in evaluating OOD 
metrics. For example, compared to the color dataset, the visual prompt method’s AURPC dropped from 95.85% 
to 87.97% in the energy-based OOD detection method. �e primary reasons for this decline are two-fold: �rstly, 
the decrease in ID accuracy a�ects the model’s performance in uncertainty tasks; secondly, color is a crucial 
factor in distinguishing certain diseases, and the absence of color information in grayscale images means that 
some OOD disease categories may appear visually similar to ID disease categories.

We also examined the impact of background on recognition performance by evaluating the three �ne-tuning 
paradigms on segmented versions of the dataset, where backgrounds were replaced with black or white, isolat-
ing leaf images. �e results show a slight decline in model performance compared to the original color images, 
regardless of the �ne-tuning paradigm. Even so, visual prompt tuning consistently exhibits excellent performance. 
Note that the results in Table 3, Table 4, and Fig. 5 are the average results of all experiments for each dataset. 
More detailed results are also available in our code repository for further reference.

Figure 5.  Results of ID accuracy on �ve datasets.

Table 4.  Open-set recognition experiments settings and results ( % ) on tomato disease dataset. 11 experiments 
are conducted for the tomato disease dataset. We provide divisions between known and unknown classes for 
each experimental setting. �e results are based on the average across all experimental settings for each dataset. 
Bold indicates the best performance.

Experiment no. Known classes Unknown classes Experiment no. Known classes Unknown classes

Tomato disease dataset splits

1 1,2 3,4,5,6,7,8,9,10 7 1,2 8,9,10

2 1,2,3 4,5,6,7,8,9,10 8 1,2,3 8,9,10

3 1,2,3,4 5,6,7,8,9,10 9 1,2,3,4 8,9,10

4 1,2,3,4,5 6,7,8,9,10 10 1,2,3,4,5 8,9,10

5 1,2,3,4,5,6 7,8,9,10 11 1,2,3,4,5,6 8,9,10

6 1,2,3,4,5,6,7 8,9,10 - – –

Method

VPT LPT FFT

FPR@95↓ AUROC↑ AUPR↑ FPR@95↓ AUROC↑ AUPR↑ FPR@95↓ AUROC↑ AUPR↑

Color version

Energy 14.42 95.85 93.76 46.87 86.55 86.26 20.89 94.44 92.82

Entropy 15.02 95.64 93.61 45.71 86.02 85.29 15.84 95.92 95.31

Variance 15.05 95.61 93.60 48.68 83.90 81.75 16.35 94.44 89.21

MSP 15.05 95.60 93.60 49.08 83.61 81.58 16.74 92.99 88.33

ML 14.43 95.85 93.77 45.99 86.69 86.31 20.88 94.47 92.82

Gray version

Energy 37.45 87.97 86.40 66.60 81.97 83.25 42.24 86.91 85.69

Entropy 40.00 87.61 86.38 59.89 84.39 84.40 40.90 88.58 86.91

Variance 40.83 87.50 86.34 60.37 83.20 83.34 40.81 84.93 81.42

MSP 40.89 87.47 86.32 61.05 83.06 83.28 40.83 84.69 83.01

ML 37.44 87.96 86.40 65.26 82.68 83.42 42.16 86.91 85.69

Segmented version

Energy 21.57 94.09 93.62 48.17 87.28 86.65 24.90 93.84 92.10

Entropy 22.36 94.01 93.65 47.22 88.52 85.93 19.81 95.38 94.55

Variance 22.56 93.98 93.63 53.28 84.17 81.68 20.69 90.73 86.13

MSP 22.57 93.97 93.63 53.91 83.96 81.55 24.34 89.83 84.90

ML 21.50 94.09 93.62 47.35 88.38 86.72 24.90 93.84 92.10
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OOD detection settings
Unlike the OSR setting, OOD detection takes one dataset as the ID and identi�es several other datasets as OOD, 
with a requirement that there should be no overlapping classes between the ID and OOD datasets. However, 
despite the di�erent dataset con�gurations for the two subtasks, both approaches essentially tackle the same 
challenge of detecting semantic shi�s. As Plant Village contains disease types from 14 species, with 12 having 
healthy leaf samples, it is convenient to set up the OOD task. We designated the healthy leaf samples from the 
12 categories as the ID dataset, while the remaining disease classes were grouped by species to form six OOD 
datasets. Table 5 shows the data split and experimental results.

�e visual prompt method demonstrated stability across di�erent OOD detection methods. For example, 
the AUROC exhibited a stable distribution ranging from 97.60% to 98.25% . With the stability of visual prompts, 
practitioners can con�dently select evaluation methods, as these stable cues o�er reliable and consistent results 
regardless of the circumstances, thereby enhancing the reliability and consistency of evaluations. Furthermore, 
OOD detection methods based on entropy, variance, and maximum so�max probability achieved better FPR@95 
in the fully �ne-tuning paradigm, while showing a signi�cant gap in AUPR compared to the visual prompt-
based method. �is suggests that fully �ne-tuning may lead to superior performance under speci�c threshold 
conditions. However, by visualizing the uncertainty distribution, we argue that �nding an appropriate threshold 
for methods such as those based on entropy is challenging. We will elaborate on this in the discussion section.

Few‑shot OOD detection settings
Collecting plant disease data presents numerous challenges. �e complexity and diversity of plant diseases, driven 
by various pathogens and environmental factors, require extensive time and resources for accurate identi�cation 
and data collection. Additionally, the lack of specialized disease recognition knowledge among farmers and the 
general public poses a barrier to data collection. Further compounding these challenges is the decentralized 
nature of data sources, which typically include farmers, agricultural institutions, and research organizations, 
complicating data integration and analysis. In practical applications, the availability of labeled data is typically 
limited. Few-shot learning addresses this limitation by enabling models to learn e�ectively from a small number 
of samples. �is approach is particularly valuable for developing accurate models in scenarios with constrained 
data availability. �erefore, assessing the performance of out-of-distribution (OOD) detection under few-shot 
learning conditions is vital for evaluating the safety and robustness of machine learning models in this context.

Our study investigated the OOD detection performance of three �ne-tuning paradigms-fully �ne-tuning, 
linear probe tuning, and visual prompt �ne-tuning-in a few-shot learning environment. We tested these para-
digms using 2, 4, 8, and 16 shots to evaluate their e�ectiveness. Figure 6 illustrates the performance trends of 
these three �ne-tuning methods across di�erent shot settings. �e visual prompt tuning paradigm consistently 
outperformed the other methods in threshold-free evaluation metrics, such as AUROC, AUPR, and ID accuracy. 
Notably, in the 2, 4, and 8-shot scenarios, visual prompt tuning demonstrated an advantage in all evaluation 
metrics. �ese results underscore that selecting the appropriate �ne-tuning paradigm can signi�cantly enhance 
the e�ectiveness of existing OOD detection methods. For example, when the dataset scale is small, using prompt 
tuning can signi�cantly improve ID accuracy and OOD detection performance.

Table 5.  OOD detection experiments settings and results on plant village dataset. �e ID dataset includes 
healthy leaves from 12 species. �e six OOD datasets contain diseased leaves from 11 species. �e results are 
based on the average of the six OOD datasets. Bold indicates the best performance.

Dataset type Plants (Number of Classes)

Plant village dataset splits

ID
Cherry (1), Tomato (1), Grape (1), Raspberry (1), Apple (1), Blueberry (1), Soybean (1), Strawberry (1), Peach 
(1), Potato (1), Corn (1), Bell Pepper (1)

OOD Apple (3)

OOD Corn (3)

OOD Grape (3)

OOD Potato (2)

OOD Tomato (9)

OOD Cherry (1), Orange (1), Peach (1), Bell Pepper (1), Squash (1), Strawberry (1)

Method

VPT LPT FFT

FPR@95↓ AUROC↑ AUPR↑ FPR@95↓ AUROC↑ AUPR↑ FPR@95↓ AUROC↑ AUPR↑

Plant village dataset

Energy 10.69 97.73 96.43 14.53 96.15 94.56 13.60 95.29 86.89

Entropy 10.11 97.64 96.46 21.06 95.08 93.66 8.57 97.33 92.09

Variance 10.35 97.60 96.43 23.14 94.82 93.44 8.33 97.08 90.90

MSP 10.35 97.60 98.10 23.19 94.78 93.42 8.25 96.94 90.13

ML 7.40 98.25 96.42 15.09 96.14 94.55 10.28 97.92 86.89
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Discussion
�is section discusses the limitations of the current state-of-the-art OOD detection methods based on visual 
language models (VLMs) in the context of unrecognized plant diseases. Additionally, we explore the issue of 
threshold selection in di�erent OOD detection methods through qualitative analysis.

Zero-shot VLM and other lightweight �ne-tuning approaches have shown promise in improving OOD per-
formance in natural language processing, as evidenced by recent  research13. Speci�cally, visual language models 
leveraging high-quality pre-trained features have demonstrated robustness, particularly in scenarios involving 
signi�cant distribution shi�s. For instance, on the PETS37  dataset42, using category names as language prompts 
su�ced to di�erentiate between ID and OOD data. However, the challenge of creating e�ective language prompts 
for plant disease data is markedly more complex. Our testing of three language prompts on the CLIP-ViT-base-16 
and CLIP-ViT-large-14  models19 yielded AUROC scores between 50% and 60% , suggesting that the model’s 
performance was no better than random guessing (Table 1). Additionally, we assessed the vision pre-trained 
model using various OOD detection methods, with unexpected results: methods based on maximum logits and 
energy outperformed the MSP, previously considered the best approach in the  MCM13. To visually display this 
di�erence, we visualized the distribution of uncertainty scores in Fig. 7. Compared to MSP, the uncertainty scores 
based on max-logits show a clear separation.

We acknowledge that comparing zero-shot visual language pre-trained models with �ne-tuned visual models 
may not be fair. By e�ciently �ne-tuning these visual language models, OOD detection performance can be 
signi�cantly improved. �erefore, we have reimplemented these methods and compared their performance in 
unknown plant disease recognition. Table 6 and Fig. 8 present the experimental results of the relevant methods. 
�e results indicate that even when employing text prompt methods such as context optimization (CoOp)20 and 
conditional context optimization (CoOpOp)21 to generate adaptive text prompts for plant diseases automatically, 

Figure 6.  Performance on few-shot setting. To avoid confusion, the default OOD detection method is based 
on the maximum logits. VPT consistently leads across various evaluation metrics and experimental settings, 
especially under few-shot conditions.

Figure 7.  Kernel density estimation plots of zero-shot out-of-distribution detection models on plant disease 
datasets. �e language prompt type is:“photo of a Class names”. Uncertainty scores were calculated using MCM.
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visual language models consistently underperform. Notably, when we deploy visual prompt �ne-tuning in the 
visual language models, there is a notable improvement in out-of-distribution detection performance. None-
theless, this performance is still far below that of purely visual pre-trained models. Moreover, visual language 
pre-trained models based on CLIP also perform worse than purely visual pre-trained models on PlantVillage 
in ID accuracy, as shown in Fig. 8. We believe this may be due to the inadequacies of text prompts to generate 
optimal prompts for plant diseases. We will study this issue in our future work.

Our analysis also extended to the e�ectiveness of di�erent OOD detection methods in distinguishing between 
ID and OOD data. Fig. 9 illustrates the separation results of �ve post-hoc methods under three �ne-tuning para-
digms. We noted that for methods based on entropy, variance, and MSP, uncertainty scores for both ID and OOD 
data tended to cluster around 0, indicating high con�dence in classifying all samples. In fully �ne-tuned models, 
OOD detection methods based on entropy, variance, and MSP performed better than those based on energy and 
maximum logits (Table 5). However, identifying an appropriate threshold for these three methods is challenging, 
as minor threshold variations can lead to an inability to distinguish ID from OOD data. Conversely, selecting 
suitable thresholds for energy-based and maximum logits-based methods is comparatively more straightforward. 
We provide example analyses in Fig. 10 to visually demonstrate these challenges. We use 0.5 as the threshold. 
If MSP is employed as the OOD detection method, the model classi�es all images as known. However, using 
Max Logits signi�cantly ameliorates this issue. When using 0.05 as a threshold to separate known and unknown 
samples, methods based on MSP can achieve their full potential. However, such a threshold might be di�cult 
to adapt to most datasets. Overall, although the method based on maximum logits is slightly inferior to the 

Figure 8.  Comparison with CLIP-based vision-language models on ID accuracy. Even with �ne-tuning 
through text prompting methods, CLIP still fails to achieve high accuracy, which may lead to failure in 
unknown plant disease recognition.

Table 6.  Comparison with CLIP-based vision-language models on FPR@95 and AUROC scores. [CLS] 
denotes the class name, where [CLS] denotes class names. Bold indicates the best performance.

Method Context prompt FPR@95↓ / AUROC↑ at di�erent shots

CLIP-Based 2 -shot 4-shot 8-shot 16-shot All-shot

CoOpMCM
20 Learnable Prompt + [CLS] 93.50/54.40 86.93/56.91 89.32/60.09 81.94/66.87 68.97/75.28

CoCoOpMCM
21 Learnable Prompt + [CLS] 91.81/60.92 85.39/63.99 77.37/76.63 64.89/81.20 40.08/88.61

VPTMCM
30 a photo of a + [CLS] 85.01/68.24 72.90/73.66 61.74/84.61 51.55/84.20 15.67/96.23

LoCoOpMCM
15 Learnable Prompt + [CLS] 90.33/61.46 86.16/65.01 82.32/70.55 78.54/71.31 68.19/76.88

ImageNet-21k-Based 2-shot 4-shot 8-shot 16-shot All-shot

FFTMaxLogits – 66.42/84.49 57.90/88.04 37.68/92.43 35.07/93.66 10.28/97.92

LPTMaxLogits – 81.33/69.79 70.72/74.28 57.99/85.00 56.62/82.83 15.09/96.14

VPTMaxLogits – 56.42/88.85 53.67/89.90 30.98/94.30 37.97/93.52 7.40/98.25
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MSP method in performance metrics, we suggest choosing OOD detection methods based on logits or energy 
wherever possible, due to the ease of setting a universal threshold across di�erent datasets.

In our few-shot OOD detection experiments, the visual prompt-based method remarkably achieved over 
90% ID recognition accuracy with just two samples per category. In the 2, 4, and 8-shot setup, visual prompts 
signi�cantly surpassed linear probe tuning and fully �ne-tuning methods in all performance metrics, which 
indicates that the choice of �ne-tuning method signi�cantly impacts OOD detection performance. Overall, 
the method based on visual prompts is more e�ective in small-sample OOD detection tasks because it retains 
more of the pre-trained model’s general knowledge and learns domain-speci�c knowledge of the downstream 
task. Our research enhances plant disease recognition systems’ safety, reliability, and performance by providing 
insights into handling unknown diseases and selecting appropriate �ne-tuning paradigms in scenarios with 
limited data and uncertainty.

Conclusion
Identifying and rejecting disease categories not encountered during the training phase are crucial for the reli-
ability of systems and applications. �is paper establishes benchmarks for open-set recognition (OSR), out-of-
distribution (OOD) detection, and few-shot OOD detection, all related to the task of recognizing unknown 
classes, using �ve plant disease datasets. We conducted comprehensive benchmark testing on �ve OOD detection 
methods and three �ne-tuning paradigms. Our extensive experiments have demonstrated the visual prompt 
method as the most e�ective approach for recognizing unknown diseases, particularly in few-shot OOD detection 
scenarios. By studying the impact of �ne-tuning paradigms on the task of detecting unknown plant diseases, we 
argue that choosing the appropriate �ne-tuning method can directly enhance the performance of OOD detection 
methods while avoiding additional computational costs. We hope that future researchers will test the performance 
of their novel OOD detection methods under various �ne-tuning paradigms, potentially leading to unexpected 
performance improvements in �ne-grained datasets, such as those involving plant diseases.

Despite these achievements, there are still some limitations in our current work. For instance, the challenges 
posed by visual language models in recognizing unknown plant diseases have not been fully addressed. We will 
focus on this issue in our future work. Additionally, we have not yet explored the OOD detection performance 
of other �ne-tuning methods within plant disease recognition tasks, such as multilayer perceptron,  bias43, and 
partial �ne-tuning44. We encourage other researchers to investigate these methods, potentially contributing 
further to the advancement of robust and e�cient plant disease detection and classi�cation systems.

Figure 9.  Kernel density estimation plots for the three �ne-tuning methods. Uncertainty scores were calculated 
by di�erent methods. Evaluation metrics are added to the top right corner of each subplot.
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Data availability and access
�e datasets we used are all public datasets, and the publishers encourage researchers to use their datasets for 
academic research. We have ensured that all the datasets used are easily accessible and have provided detailed 
information for their retrieval. �e datasets employed in our study are available at the following locations: Cotton 
Disease Dataset: �is dataset is available on Kaggle and can be accessed through the link https:// www. kaggle. 
com/ datas ets/ dhamur/ cotton- plant- disea se. Mango Disease Dataset: �e dataset pertaining to mango diseases 
is also hosted on Kaggle and can be reached via https:// www. kaggle. com/ datas ets/ aryas hah2k/ mango- leaf- disea 
se- datas et. Strawberry Disease Dataset: For research involving strawberry diseases, the dataset is available at 
https:// www. kaggle. com/ datas ets/ usman afzaal/ straw berry- disea se- detec tion- datas et. Tomato Disease Dataset 
and Plant Village Dataset: �ese datasets can be found at the same location, accessible through the link https:// 
github. com/ spMoh anty/ Plant Villa ge- Datas et/ tree/ master/ raw.
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