Engineering Electromagnetics

W.H. Hayt Jr. and J. A. Buck

Chapter 7:
The Steady Magnetic Field



Motivating the Magnetic Field Concept:
Forces Between Currents

 Magnetic forces due to charge motioning (or current)

] 1 ] 2 [ 1 Il
attractive repulsive zero force
force force
— — = > @ ]2
I

- How can we describe a force field around wire 1 that can be used
to determine the force on wire 27 1/54



7.1 Biot-Savart Law

* Source of the steady magnetic field:

1) Permanent magnet

2) An electric field changing linearly with time
3) Direct current (DC)

- Differential current element: (vanishingly) very small current section
of current-carrying filamentary conductor where cross section radius
approaches zero.

* H: magnetic field intensity [A/m]
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" Biot-Savart Law (or Ampere’s law for current element)

— —_—

~  JdLxa R R

i M0 g R

Tl ‘R‘ R
_Ideﬁ
47R>

IldLl X aR1?2

dH, =
: 4nRi

(right-hand rule)

where P, : current element location

P, : (magnetic) field measurement point location

cf.) Coulomb’ s Law
A point charge of magnitude dQ, at point 1
would generate electric field at point 2 as like

_dOragn
47T€0R%2
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- Biot-Savart Law can’t be checked experimentally because the

differential current element cannot be 1solated.

Ra,

* Since the magnetic field at point P, associated with the differential
current element /dLL
IdL x a R

dH =
47 R? >

. : : : IdL
the total field arising from the closed circuit path is | H = ?g 471;2313
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- Expressions of Biot-Savart Law on two- and three-dimensional

distributed current source (] current density, K : surface current
density)

* Current may be expressed in terms of current density (J):
[ =JS§ = J(bt) = constant

- [ft — 0, (sheet current) //%//
— I t

[ =limJ - (bt) = constant, ..J —> o©

t—0

= meaningless where J: [A/m?] ) ,
* So current may be expressed in terms of surface current density (K).
Current: / = Kb,

where the width b 1s measured perpendicularly to the direction in
which the current 1s flowing.

* For non-uniform surface current density,
I= j KdN

where dN: differential element of path across flowing current
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* Current expressions

IdL = KdS = Jdv ///%//
-\ _:‘b %t % dL = d¢ " Ir
bXdL:dS < >‘

O] & & F A (differential current element)

b

where K [A/m] : uniform surface current density

- Alternate forms of the Biot-Savart Law

KdS x d K xad.dS
H — R — R
-[S 4R’ -[S 4R’

—

fj- jdvxc;iR_J- J X d,dv
vl AR v

2
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Example of the Biot-Savart Law

- Magnetic field intensity on y axis (equivalently in xy plane) arising
from a filament current element of nfinite length on z axis

- Source location: r' = z'a, -
Measurement field point: 7 = pd,

(Pomnt 1) A Free space

—

— r—
_ pd,—z'a,
Apip =

\/,02+Z'2 |

P, (Point 2)

- Since dL = dz'd,, :

JT, - Idz'a xz(pc_ip 2—32'21’2)
47z(p +z' )A
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o[ ldz'a x(pc_ip —Z’C_iz)
. Lo 47z(p2 +z’2)%
[ = pdza,  lpd, dz'

R A e ak

z'=ptan@ = dz' = psec’ O

z' —00 ¢> 9~ "
2 2

i I,OCI¢ I psec’ 6dO ],0% I ,OSCC 9
T

p° + p’tan 9)/ 3 P’ sec ‘9
la, = la i ///’ I
=7 2ﬂcosﬁd0:—¢[sin6?]2ﬂ = ——d,)
drp 7 4o - Nemp

(- ‘H‘Zf(/?) % [(9,2)) 8/54



* Current go 1nto the page.
Magnetic field streamlines are concentric circles, whose
magnitudes decrease as the inverse distance from the z axis

E= P
2re, p

4,

- 1 —» -
E x P and ag = ay
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[Ex.] (Magnetic) Field arising from a finite current segment

* Field to be found 1n the xy plane at point 2

2 IdL x ap
H =
/ 47 R?

o I .
H, = ¢[s1n g =—
drp Y dmp
(
where | z'= ptand tand =
Z!
0 =tan~' =
Jo,
z
a, =tan” ==
Jo,
z
o, =tan” —L

z
Jo,

[sine, —sine, Ja y

"\

A

Point 2
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[Ex. 7.1] ‘
a,. =-90° 84

o, =tan" (8 jj 53.1°
= 8 . . A =
) = 47”((0.3)[8111 53.1 —s1n(— 90 )k—a
2 12 .
=———(1.8)d, =——a, < ldLxd, =—Idxd, xd, = —Idxa,
0.37 T
Q, = —tan”' (%) =-36.9° a,, =90°
- 8 ane N N
o) = o0 5in90° —sin(-36.9°)|~a.) = —a. [A/m]

L Hy =y + ) = (—Q—E}@ —-22G. =-637a, [A/m]
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7.2 Ampere’ s Circuital Law

* The line integral of H about any closed path 1s exactly equal to the
direct current enclosed by that path. (Proof: 7-7)

 Define positive current as flowing in the direction of advance of a
right-handed screw turned in the direction in which the closed path

is traversed. (H-fieldS Q2LIA} B0 2 3|MSte Hsto 2 ALY
0 LIAFEIY Bhef S () M7 Ao =2 47%)

G ==

]y

1. Since the closed paths a and b include current path, ¢ H-dL =1

2. Since the integral over path ¢ include a portion of current path, ¢ H-dL # 1

3. The direction of currentis decided by right-handed screw direction path.
4. Paths a and b are different integration paths, the current are same. 12/54



- Compression tube connecting two current wires

1.1'-'. Laj:diij: \\\\\\\\A

. . Total currents passing
- Rubber plate passing through current wire  through compression tube

and rubber plate are same.
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[Ex. 1] Path 1s a circle of radius (p). 5 8
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[Ex. 2] Infinitely long coaxial transmission line.

* In the coax line, we have two concentric solid conductors that carry
equal and opposite currents, /.

Current into screen

(coax1a1 cable2 THH A Z 7HX| 10 Qo B 2 SHLEO| current filament 7} OtL| 1D
271 9] current filament2| O 2 Y212 5= LS.
(Y¥olo| MZ filamentOf| 2|3 P,EO|M L= H, = Etad|

0
Otdl. de2{Lt ™ &F filament2| symmetric S -8 0 2|off X SEHL =
g7t E)

dp2l 7t
{lH o
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"Case l:a<p<b

I
=— (p>a0ER2dRETF 1C
H(‘b 2TTP (o> all 1)
"Case2:p<a
Lo =1 7['0 =1— '0 (closed current)
ma’
p’ Ip
“27mpH =1 — H =
P a’ ’ 2’
-Case 3:p>c

=0 -)H =0 (IR I8 s R5 &2

encl

"Cased:b<p<c

2 - 2 g2 2 2
2mpH , =1 - Ip” b2 _1_1(p2 bz)”:162 L
c’r—b'r (c"=b' )z c'—b
I CZ_IOZ

H, =

27p ¢> —b°



. H-field variation for a coaxial cable with b = 3a, c=4a

I
2ma
- 3a
1
dma 4a
0
0 2a 3a=0>b da =c

1) H —filed 1s continuous at all the conductor boundaries.
2) The external H-field at outer side of outer conductor is zero.

=» Equal positive and negative currents would not produce any

noticeable effect in an adjacent circuit.
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7.2.4 Magnetic Field Arising from a Current Sheet

* Current sheet K=K a, @z=0

_ KdSxa
S H, =0 < (df = 2P x4

47R*
* Current sheet 1s subdivided into a number of filaments.

