Engineering Electromagnetics

W.H. Hayt Jr. and J. A. Buck

Chapter 9:
Time-Varying Fields

and Maxwell’s Equations
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WAL A * Consider a single turn of wire, through which
an externally-applied magnetic flux 1s present.
The flux varying with time generates 7, ;.

- A Dtime-varying magnetic field produces an
)1,.,,d electromotive force (emf) which may establish

a current in a closed circuit.

Area § . .
* Emf 1s a voltage that arises also from

2)conductors moving in a magnetic field or from
- