Engineering Electromagnetics

W.H. Hayt Jr. and J. A. Buck

Chapter 8:

Magnetic Forces, Materials, and
Inductance



8.1 Force on a Moving Charge

- Definition of electric field
intensity

F,=QOF

) F

E

}_;'; — Qth Zilt
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(F, //E,F = f(Q,E))

* Definition of magnetic field

intensity

charge 1s moving at velocity v in
magnetic flux density B
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Lorentz Force Law

Generally, with both electric and magnetic fields present, we have both forces:

B

The electric field will, in this
case, accelerate the charge in

the direction of E, making it
cross the B field lines in the
perpendicular sense; this gives a
magnetic force component that
is out of the screen

The total force on the moving charge is then the sum of the two, or

F=QE+vxB)

This 1s the Lorentz Force Law (sometimes called the “fifth Maxwell equation”)
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8.2 Force on a differential current element

* Definition force on a charged differential particle moving through a
steady magnetic field

dF = dOV x B

Py
Hall Effect

B z B

= t T —> 4 + T T —
i — »Fg + —Eg
y iy
@/ @/ @/ ! @/ @/ @/
7 71
(a) (b)
- Hole injection: VvV = M(—Eix) - Electron out-going: 7 = ‘\7‘ a.
F =Q(3xB) = Qfv|B|(-a, xa.) F=(-0)(#xB) = (-0)7|Bl(@a, xa.)
_o}¥8a, = Ol7|Bla,

* On electron moving, electron receive a
tension to right side. =» N-type 1/53
semiconductor

* On hole moving, hole receive a tension to
right side. =2 P-type semiconductor



Force on a Differential Current Element

z

0=p,Av “ Q=pAv=p ASAL

* In the time 1nterval At, the element of

g charge has moved a distance Ax,
5 AQ = p,ASAx
' ] - Let’s assume surface AS moves Ax for Az,
AQ=p,ASAy Al = %5’} = PVAS%@ = p,ASV,
s / == AT, J=pyv

—

X

- Since dQ = p,dv,
dF =dQ(¥ x B) = p,dv(V x B) = PO,V X Bdv = x Bdv
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* For different current elements (filament current, surface current, or
volume current),

IdL =KdS = Jdv
" dF =(JxB)dv =(KxB)dS =IdLxB
: (modified) Lorentz force equation (3, 2, 1- dimension)

(jxé)dv > F=f((orK,J), B)
(KxB)dS

ol
||

f[deB——]ﬁBde

* For straight line conductor in a uniform magnetic field

F=]LxB ( F=$IdLxB S 0180tE T2 £o X0l N2
CIACAUCID IIEE)

F = BILsin@
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|EX. 8.1] Force on a Square Current Loop

* Magnetic field produced 1n plane of loop by straight filament wire:

1 . IdLxa,

H=_" 5 ¢/ H= : dL=dy(-a,)
2x ( iﬂR d, =d, )
— 154 H=—.:ia
1—5512 [A/m] 2%’
27X
. . . 107°
By f=drx10"G=>"5
(3.1).{]:) X
. . 3x10°°
:§]dL>< :—]§Bde —(2x10~ )J- . de
3 / 3 /
:—(2><10_3) (3X10_6)[L—1 —xdya
+j —xdxa + O a—xdya]

x3x'\ y21|\ 6/53



[Ex. 8.1] Force on a Square Current Loop (continued)

_ o1
=—-6x10 9[lnx|1 +3y|0( a)+1nx|3 +y|2( a,)]

_ _6X10—9[ln3 C_iy —%C_ix +ln(%)c_iy +2C_ix]

=-8x107d_ [N]

8.3 Force Between Differential Current Elements

* Expression of the force on one current element directly in terms of
second current element without ﬁndmg the magnetic field. (=& 2#4)

— B HSFAM 5 15t current element 2F 22510 F ShA (7Y 2HA A

* Magnetic field at point 2 due to current element at point 1

d]jlz _ ]1dL1 Xfmz
4R,
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- Differential force on a differential current element

dﬁ = Idixf} ‘ = & point 12+0] Ot point 1S E & &t

— & XI0ll 2] 8F magnetic flux density

Whereas d B, : differential flux density at point 2 caused by current element 1

L . IdL, xd I, - .