., HL1K)

H_=0 ("~ By a symmetrically located pair of filaments) =» H_= 0
* Choose 1-1’-2’-2-1 path
Hy L + Hy,(—L)= K,L or

=
< L > H,

edge view
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* Choose 3-3°-2°-2-3 path

H. L+H,(-L)=K L € H,—-H,=K,
Hx3
Ho-Ho=K, = Hso=H, . —577%
(.. H_1s the same for all positive z.) ' |
By symmetric property, O ®v e B
1 ol
HXZEK)} (@Z>O) < L > H,
(H-field on paths 1-1’and 3-3°)  “} He=3K, (@>0)_
1 Ay
Hx__EKy (@z<0) L B _® ® @ ®?® K = K,a,
(H-field on path 2-27) laN

H =—-1K, (z<0)

— H = %1% xd, < H# f(distance) cf.)E =223

a
N
> 2¢, 19/54
where ap: unit vector normal to current sheet




- Magnetic field intensity in case two current sheets are located at
K, = K,d, (@z=-d2) and K, = —K,d, (@ z=d/2)

> H=Kyd, (@-d2<z<d2) andH =0 (@z <-d/2,z>d/2)

> H,(z>d2) } These fields cancel for current sheets of

. - H,(z>d?2) infinite width.
A
a2+ L0 0 0 0O O K;=-k,a,
Ya,
> H ., (-d/2<z<d/2) .
01 These fields are equal and add to give
* > H,(-d/2<z<d/2)
a
A2 B g g H=Kxay (-d2<z<d?2)
1~ Ay,
where K is either K or K,
= Hp(<-d2) These fields cancel for current sheets of
- H,(z<-d/2) infinite width.
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Magnetic Fields within Solenoids and Toroids

* Infinite long solenoid for radius a and uniform current density
Kqadg [A/m]. (Exercise #7-13]

(

—

H=K,a, (@p<a)
H=0 (@ p > a)

-d/2 —

(well inside coil) 21/54
(a) (b)



Surface Current Model of a Toroid

K=K, @o=py,—a,z=0

q=x,2" ac’i (inside toroid) |H = N de toroid
” b 2 ——dg (inside toroid)

(outside) H=0 (outside)

K=K,a, atp= [ a,z=20

P a N
- U J
H ]\a — &8, (INSIDE TOROID) H=- [ a . (WELL INSIDE TOROID)
p ¢ 2%p ¢

H=20 (OUTSIDE) 22/54



7.3 Curl

* Incremental closed magnetic field closed path (1-2-3-4-1) of sides
with Ax and Ay

* By the some current, the magnetic field at center

H:HOZHanx_'_Hyan_i_Hanz

—

HO:Hanx+Hyan+Hzoaz f

| \
4 B 3
> 2
1 T
> )
X

§]j]dz = (H’Az)l_z "‘(H‘Az)z_g +(F[‘AZ)3—4 +(H'AZ)4—1

* Overall magnetic field intensity
over specific closed path (1-2-3-4-1)

where (H-AL),_, =(H,d, Avad ), =H, ,Ay

H o, (1 Ax) |A
~ + — :
o5 Y (by Taylor series) 3ss




By the same way,

OH . 1
o (5 A)]Ax
- OH 1

(H-AL), , = Hy,3—4 (Ay) = [Hy() + P ~(—=A)](-Ay)

X 2
o oH . 1
(F-AL)s = H g (A0) = [H, g + 0 (-2 Ap)I(A)

. _ (6H. oH
§H-dL;[ yr 9 xijAy

(Ij[ ' Ai)z_s =H, ,,(-Ax)=-[H, +

Ox oy
=1 =J_AxAy : current enclosed by the path
or §H-dL:aHy_5H §H~dL_aHy_aH

~ =, lim = —=J,
AxAy ox oy v, A0 AxAy Ox oy

- unit area0f CHst H -fielde| 2|2M X E2tunit area HEE X|Lt=

HFere| 2t i)f)'dg
cf) Gauss’s Law  divD = lim =p, 24/54
Av—0 AV




* By analogous process,

H-dL H-dL

o § oM, oM, 35 _OH, OH, _ s

Ay,Az—0 AyAZ @y Oz g Az, A0 AzAx Oz ox
§H-d£

* Generally (curl H )y Aymo %
N N

where AS): planar area enclosed by the closed integral

::‘]N

a, a, a;
d 0 0
curl H=V xH | = = By o
H, H, H.

0H, 0H, oH, 0H, 0H, Bbg
— - T ax—|_ - y—l_ az
oy 07 07 0x Ox oy

=J=J.ad +J d, +J.d. (Cartesian coordinate)
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1 oH oH, oH oH
VxH= [——=—-—)a, + L ——a,
p 0¢ 07 07 ap

1 d(pHy) 10H
+ (_ (pHy) _ _—")az (cylindrical)

P dp p 0¢

1 d(Hysin®)  0Hy 1 1 oH, 0(rHy)
VxH= - — —— ]ar + = . — 1)
rsin 6 06 10) r \ sinf d¢ ar
N 1 /o(rHy) 0H, (spherical)
— — a spherica
P\ ar ae )M P

Cf) . circulation

Cj) E-dL =0 = Work required to carry a charge around a closed path is zero.

J\

B <j>E-dE
VxE= lim

ASy —0 ASN

=0 (. CﬁE .dL =0) (for electrostatic)

. . CJ‘)FI -dL . ]
<> VxH = lim = Iim —2&%0
A5v-0  AS, MVO0AS) 26/54




Visualization of Curl

“paddle wheel” in a flowing stream of water (wheel
ax1s points into the screen.)
* Current go through page.

- Since F1 > F2,
paddle wheel rotates count-

clockwise.

* Curl meter:

- Since F_)l > ﬁz,
paddle wheel rotates clockwise.

Velocity

River bed _1.
N 27/54
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2
[Example] £H = 0.2z°a, @z>0
0 @elsewhere.

o Square path: length = d
P center (0, 0, z;) @y = 0 plane
z,>d/2

Solution 1)

e 1 5 1 ,
§H.dL = 0.2(21 +§dj d +O+O.2(z1 _Edj (-d)+0
=0.4z,d’
(VXﬁ)y =1im§H;dL =lim O'4Z;d2 — 0.4z, : APt B191 20017} 42l loopS
d—0 d d—0 d VESIN KLUE M2

r
HII
rg

: T _ = (e M y
VX H = O°421ay (. Ol =% (normal) & -



Solution 2)
a a, a

X y z

— o 0 0|_0
ox oy 0z| Oz

02z 0 0

@z=z, VxH=04za, !

. - oH oH
- Curl H=VxH = oH, Zix+(aHx—aHZjEi + »_OH, a.
oy 0Oz oz ox )’ ox Oy

=J
: point form of Ampere’s circuital law (time-invariant condition)
=» The second equation of Maxwell’s four equations

of) VxE=0 (- §E-dL=0 )

=» The fourth equation of Maxwell’s four equations 29/54
in case of time-invariant condition



7.4 Stokes’ Theorem

* The surface S 1s broken up into incremental surfaces of areas AS.

H-dL .
s ()
J H:;LAS = (V x H)-ay

where N: right-handed direction
normal to surface

dZA s: closed path vector of
perimeter of AS

ng-dLAS = (VxH)-ayAS = (VxH)-AS < dS = dSdy

where dy: normal unit vector in right-handed direction normal
to AS. 30/55



* Let us comprise S for every AS.

§H-dL=§H -dL=[ (VxH)AS=[ ], -AS=1

: StOkeS, theorm Cancellation here:
(holding for any vector field)

where dL : closed path vector
of perimeter §

No cancellation here:

cf.) Divergence theorm (Gauss’s law):

-
S
S
I
—
B
=
I
—
<
ol
=
o
o
&
(@R
2
1A
gl
0
I
A
MO

(8 EZ o open HEF) 31/54



[Ex. 7.3] Portion of sphereonr=4,0<60<0.17,0<¢ <0.37

e Ot Path segment 1)

r=4,0<0<0.1r,¢= 0

/e Path segment 2)
r=4,0=0.11,0<¢ <037

Path segment 3)
r=4,0<60<0.1r,9=0.371

H =6rsinga + 18rsinfcosgu, = H.a, + H ,a,

- Solution 1)dL = drd, +rd@a, +rsin 0 dg a,=rdfa,+rsmbdga,
: 1n spherical coordinate (" » = 4: constant)
$H-dL = | H,rd6+ | H,rsinbdg+ | H,rdo

r, ¢ : constant r, @ : constant r, ¢ : constant

=2 dr=0=d¢ =2 dr=0=d0 =2 dr=0=d¢
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~§H-dL=|Hysinbdg (. H,=0)
:00'37[[18-(4)-sin(0.17r)-cos ¢} -(4)sin(0.17)d ¢
=288sin” (0.17)sin (0.37) = 22.2 [A]

