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8.1 Force on a Moving Charge
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Lorentz Force Law

Generally, with both electric and magnetic fields present, we have both forces:

E
+

B

vQ

The total force on the moving charge is then the sum of the two, or

This is the Lorentz Force Law (sometimes called the “fifth Maxwell equation”)

The electric field will, in this
case, accelerate the charge in 
the direction of E, making it
cross the B field lines in the 
perpendicular sense;  this gives a
magnetic force component that 
is out of the screen
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8.2 Force on a differential current element

Hall Effect

Definition force on a charged differential particle moving through a 
steady magnetic field
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On hole moving, hole receive a tension to 
right side.  è P-type semiconductor

Electron out-going:  

On electron moving, electron receive a 
tension to right side. è N-type 
semiconductor
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Force on a Differential Current Element
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For different current elements (filament current, surface current, or 
volume current), 
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: (modified) Lorentz force equation  (3, 2, 1- dimension) 

ò ´=
vol

dvBF )J(
rrr

òò
ò

´-=´=

´=

LL

)K(
rrrr

rr

dBIBId

dSB
s

)),,or (( BJKIfF
rsrr

=è

For straight line conductor in a uniform magnetic field
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[Ex. 8.1] Force on a Square Current Loop

Magnetic field produced in plane of loop by straight filament wire:
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[Ex. 8.1] Force on a Square Current Loop (continued)

])(||ln)(|
3
1|ln[106 0

2
1
3

2
0

3
1

9
xyxy ayaxayax rrrr

-++-+´-= -

]2)
3
1ln(

3
23ln[106 9

xyxy aaaa rrrr
++-´-= -

xar9108 -´-= [N]            

8.3 Force Between Differential Current Elements

Magnetic field at point 2 due to current element at point 1
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aR12

dH2

Differential force on a differential current element
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aR12

[Ex. 8.2]  Differential force at P2?
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(I1에의하여 point 2 에서
느끼는 magnetic field intensity)

Force of repulsion between two infinitely long, straight, parallel, 
filamentary conductors with separation d, and carrying equal but 
opposite current I: 
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8.4 Force and torque on a closed circuit
Force exerted on current system:

L
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For an uniform magnetic flux density, 
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⸫ The force on a closed filamentary circuit in a uniform magnetic field is zero.
But the torque is? (Not ‘0’) 

Torque (or Moment, 회전력)
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rrr
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                 동그라미 그릴 때 중심에서는 

                    자리를 지키려는 힘이 작용. 
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where F1 + F2 = 0
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Torque on a Differential Current Loop
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By the same procedure on side 3, 

⸫
By the same procedure on side 2, 

⸫
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magnetic dipole moment 
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[Ex. 8.3]

[Ex. 8.4] Decomposite solution 
On side ①,

On side ③,
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On side ②,

On side ④,

Since these forces are distributed uniformly along each of
the sides, each forces were applied at the center (1/2, 1).
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8.5 The Nature of Magnetic Materials

1) The 1st moment in magnetic fields
An electron in an orbit is analogous to
a small current loop.
→ occurs due to .
→ The torque tend to align the magnetic

field produced by the orbiting election
with the external magnetic fields.

T
r

BSIT
rrr
´=

2) The 2nd moment is attributed to electron spin
224109 mAmd ×´±= -r

: spin magnetic moment 

alignment aiding or opposing an external 

              magnetic field. 

3) The 3rd moment is caused by nuclear spin. è Negligible effect
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Magnetic Material Summary
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8.6 Magnetization and Permeability
The magnetic dipoles act as a distributed source for the magnetic
field.
cf.) Electric dipole:

Electric flux density in dielectric materials
0eP Qd Ec e= =

rr r

 EEEEPDD ree
rrrrrrr

00000 )1( eeecece =+=+=+=

vD

E

Movement of bound charges (orbital electrons, electron spin,
nuclear spin): bound current or Amperian current
→ A new field cause by the bound charged currents has the same

dimension of and is called the magnetization . H
r

 M
r
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Magnetic Dipole Ensembles

Ib

m

dS

Consider a bound current, Ib, surrounding 
a differential area, dS.  
Magnetic dipole moment:

Consider n magnetic dipoles per unit volume and volume Dv

Magnetization     : magnetic dipole 
moment per unit volume 
as the volume shrinks to a point
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If all have the same orientation, the magnetization is simplified as
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Bound Current Formulation
Identical magnetic moments (    , n per unit volume) makes an angle 
θ with the element of path dL. 

consists of a bound current Ib circulation about an area      . 
Differential bound current, crossing the surface along length dL:

End area is

 mr

 mr  Sd
r

Dipole current per unit volume
Differential volume, dv

(Magnetic moment를일으키는
전체전류 (nIb) 중에 dL방향으로
투영된 n개의 bounded current를
고려)

(bounded 전류가실제로움직이는
(conduction 전류) 궤적전체에투영된성분들의합)

(21)    : within and entire closed contour
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General Relation Between B and H in specific media 
except free space

The total current (IT)in a general medium consist of the sum of bound 
and free currents

Defining B as the fundamental magnetic field quantity, Ampere’s 
Circuital Law for the total current becomes:

=

Thus: …and finally:

Total free current (I):
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Current and Related Current Densities with Stoke’s theorem

Bound Current:                                             (21)

Total Current:                                               (22)

Conduction Current:                                     (26)

IT = I  + IB
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Relation between , , and

for linear isotropic media

magnetic susceptibility function
(frequency domain)

where  χm: magnetic susceptibility
μr = 1 + χm : relative permeability   

Permeability:

Consequently:

 HHHHB rmm

rrrrr
mmcmcm 000 )1()( =+=+=
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[Ex. 8.5] Ferrite material (μr = 50). |B| = 0.05 [T]
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Permeability of an anisotropic magnetic material
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8.7 Magnetic (Field) Boundary Conditions

Two isotropic homogeneous linear material with permeabilities μ1
and μ2. 

Boundary condition for normal component of B
(with Gauss’ Law )

@ h → 0

è The normal component of B is continuous across a boundary.
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Boundary condition for tangential component of H with
Ampere’s circuital law

K
where K: surface current density

or
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An equivalent formulation )( 21 tt HH
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[Ex. 8.6] m1 = 4 [mH/m]  @ z > 0  (region 1)
m2 = 7 [mH/m]  @ z < 0  (region 2)

1 280 [A/m] @ 0, 2 3 [mT] ?x x y zK a z B a a a B= = = - + =
r r rr r r r

è

⸫
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8.8 The Magnetic Circuit

Relationship between the electrostatic potential and electric field intensity:

Electric potential difference between A and B
(이동 경로에 무관)

(특정 이동 경로를 지정하면 specific value 발생)
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Total (electric) current:

Total magnetic flux flowing through the cross section of a 
magnetic circuit

Ohm’s law for electric field:

The magnetic flux density will be the analog of the current density.

Resistance: 
Reluctance: 

[A · turn/Wb]

ÂF=mV

 

F
=Â mV

: a ratio of magnetomotive force (mmf) to total flux
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Reluctance as an Analogy to Resistance

where d: isotropic homogeneous material length
S: uniform cross section

Source voltage in electric circuit:

è KVL: The rise in potential (electromotive force, emf) through the 
source is exactly equal to the fall in potential through the load.

(= NI) (in case of a current I flown through an N-turn coil)

: This quantity is the mmf around a closed path, 
which we use as Vm in our magnetic circuit equation.
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[Ex.] N = 500 turns, S = 6 cm2, r = 15 cm, I = 4 A, Toroid
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[Ex.] (Continued)
 

space freein intensity  field magnetic ]t/mA[2125
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BH

By Ampere’s circuital law,
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Ferromagnetic materials (general material):

: similar
results

 ||    || orbspin mm rr
ññ

FIGURE 9.11 Magnetization curve of a sample of silicon sheet steel.

In ferromagnetic materials, B
increases with increasing H,
but in a nonlinear manner as
shown in the typical curve
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A Further Complication: Hysteresis
Increasing H to high positive values lines up all
magnetic moments, and a single domain is
left (in the extreme case).  The core is thus in 
saturation.  Furtherincrease in H leads to an 
increase in B through the free space permeability

Increasing H to high negative values again
leads to saturation

Domain wall shifting in ferromagnetic materials introduces 
semi-permanent magnetization states that are slow to respond to 
changes in applied magnetic fields.  The resulting magnetization 
curve demonstrates the hysteresis phenomenon as shown here.  