d(dF,)=1,dL, xdB, = I,dL, x 1 Ry L2 gl x(dL, xa
(dF,) = 1,dL, » = 4adl, X l, 47Z'R122 H, 47Z'R122 2 ( 1 R12)

_ M, r T R LI, T o R

— Wk Izszx(IldleR ) ) IR dLgx(dleRlz)

A
(- dF, = I,dL, X B, 2tn

A2ret =2 A2 L} point 204 A 2 Free space

B & Yo7 MR}

ot H (point 1) O| 2 2) .
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[Ex. 8.2] Differential force at P,? s
[1di1 = _3c_iy @ P (5,2,1) | Pkg:agfiz) HodHy
R, oo
1dL, =-4G. @ P,(1,8,5) I
. . ~ ~ A L, T
R, =—-4d +6d, +4a, -
I,d/L{/
"~ Point 1
11 _ I, I, R
d(dF,) = p,—=% dL, X(dL XRIZ) . L, x 3dL o
A7 R, 47 R,
4rx x1077 (=4a.)x(=3a,)x(-4a, +6a,+4a.)
. 4r (16+36+16)"
- (—4a —12a. —12a .
:10 7X( aZ)X( az ax) :8.56X10_9Cly [N]

560.7
* Total force between two filamentary circuits:

. IL¢| - dL xdn, |  LL | pdg,xdl, | -
FZ_ILlO 472' ﬁ{dL X§ R212 _ll’lO 472' § XdLZ 9/53




* Force of repulsion between two infinitely long, straight, parallel,
filamentary conductors with separation d, and carrying equal but

opposite current /: /> k
' N

—~ /[ 11, \ —~ -

d(dF,) = dL., x(dL, xa
( 2)\ lu047ZR122| » X(dL X ag,,)
N~

= k(a,)x|(-a,)x(@,)]
= k(d,)x (-d.) = ka,
I

H,=——(-a.) I, ol 2501 point 2 0fl A
27 Y J)| = magnetic field intensity)

] — A *
Ho d_) (Straightconductor line 0|22
2rd F=¢IdLxB=—-I[BxdL
> F=ILxXB)

F, = §>12di><1§2 = §12di><(—

)i 2
— ]C_ix X (_ lLlO C_iz) — IUOI Zi
2rd 2rd 7
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8.4 Force and torque on a closed circuit

* Force exerted on current system:
‘ﬁ:—1§§xdi
For an uniform magnetic flux density,
F=-IBx$dl — ~—— §dL=0
=0 (IdL=KdS =Jdv are all applicable.)

. The force on a closed filamentary circuit in a uniform magnetic field is zero.
But the torque is? (Not ‘0”) 3

* Torque (or Moment, 3| & &

TA
I'=RxF
(RE2E2RHE PO O|2&= 0 -
: sl R
g | %% s 10 A B ;
TOR= Mef 2™ | AEE AEE gol A, P



. ﬁl @ P, — lever arm ﬁl

ﬁz @ P, — lever arm ﬁz

Common origin: O

Object does not undergo any translation.

T=R; xF,+R, xF>,

where F; + F,=0
T:(RI _Rz)XFl :R21 XF1

=>» Independent of the choice of origin for 1_2)1 and I_?)z.

(R,4 1s a relative distance and not relative on an origin.)

=>» The torque is independent of the choice of origin if total force 1s
7ero. 12/53



Torque on a Differential Current Loop

* Consider the torque on a differential current loop in a magnetic

field B.
- Magnetic flux density at center: B, & / / ’
- Since the loop 1s of differential size, 4 5 Y4

the value of B at any points of the / /

loop can be assumed as B,.

* Vector force on side 1:

dF, =Idxd_xB, <+~ F=ILxB8
= ldxa, x(B,.a,+ By d,+ B,.d

Since R, =—%dyay,

- - ~ 1 . R R
dﬂ:RlxdE:(—Edyay)x]dx(B a —B, ad.)