* Solution 2)

veh ] {(H ,siné) éﬁ’;} r{ 1 oH, rH} i[a(ﬁ aH}

rsiné 06 sin & 8¢ or or 06
= 1 367 sid@ cosO cospla. + l[6r.(:os ?_ 36rsindcos 459 T lJQ/I}’;»
rginé r| siné v

dS =r*sin@d0dga.
j (Vxﬁ)-d§ = J.Oo'sﬂ J-OOM (36cos@cosg)16sin6)dbdg «— a, HE
0.1z
- J‘OOM 576{% sin” H} cosgd g = 288(sin2 0.17Z')>< (sin0.37)
0

=222 [A] : Stokes’theorem 1s satisfied. /// 33/54



- Let us obtain Ampere’s circuital law from Vx H = J (curl)

[(vxil)dS=[J-dS=1 o

= §ﬁ .dL  (By Stoke's theorem) “
$H-dL=1

Vector 1dentity .
V.-VxA=T A: arbitrary vector H ’ jdL

vector —

scalar

jV-(Vxﬁ)dv=dev §(VX2)'d§=ITdV

vol

vol vol closed surface

(- Gauss 8 & 2 Xl & (volume) v& Z M 12 U= H = H(closed surface) 0l CH
- Stokes’ theorem2 & 2| 2| H & 20l 2/eF Ji= H(open surface)0fl CHat HA
-H=HO B3R IN2HE =, JH:DJQ SR H=8H=0

02

- Ex.) B & 2 Xt |(wrapping cloth): =M, S22 SAtJ|: H=H)

Tdv=0 & Tdv=0 > T=0 (-v#0) > V-Vx4=0

vol open surface 34/54

closed surface



7.5 Magnetic Flux and Flux Density

* Magnetic flux density: B

B=u,H [Wb/m?] or [T:telsa] or[G: gauss]
where u, =4n X 10”7 [H/m] : free space permeability
of) D=c F (1sotropic material)
) 0
* Magnetic flux: @ [phi]
O = j B-dS [wb]

ct.) Electric flus: ¥ [ps1] (Gauss’s law: The total flux passing
V=§,D-dS=Q

through any closed surface is

equal to the charge enclosed.)
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ﬂ

B = ,uoﬁ : relation between magnetic flux

and magnetic field intensity

> j[B dS = /V B dv=20

(Since the magnetic flux line forms the open surface,
the magnetic flux line is closed and do not terminate
on a magnetic charge(s). =» No magnetic flux source

. Differential form: V-B=0

- (Differential) Maxwell’s equations for static electric field and

steady magnetic field:

VD = p,
VxE= 0
VxH=]
V:-B=0

Gauss' Law for the electric field

Conservative property of the static electric field

Ampere’ s Circuital Law

Gauss’ Law for the Magnetic Field

DZEOE

BZ/,L()H

where, in free space
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- Maxwell s equations in large scale (or integral) form using
divergence theorem and Stokes’ theorem

ygD-dS:Q:/ pvdV
S vol
5,5 +dL =0 o .
§£H dL_I—fJ .dS :

ygB-dS:O
S

[Ex.] H, = Py (a< p<b) from Fig. 7.8(a)
. . 1l
B=p, H="0" Ho

27 p

Magnetic flux crossing any

radial plane on a <p < b and

: Id b
OSZSCII ZIUO In— 37/54
27 a

~——d,

(dp dz a
27T,0¢(pz¢)




7.6 The Scalar and Vector Magnetic Potentials

" For electric field, O or charge distribution — g —— y—— (¢

N

- Let us introduce scalar magnetic potential (V) with similarity of

electric potential /
H = —VV@ & E=-VV

VxH:J:Vx(—V(‘//,,,;)) (1) Curl B2
“zero” \\\\\\*

“zero”

Scalar (not slope): current 1s constant

H=-VV, J=0)

(Ex. Region a < p < b 1n coaxial cable)
38/54



- In free space,

V-EZ/JOV'HZO : (2) Divergence B &
Uy V-(=VV,)=0
ViV =0 (for J = 0) : (Magnetic) Laplace’s eq.

