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Chapter 9:
Time-Varying Fields 

and Maxwell’s Equations



9.1 Faraday’s Law
Faraday’s Experiment

Magnetic flux density B generated lower circuit links the 
upper windings. 
è Iind è Existed as long as B increases with time
è Proportional to time rate of change of magnetic flux

Opening the switch results in current that initially
decreases with time in the lower windings.  
è Iind in opposite direction from before. 
è Existed as long as the magnetic flux decreases with time.
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Consider a single turn of wire, through which 
an externally-applied magnetic flux is present.  
The flux varying with time generates Iind.
A 1)time-varying magnetic field produces an
electromotive force (emf) which may establish
a current in a closed circuit.
Emf is a voltage that arises also from

2)conductors moving in a magnetic field or from
changing magnetic field.
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1st investigation: Total emf made by a changing field within a  
stationary path
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[Ex.]                                                (cylindrical region)
where B0: constant      

Choose the circular path ρ = a (a < b) in z = 0 plane

Method i)

        for        z0 baeBB tk <= rrr

 ( )ò =×= fp EadE 2Lemf
rr
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Method ii)
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è Lenz’s Law
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2nd investigation: Time-constant flux and a moving closed path
- Sliding bar, moving at constant velocity v
- Flux passing through perfect-conducting sliding bar surface with 

closed path 
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Motional EMF

Force on a charge Q moving with a velocity v in a magnetic field B:

Motional (electric) field intensity:

The motional emf is produced by the moving conductor on uniform 
magnetic filed.
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Two Contributions to emf

If B is also changing with time beside of moving conducting bar,

Due to time changing rate B Due to motional circuit

=
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9.2 Displacement Current
Faraday’s experimental law: 

Source

(Curl의 divergence는 ‘0’)

So what is wrong?

 

òòò ×
¶
¶

-=
F

-=×=×´Ñ¬ Sd
t
B

dt
dLdESdE

rrrrrr
)(

Point form of Ampere’s circuital law at steady magnetic fields: 
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For time-varying field,

Error correction term
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Ampere’s circuital law in point form for time-varying field,
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Dimension of current density [A/m2]
: displacement current density
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(Note the symmetry when 
comparing to Faraday’s law)

Currents
 densitycurrent    conduction   :    EJ

rr
s= (motion of charge in region of   

zero net charge density)
 densitycurrent    convection   :    vJ v

rr
r= (motion of volume charge density)
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Demonstration of Displacement Current

Parallel-plate 
capacitor

S H

k
I

The magnetic field is presumed time-varying within the loop, thus 
it generates emf, which in turn provides the current.
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Apply Ampere’s circuital law about the small closed circular path k.
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è Displacement current is associated with time-varying electric 
fields and therefore exists in all imperfect conductor carrying a 
time-varying conduction current. 

At parallel-plate capacitor, the conduction current is zero due to no 
connection conductor between two plates in capacitor.
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9.3 Maxwell’s Equations in Point Form

Ampere’s Circuital Law

Faraday’s Law of Induction

Gauss’ Law for the electric field

Gauss’s Law for the magnetic field

Maxwell’s equations for time-varying fields
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For linear materials, 

Auxiliary equations
polarization 

magnetization 
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Conduction current density:

Convection current density:

Lorentz force equation in point form:
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Faraday’s law using Stoke’s theorem

9.3 Maxwell’s Equations in Integral Form
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Gauss’s law 

Boundary conditions
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If region 1 is a dielectric material and region 2 is a perfect conductor,
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9.5 The Retarded Potentials (or Time-varying Potential)

Scalar electric potential

Vector magnetic potential
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(Appendix Eq.(A.19))

Ⅰ. 
    
      Ⅱ. 
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Time-varying case

II.
(⸪ The divergence of the curl is zero. è Proven!)

I. 
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Hence, let

And curling
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Substituting eqs. ① and ② into two of Maxwell equations in below 
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Under static or DC condition, eqs. ③ and ④ are simplified as below.
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è Necessary, but not sufficient conditions!!!
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For example, choose a very simple vector potential field (Ay = Az = 0).

By eq. ②,

è A vector field is defined completely when both its curl and 
divergence are given and when its value is known at any one 
point (including infinity).
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Boundary condition
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