0y~"z 0z""y
1

= —dedyl B,.a, 13/53



* By the same procedure on side 3,

d7. = R. xdF. :(1dyzi Vx[(—Idxd,) (B, d, + By, d, + B,.d.)]

_( dyi,) [—Idx(Boy i, - B,.d,)]

= —;dxdleoy =dT

" dT +dT, = —dxdyIB, d

ny

e
* By the same procedure on side 2, /

dT R xdF ( dxd ) X [(Idya )x(B,.a_+ Boy5y+30252)]

X

—( dxi_) [Idy( B, a +B,ad)| =

Ox™"z 0z""x

dxdylB, a = a’T

0x™"y

l\)lv—*

. dT, +dT, = dxdyl B, a,
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- Total torque:

dT = dT, +dT, + dT, + dT,
= ldxdy(—B,,a, + B,.a,
= Idxdy(az X BO)
= I|(dxdya.)x B,] = I|(dxa, x dya,) = B, ]

a )=Idxdya. x(BOxax+BOy , +B,.a.)

= [(dS x B,) = 1dS x B,

where dS : vector area of differential current loop

- Differential magnetic dipole moment: dm [A: m?]

din =1dS
dT = dimx B
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* Similar procedure in E -field,

dT = dp x E Torque produced on differential electric dipole
by an electric field

* Torque on a planar loop of any size or shape in an uniform
magnetic ﬁe ld /vmagnetic dipole moment

T=ISxB :@x B
(loop T F0 2[slf 47[= AA L= | O XA &t EXAZ| =8 (T &/

loop= 2| T A|7|2=) 2 H0| 75 &
— The easiest way to determine the dlrection of the torque

I i s e
B”T@, ”] BB 16/53



[Ex. 8.3] Calculate the torque by using T = IS x B.

B, = -0.6a,+0.8a,T

T =4 x 107°[(1)(2)a,] x (—0.6a, + 0.8a,)

=4.8a, mN - -m

(Thus, the loop tends to rotate about an axis
parallel to the positive x-axis. The small
magnetic field produced by the 4 mA loop

current tends to line up with B.)

[Ex. 8.4] Decomposite solution

- On side D, 131 — IZI x EO =(4x107)a_ x (—0.6d, +0.84a,)
=(-2.4a,-3.2a,)x10” [N]

- Onside @), F, = IL, x B, =4x107(-d ) x(-0.6d, + 0.8d.)

_ ~ — -3
—(2.4az+3.2ay)><10 IN] 1753



*Onside @, F, =1L, x B, =(4x107)(2d,)x (0.6, +0.8a,)
=6.4a_x10" [N]
-Onside @, F, =L, xB, =—6.4d_x10" [N]

* Since these forces are distributed uniformly along each of
the sides, each forces were applied at the center (1/2, 1).

T=T+T,+T,+T, =R xF +R,xF, +R,xF, +R,xF,
=[(-1a,)x(-3.2d, —2.4d,) +(0.5d ) x (6.4d,)
+(1d,)x (3.2d, +2.4a.) +(-0.54,) x (~6.4d )] x 107
= (2.4d_+2.4d )x107
=4.8x107 4. [N/m]

B)=—0.6a,+0.38a,T

N
=» Same result with Ex. 8.3 © ‘@\ ©

/ Tk (1,2,0) 18/53




8.5 The Nature of Magnetic Materials

1) The 1%t moment in magnetic fields

 An electron 1n an orbit 1s analogous to
a small current loop.

— T occurs due to T=ISxB .

— The torque tend to align the magnetic
field produced by the orbiting election I
with the external magnetic fields.

2) The 2™ moment is attributed to electron spin
dm =19 x 107 4-m”> : spin magnetic moment e

—|:> alignment aiding or opposing an external

magnetic field.