Decreasing the applied H field to zero leaves many 
dipoles still aligned, and we have the remanant 
magnetic flux density (잔여 flux 밀도), Br .  The 
material has become a permanent magnet. 

The remanant flux density is reduced to zero by applying
an opposing magentic field strength, -Hc known as the 
coercive field (or coercive force, 보자력). 

Remanant magnetic flux density, for increasing H
field from negative to positive values 

Coercive field in transistioning
B from negative to positive values
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[Ex. 8.7] Toroid, d(air gap) = 2 mm, N = 500 turns, S = 6 cm2, r =                     
15cm, I = ?  (To establish a magnetic flux density of 1 [T])
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[Ex. 8.8] Given a coil current 4 A in previous example, B=?

è Vm = NI = 500 ´ 4 = 2000 [A×t]
In the previous example,  steelsteelsteelmV Â´=Â×F== -4

, 106188
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8.9 Potential Energy and Force on Magnetic Materials

Work necessary to bring the prerequisite point charge from infinity 
to their final resting places:
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[Ex.]

Apply a mechanical force to 
separate these two sections of 
the core while keeping the flux 
density constant: F over distance dL

The magnetic flux density can be obtained from magnetization
curve for silicon steel.: BST

Work moving one core appears as stored energy in the air gap
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[Ex.]  If B = 1.4 [T],
 

][N      108.7
42

4.1 5
7

2

SSF ´=
10´´

= -p
41/53



8.10  Inductance and Mutual Inductance

Consider a toroid of N-turns in which a current I produces a total 
flux Φ. è (Total) Flux linkage (λ)

 F= Nl
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[Ex.]
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[Ex.]   @   in coaxial cable
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[Ex.] Toroid coil of N-turns, current: I,  mean toroid radius: r0
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Departure from the Ideal
In reality, flux density generated by each 
turn may not link the entire coil.  Such 
fringing fields may link only one or two 
turns.

where Φi: flux linking the ith turn

Total flux linkages:
 

å
=

F=

F+××××+F+F+F=F
N

i
i

NN

1

321total)(

An equivalent definition for inductance
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where  I: total current flowing in the closed path
WH: energy in the magnetic field produced by the current45/53



[Proof]
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[Proof (continued)]

Since                               (7.51),

(= f (distribution of current 
in space))
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Let hypothesize a uniform current distribution for simplicity.
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When the closed line integral consist of N laps about this common path.
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Two Inductors

N2

S2 I2

B22

d2

N1

S1 I1

B11

d1

Suppose we have two solenoids, having different specifications as indicated:

The self linkage and self inductance of each coil are determined in the manner
that we used before, assuming identical fluxes through each turn.

Coil 2

Coil 1

and

and
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Interaction Between Inductors

N2

S2 I2

B22

d2

N1

S1 I1

B11

d1

B12

B21

Actually, the magnetic fields generated by each coil will link the other,
as shown here.  This flux overlap is the basis of mutual inductance.

Throughout this discussion, the field in red is that generated by Coil 1, 
while the blue field is generated by Coil 2

With both currents on, all the fields indicated here will be present.
The fields and other quantities are kept track of by the subscripts, 
the meaning of which is:

Bi j
arising 
from coil i

evaluated 
within coil j

i, j = 1, 2

Note that the diagrams shown here are oversimplified, because there will
be significant spreading of the crossover fields, B12 and B21 . 49/53



Mutual inductance between circuits 1 and 2: M21
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where Φ12: flux produced by I1 which links the path of the 
filamentary current I2

N2: # of turns in circuit 2
 

ò ×= vol dvHB
II

M )(1
21

21
12

rr

 
ò ×= vol dvHH

II
)(1

21
21

rr
m

¬ 2
2

I
WL H= . I1에 의해 magnetic flux  

1B
r
가 발생하여 전류 I2가 흐르는 곳에  

영향을 미치는 것. 
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[Ex. 8.9] Two coaxial solenoid of radius R1, R2 (R2 > R1) carrying 
currents I1 and I2 with n1, n2 [turns/m]
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For uniform field,
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B1 (H1- field 발생가능영역이 0 < ρ < R1이므로, 
coupling 영역도 0 < ρ < R1임.)

Similarly,
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If N1 = 50 [turns/cm], N2 = 80 [turns/cm], R1 = 2[cm], and R2 = 3[cm], 
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