E
—/

U0 dzI)t=2X &= O

(SEHLZ dFIt =21, L
(magnetic) Laplace’s eq. = &

s =

M

NE

)
* Cross section of coaxial line

y
—

At a <p < b, J=0 = magnetic potential =& I}s
1
27 p

= H=

a,

where [ : total current flowing in
inner conductor

. . -
directional to a, 39/54



o1 S :_1an¢
27 p ’ p 0¢
LA
09 2
I I I
m 2ﬂ¢( ) 2ﬂ(¢ ) 2ﬂ¢

~.

Integral constant = 0 (in this text)

If V=0 at ¢ = 0 and proceed countclockwise around the circle,
magnetic potential at point P (@ ¢ = n/4) 1s

1 1
V =—QQn—-——)rx n=0, £1, £2, - ---
=5 @1=7) ( )
1
=[(n—— "
( 8) ( )

=» Magnetic scalar potential has a multivaluedness property.
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cf.) Electrostatic case
VxE =0 (point form)
§ E-dL=0 (integral form)

V, =— j: E-dL  (independant of the path)

: conservative (or singular) 1

L i

Virab = —Lb H-dL (depend on the specified path)

* In the above example, we restrict
¢ variation range as -7~ 7.

1
A
" 27r¢’

then Vmp:—é @ ¢=

P(p,7/4,0)

Barrierat ¢ = T
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7.6.2 Vector (Magnetic) Potential
- Time varying case

- Useful 1n studying a electromagnetic wave radiation from antennas
V:-B=0 (Maxwell equation)

Let B=V xA — A : vector magnetic potential [wb/m]

(since V-V X A=0is proven in the previous section, V - B =0is satisfied.)

cf.) H = —VV,, : scalar magnetic potential

—

V-BzV-(,uOﬁ)zv-(VxZ)

A=t vxi :2:§uoldL
Hy 4R
- . 1 - (This eq. will be proven in the next section)
VxH=J= lu_v XV x A (If we know /~T then B can be know naturally.)
0

where / : DC current along a filamentary conductor

R: distance from differential current length dL toa point where A is to be



- Electrostatic potential

dl
e =v-—2_ (415)
drey R dre,R
* When compare with the electrostatic potential, differential vector
magnetic (A)is -~ uldL .. I
anetic (A)is - 5 _ H — A//dL and |A| =
4R R
Line Charge Line Current
i Free space Free space dL = dzaz
=VpZ+ 22 _ .
R=Vp*+ P(p, .2) R=Vp?+z? P, 6,2)
Scalar Electrostatic Potential Vector Magnetic Potential
dq prdL ol dL toldz a, Holdza,
dreg R Areg R AT R At R 41/ p? + z2 13/54




* In cylindrical coordinate at P(p, ¢, z)
L ldz

dAZ — — f(p9 Z)
477\/,02 +z°
dA, =0
dA, =0
. . ro 1(522 . aAq') - laAp _(6/1;1\9) - la(pAqb) . laAJ -
SlnCGVXA—(p ¢ az)ap+(p 0z ap g+ (p ap p a¢)az’
-1 - 1 odA_ .
dH =—V xdA = (— ZJ% —A =f(p,2)# f(9)
Ho Hy op
_ _w(_lj 2p i = ldza. y ,OZZp +zd,
r \ 2 (p2 -|—22)3/2 " An(pt+27) ol +z
- IdLxd, IdL i
d — [— X ~ 7/ 71—% x|
AnR*>  47R’ at % 2
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- For a current sheet K :
IdL =KdS
For a current throughout a volume with a density f :

IdL = Jdv

- Alternative expressions for /T,
_ [ 4KdS
s 4R
;&_:: /lounﬂh/
vol 4R

4

(magnetic potential = 0 (@R = ) as like electrostatic potential = 0 (@R = )

> 1 . :
(" |A| X — < current location(@r = 0) & measurement point (@r = ))

45/54



7.7 Derivation of Steady-Magnetic-Field Law

- Relationships among the magnetic field quantities

* Proof of Biot-Savart Law

~ w,Jdv
"Let A=
vol - 4 7rR

where current element location: (x,, y,, z;)