3) The 3" moment is caused by nuclear spin. = Negligible effect
19/53



Magnetic Material Summary

Classification Magnetic Moments B Values Comments
Diamagnetic Mo + Mgpin = 0 Bint < Bappl  Bint = Bappl
Paramagnetic Moh + Mgpin = small — Bige > Byppl Bint = Bappi

: Ferromagnetic |mgpin| > Mg | Bint > Bappi  Domains -i
Antiferromagnetic  [mgpin| > [Mo | Bint = Bappt  Adjacent moments oppose
Ferrimagnetic [mgpin | > (Mg | Bint > Bappt  Unequal adjacent moments

oppose; low o

Superparamagnetic  [Mgpin | >> [Mop | Bint > Bappi Nonmagnetic matrix;
recording tapes
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8.6 Magnetization and Permeability

- The magnetic dipoles act as a distributed source for the magnetic
field.

cf.) Electric dipole: P = Od = 1.6,E

Electnc ﬂux density in dielectric materials
o +P= 50E+;5650E A+ y,)eE=¢.¢ E

. Eshshadodo bt @@
x Ty
%ﬁa') %6@@@6@6@@@6@ i

ﬁfm felol elelolililele m
ﬂéﬁé‘&
@ % 6666666666 @66 I%

* Movement of bound charges (orbital electrons, electron spin,

nuclear spin): bound current or Amperian current

— A new field cause by the bound charged currents has the same
dimension of A and is called the magnetization M. 21/53



Magnetic Dipole Ensembles

* Consider a bound current, /,, surrounding
a differential area, dS.

* Magnetic dipole moment:
m = Ide

 Consider n maggetlc dipoles per unit volume and volume Av
nay ... ===

Myota] = Z m; //&\O‘%\\\ \\\\\
Cb A\IU ///// O‘O;\\\\
- Magnetization M magnetic dipole l%’ & - O‘ O‘ O‘\

moment per unit volume \ Q, I )
as the volume shrinks to a point % ﬂ\ ST |

nAv AN
— m

// \ II
\\\\\ e \\ O‘//
M = lim —2% = lim — E m, [A/m] O~
Av—0 AV Av—0 AV AN 7

- If all have the same or1entat10n the magnetization 1s 51mplfﬁed as
M = nm = nlpdS 22/53

ds

1




Bound Current Formulation

- Identical magnetic moments (771, n per unit volume) makes an angle
0 with the element of path dL.

* m consists of a bound current /, circulation about an area dS'.

- Differential bound current, crossing the surface along length dL:

dlp = nly dS-dL = M dL

—— v (Magnetic momentE 2 2| =
f M &EF (nl) S0 L 2SO 2
Differential volume, dv EAEl 4,02l bounded current2

Dipole current per unit volume ed)
[p = % M-.dL (21) :within and entire closed contour

(bounded 8 F It & Alz =& 0|=
(conduction 8 =) H & MM FD=E d=2=2 &)

End area is

dS cos 6
2
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General Relation Between B and H 1n specific media
except free space

* The total current (I;)in a general medium consist of the sum of bound
and free currents

* Defining B as the fundamental magnetic field quantity, Ampere’s
Circuital Law for the total current becomes:

B
—'dL:IT :IB—|—I
Ho
- Total free current (I):
B
ng-dL — I=IT—IB:y§(——M) - dLL
HO
B
Thus: H= — —M ...and finally: B= M H+M)
Ho

24/53



* Current and Related Current Densities with Stoke’s theorem

[=¢H-dL=|(VxH)-dS
Iy =1+, — fﬁ ] J (V<)
=\|J-dS
Bound Current: [p :/JB - dS (21)
=4‘>M-di=j(wz\2)-d§ S VxM=J,

Total Current: [ = / Jr - dS (22)

—_ —_—

=<_[>£-di=j(w£)-d§ Svx
Hy H Hy

Conduction Current: | = / J-dS (26)

J

zg(;?l-dizj(vXH).dE > VxH=J

25/53



- Relation between B JH , and M

M=y, H
f

for linear 1sotropic media

magnetic susceptibility function

(frequency domain)

B = ﬂo(ﬁ+lmﬁ) = :Uo(1+)(m)]j[ = ILlOILlFﬁ

where y, : magnetic susceptibility
w.=1+y :relative permeability

* Permeability: (L = [LolLr

* Consequently:

B

uH

26/53



[Ex. 8.5] Ferrite material (¢, = 50). |B| = 0.05 [T]

(isotropic material O| 2 2 vector2 H7|StX| &
H//B//M)

=796 [A/m]

Yon = 1ty — 1 =49
B 0.05
popt, 4w x107" x50

M=y H=49H =39000 [A/m] (>H)

H =

=>» Magnetic flux density depends on the motion of the
bound charges mainly

* Permeability of an anisotropic magnetic material

B =p H +pu H +pu H, = [B]=[ul[H]
Bz — luszx + luzyHy T luZZHZ _§ermeability
tensor

B.=p M +p H +p H

B=u,(H+M):valid (H kB, H# M, B ¥ M) -



8.7 Magnetic (Field) Boundary Conditions

- Two 1sotropic homogeneous linear material with permeabilities y;,
and (.

* Boundary condition for normal component of B
(with Gauss’ Law )

fB-dS:O
S

BnyiAS — ByoAS =0

@h—0 N
Bx> = Byt | The normal compbhent of B 1s continuous across a boundary
H1
= Hpyp = “_HNl — M= xynH
2
My, H M, _ZleLll

28/53



- Boundary condition for tangential component of H with
Ampere’s circuital law

§H-dlL=H,AL+H, Ah—H ,AL—H ,Ah=1

lim ¢ 4 -dL = H,AL— H ,AL = KAL

Ah—0

where K: surface current density #!

Hy — Hpp = K
* More generally: )
K
H - H — K — —
i 2) XA ’(Htl _th)

or H;; —Hy =anyie XK

K

N12 29/53



>~
|
|

 An equivalent formulation % >(H,-H),)

H,—H,=dy,xK Ay,
B, B M M

“——==K  « B=pyuH=pu —=p—
ll’ll /’12 Zm Zm
% Mtl ’}l\z Mt2

1

Zml . ZmZ :K

MR

Mtz = Ln Mtl _ZmzK
%ml

30/53



[Ex. 8.6] 1y =4 [uH/m] @ z>0 (region 1)
W ="7[uH/m] @z<0 (region 2)
K =80d, [A/m] @z=0, B =2ad,-3d,+d [mT] B,=?
= By = Bi-ayn)ay, =[(2a, —3a, +a;)-(—a;)[(—a;) =a, mT
By =By =a, mT

Btl - B1 — BNI - Zax — 3ay mT

. Ba_ (a —3a)107
e wy 4 x 10~

H[2 - Htl — an12 X K = SOOax — 7503y — (—az) X SOax
= 500a, — 750a, + 80a, = 500a, — 670a, A/m
B;, = oHy =7 x 107°(500a, — 670a,) = 3.5a, — 4.69a, mT

= 500a, — 750a, A/m

]_3)2 — BN2 + Bt2 — 3-533: T 4'693‘y T ay m 1 31/53




8.8 The Magnetic Circuit

* Relationship between the electrostatic potential and electric field intensity:

E=-VV

- [ts analogous relation to the magnetic field intensity.

where ¥ : scalar magnetic potential or magnetomotive force (mmf)
- Electric potential difference between A and B
B
Vg :[ E.JI, (Ol 820 F32h
A
By the corresponding relation between the mmf and H :

B
Vg = f H.JdL (E3 O|E A2Z X|H8M specific value 2HA)
A

32/53



- Ohm’s law for electric field: J = ocE

- The magnetic flux density will be the analog of the current density.
B =uH
- Total (electric) current: | = / J-dS
S

< Total magnetic flux flowing through the cross section of a

magnetic circuit
O = / B - dS
S

» Resistance: V = IR
< Reluctance: V =0R

> [a- turn/Wb]

V . .
R = —=: aratio of magnetomotive force (mmf) to total flux

D 33/53



Reluctance as an Analogy to Resistance

d d
R:— A xd Eﬁ:—
o) wS

where d: 1sotropic homogeneous material length

S: uniform cross section

* Source voltage 1n electric circuit: % E-dL =0

=» KVL: The rise in potential (electromotive force, emf) through the
source 1s exactly equal to the fall in potential through the load.

o fH-dL = o

(= NI) (in case of a current / flown through an N-turn coil)

B
Vinap = /A H-dL : This quantity is the mmf around a closed path,

which we use as V,, in our magnetic circuit equation. 14/53



[Ex.] N=1500 turns, S=6 cm?, r=15cm, / =4 A, Toroid

H
%4 =<j>1§rdL NI=500x4=2000 [A-t] <« mmf
d

R = = 27x0.15 =1.25x10" [A-t/Wb] <« reluctance

uS  4rx107 x6x107"

D = & = 2009 =1.6x10"° [Wb] <« total flux

R 1.25%x10’

-6
B= i = 1.6x10 =2.67x107 [T] <« magnetic flux density

S 6x10™ 35/53




[Ex.] (Continued)

-3
H = b = 2:67x10 =2125 [A-t/m] <« magnetic field intensity in free space

u 4rx107’

By Ampere’s circuital law,

H,2zr=NI
H, =22 2002 5192 [A-tm] similar
2nr 27 x0.15 results

* Ferromagnetic materials (general material): |m_ . | )) |m,,, |

1.2

In ferromagnetic materials, B

increases with increasing H,

06 f—f— | . but in a nonlinear manner as
/ shown 1n the typical curve

1.0

—~ 0.8

—_
L
—
o

0.4

0.2

0
0 100 300 500 T00 900
H(A-t/m)

FIGURE 9.11 Magnetization curve of a sample of silicon sheet steel. 36/53



A Further Complication: Hysteresis

Domain wall shifting in ferromagnetic materials introduces
semi-permanent magnetization states that are slow to respond to
changes in applied magnetic fields. The resulting magnetization
curve demonstrates the Aysteresis phenomenon as shown here.

Decreasing the applied H field to zero leaves many

dipoles still aligned, and we have the remanant

magnetic flux density (&4 flux 2 &), B,. The

material has become a permanent magnet.

> 3

Increasing H to high positive values lines up all
magnetic moments, and a single domain 1s

left (in the extreme case). The core is thus in
saturation. Furtherincrease in H leads to an
increase in B through the free space permeability

\

Coercive field in transistioning
B from negative to positive values

T /

The remanant flux density is reduced to zero by applying
an opposing magentic field strength, -H, known as the
coercive field (or coercive force, 2 A} ).

/

Increasing H to high negative values again
leads to saturation

—B

¥
\ Remanant magnetic flux density, for increasing H
field from negative to positive values

-—B

X

37/53



[Ex. 8.7] Toroid, d(air gap) =2 mm, N = 500 turns, S =6 cm?, r =
15cm, /=7 (To establish a magnetic flux density of 1 [T])

-3
>R = v _ 2x10 =2.653x10° [A-t/Wb] <« Reluctance

“uS  4rx107x6x10™
®=BS=1x(6x10"*)=6x10"  [Wb]
V. =0OR_=(6x10")x(2.653x10°)=1592 [A-t]

m.dair

From Fig. 8.11, H=200 [A-t/m]at B=1 [T]

Hsteel =200 [A ¥ t/m]

Vs C.[)H dL=H -(mx2r)=200x(7rx2x0.15) g
=188 [A-t]

Vo=V _+V ., =1592+188=1780 [A-t]

= NI
[=V |/ N=1780/500=3.56 [A] 38/53



[Ex. 8.8] Given a coil current 4 A 1in previous example, B="?

= V. =NI=500x4=2000 [A-t]
In the previous example, V,

m,steel
R =0.313x10°

R =R __+R_=296x10° [A-t]

V =®-R,  =2000

®=2000/R,,, =6.76x10"* [Wb]=8B-S
B=6.76x10"*/S5=1.13[T]

=188 =D- R =6x10"*R

steel steel

steel

steel

39/53



8.9 Potential Energy and Force on Magnetic Materials

* Work necessary to bring the prerequisite point charge from infinity
to their final resting places:

1
WE:/§D-Edv J

" Total energy stored in a steady magnetic field i which B is linear
to H (in linear media):

P :
W,=—| B-Bdv =—[ ul’dv =] 2 ay
2V0 2V0 2V0 ﬂ

/

[t 1s convenient to think that of this energy as being distributed

: § e =a X
throughout the volume with an energy of 5 B - H [J/m?].