A measurement location: (X5, V5, Z5)
differential volume element location: dv,(= dx,dy,dz,)

46/54



So 7 = ,uoj1dvl
vl 47R,,
Since [ = B _VXA ’ [_~I2:V2XA2 _ 1 V. x HoJ 1dVy
Ho  Hy Ho Ho vl 4nR,,
:L v ><jla’vl
2
4 ¢ Jvol R12
|

* By using vector identity, V X (S 17) =(VS)xV +S (V % 17)
- 1 1 ~ 1 =
H2 B E vol |:(V2 R_u] " Jl * R_lz(vz " Jl ):ldVI

0 - (J.(x.y.z)00 CHEE
S V., (xn0..5) 0 2SHH 02
o=

(=1
=

‘I\

OF

}
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V,—=——% («— #7-42)
R12 R132 R122
. | . d, xJ
2 T T A > ld"l

4 <l R,

J, xa J,dv, xd
— I 1% aflz dv, = j il ><2aR12 (proven)
vl 47 R vl 4R

* Replacing Jdv, = I,dL,

- [.dL, xa R,
= j 4R
- Jdv ,
= A= _[ Ho 1S correct.
vol 4 77R
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* Proof of Ampere’s Circuital Law

VxH=J

ol

1 ~ olat( Jolous

VxH =V x =—VxVxA4 ~-

Hy  Hy
* By using vector identities

VxVx A (v(v A)-v2i
where VA VAa —I—VAa +VAa

—

Vx H = 10 v(v-4)-v]

- Since V- ( ) (V 5)+5°(VV),

Jd 1 -
V, 4 =v [ £ P v = Fay,
vl 47R,, 4 dvol R,

1 =
::ljoz'jvol|:R_12(V2 'Jl)
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39 1 — 3
R12 R12 R12 R12

. dsl =0 (LISHH steady magnetic fields)
4z Ry, oJ oJ
J, =constant = =0, —X =0, 2z =
=0 Ox oy oz
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- Comparison of magnetic vector potential with electric potential

y :j HoJ .dv o V- pdv
T el 47R vl 4776, R

1
-> (Jx<—>p, Uy <> —, Ax<—>Vj

&y

% : :
V¥ === Poisson’s equation

€
(V2Ax :—,u,ojx
— Vsz :—,uojy = V4 :—,uoj
Vz142 :_luojz
VxH=Vx B = ! VxVxA
Ho  Hy
LW A)-viil=-Ltvii  (-v(v.d)=0)
H H
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[Ex.] Coaxial cable

—

At a<p<b, J=0 (in dielectiric)
—V?4=— ,uoj =0 (Laplace eqation) | -

In general, V?A=V?4.a. +V2Ayc7y +V’A4.a,

2 p 2 p 2 —
#V A,a,+V A,a,+V~A.a,

(But @, component is same in both coordiantes.)

V24| =V24 VA =puJ =0 (<— VA = V-VAZ)

(Since the coaxial cable is directed to z-axisand J.=01na < p <b, we can

z

consider only A= Aa, component.)

1 a( @AZ)+ 1 &*°4. 8°4

Z =(0 (" The current is varying for p,

— a— p a— 5 6 > + a > .
popP P p- 09 < symmetrical for ¢,

1 O 04 and constant for z.)
j;%(p 8,;):0 52/54



- General solution:

A =Clnp+C,=C, ln,0+g =C,[Inp+Ink]=C,[Inkp] s
C g
*Since 4, =0 @ p = b,
1
kb=1 . k=—
b
.'.AzzCllnE
- 1) o4 04, @A
VxA4= la\AZ’— a,+ L% J\AZ’@
pop oz )" \p oz Op
:_2AZC7¢=-C1'l'%5¢:'cl'la¢
P P P
:EZHOF[
. C, _
. H=-—"a, 53/54



HoP Hy
1
C, =—1ob
2
AZ:Clln'O—’uollnb
b T P
J7— a¢=ia¢
HoP 27p

[Ex.] A plot of 4, versus p for b = 5a

In—= In
2r P 2 p

=ﬂ{ln5+lna}:’u°[{ln5—ln£} o
27 Jo, 27

y ML bl Sa