40/53



touching

[EX] n turns /m i plane
* Apply a mechanical force to —o0 — / A — »
separate these two sections of

the core while keeping the flux
density constant: /' over distance dL nl [A-t/m]

* The magnetic flux density can be obtained from magnetization
curve for silicon steel.: By,

- Work moving one core appears as stored energy in the air gap

1B, , 1B .
dW, = FdlL =———dv=———SdL where §: core-sectional area
5 2 2,
o B S
244
1.4°S

[Ex.] IfB=14[T], F =7.8x10°S [N]

B 2x 47 x107"
41/53



8.10 Inductance and Mutual Inductance

. % . L
- Resistance (R = 7) : The ratio of potential difference between two

equipotential surfaces of a conducting material to the total current

. . . . d . .
crossing either equipotential surface. (R = — | geometric function)

* Capacitance (C = %) : The ratio of total charge on either of two

equipotential conducting surface to potential difference between
S
surfaces. (C = EE)

* Consider a toroid of N-turns in which a current / produces a total
flux ®. =» (Total) Flux linkage (1) :

A=ND
* (Self-) Inductance (L):
A N®

L=-= ry for linear magnetic material only.
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|EX.] H,=—— (a<p<b) incoaxialcable _____———_
TP
d I N
. Loud [
B=pu,H = a B R
. 1 ld
D= | B-dS:jdjb”O i -dpded =242 e
s 0da2mp ” 2 a
L= A0 5 lné [H] < coaxial cable®| 2= N =12 7}4
I I 27 a
Ho, b . ,
=—In— [H/m] < 1inductance per unit length
2 a
[Ex.] Toroid coil of N-turns, current: /;, mean toroid radius: p,
z
u,N1 u,NIS L
B, ="" ® =" «®=[B-dS
27 p, 27 p,
;_NO _ N °S
N turns ] 272-p0 43153



Y

L In— [H] < coaxial cable®| == N =1% 7}4
I I 2r a
My b . .
=5 In— [H/m] <« inductance per unit length
T a

[Ex.] Toroid coil of N-turns, current: /, mean toroid radius: p,

Z
NI u,NIS L
B, =L ® =" «®=[ B-dS
2 p, 27 p,
;_NO_ u,N*S
N turns [ 272-’0 0 44753



Departure from the Ideal

" In reality, flux density generated by each
turn may not link the entire coil. Such

Jringing fields may link only one or two | ¢
turns. /i

" Total flux linkages:
(ND)yy =P, + D, + D3 + -+ D,

N
— Z(Di
=1

where @ flux linking the i*" turn

* An equivalent definition for inductance
2W 1
L= ]ZH (< W, = 5L[z)
where [I: total current flowing in the closed path
W,. energy in the magnetic field produced by the current™
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&

L = Iz (<« W, EL])
[Proof] 1J_ ~
2 - Hdv B-Hd
2 Vo v =g —
[ = VIZH — 2 12 :Ivol - «— B=VxA
1 1 1
_ 1 H-(VxAydv «<V-(AxH)=H - (VxA)—A-(VxH)
[? ol
1T .. _ .
=7 jvolV-(AxH)dv+jvolA-(VxH)dv
1T o o oo 1, - -
:I_2_<ﬁS(AxH)-dS+jWA-JdV} :FJWA'MV
= magnetic energyg 21 U= M A element= 2 ZE oA & 2|9
|5 3= 285, I =™ & M0|= magnetic flux densityZ} ‘<0°’0|E 2
=V X

™ | HO| =
VxA=pu,H=0),HIHHMA=0=H)

o)
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[Proof (continued)]

LZLz l( Mdvj-idv «Jdv=1dL

_ [12§[§ ﬂ]dL] ]d[_: 47[ [§ CZ’J dL (= f (distribution of current

in space))

Let hypothesize a uniform current distribution for simplicity.

L—L2 A- Jdv-—2§2-[dz :l Edi «— Stoke’s theorem
[ vol ]
- = le= = @
:;IS(VXA)dS :;-[SBdSZT [H/turn]

When the closed line integral consist of NV laps about this common path.

L = E [H] (Proven) 47/53
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Two Inductors

Suppose we have two solenoids, having different specifications as indicated:

B,, The self linkage and self inductance of each coil are determined in the manner
L that we used before, assuming identical fluxes through each turn.
Aog = No®oo = Ny / Bos - dS»
d, N, S2
A22 259
S I, and Loy = — = N22 H
15 d2
B,
b A1 = NPy = Nl/ By - dSy
S1
d,
N
& L — Al N2 p1S1
an 1l = —F =
o I, 1 1 1 dl
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Interaction Between Inductors

Actually, the magnetic fields generated by each coil will link the other,
as shown here. This flux overlap is the basis of mutual inductance.

Throughout this discussion, the field in red is that generated by Coil 1,
while the blue field is generated by Coil 2

With both currents on, all the fields indicated here will be present.

The fields and other quantities are kept track of by the subscripts,
the meaning of which is:

B

L]
arising / \ evaluated
from coil i within coil j
ij=1,2

Note that the diagrams shown here are oversimplified, because there will
be significant spreading of the crossover fields, B, and B, . 49/53



* Mutual inductance between circuits 1 and 2: M,,
N 2CD12
] 1
where @,,: flux produced by /, which links the path of the

filamentary current /,
N2° # of turns in circuit 2

M12:

M, = jvoz (B -H ,)dv « LzzzH.Aoﬂ 93l magnetic flux

L
A7 wAee] A% 47h B2E R
1 L 7Y T

where Bj: field resulting from 7/, with 7, =0
§2: field resulting from 7, with 7, =0

1 1 o o 1

o M12 —_ (#H1 HZ) =Ty ¥ (MHZ ) Hl) —~ 3 T (E)z | ﬁl)
1211 vol 1211 vol
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|[Ex. 8.9] Two coaxial solenoid of radius R, R, (R, > R,) carrying
currents /, and 7, with n,, n, [turns/m]

ay By, B
A 21
LT | —M
< > ‘ |
<:’i\l_ 0 | |
Nl_)<::|1\_ )]1
jauss= | 4 N, — .,
N, : [
] I I ’ N2—>
<; i )
S, S,
i
Bll
=g _nra ( R H,=n,l.a. (0<p<R))
1= y a =nda, (0<p<R)) » = Hyl,)d, P 2

=0 (p>R)) =0 (p>R,) 51/53



For uniform field,

) o | (B, -H,)dv
O, =unl 7R, <—CD=_[B-dS,M12= —
12
B, (H)-field &2 Jt5 @S0/ 0<p<R, 0|2,
coupling 3= 0<p <R, &.
2
(uond, TR, )(n,1,) 2
M,, = = Mo 1,7 R
1,1,
Similarly,

b, = puyn, i, ”Rlz

\ B, (BI= L 0l 2ol flux)t zR,> 2t2 LMol &
2AEC HA 7R 2= 8,23 B fluxJt M W It S)
2
M. = (o, LR )(n, 1))
21
[2]1

_ 2 _
= uohn, R =M,
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If N, = 50 [turns/cm], N, = 80 [turns/cm], R, = 2[cm], and R, = 3[cm],
M, =M, =47x107 x5000 x8000 x 7 x0.02*> =63.17x10~ [H/m]

I = n,®@, B n,B,S, B nu,H\S, B nlluonlllﬂ-Rlz N,
1 - - = (<—=n,)
[1 [1 [1 [1 d
=n u,mR} = 5000° x 47 x 1077 x 7% 0.02° =39.48 x 10~ [H/m]
L, = nzz,uOS2

2 2
=1, TR,

=8000° x 47 x107”" x7x0.03* =227.4x10~ [H/m]
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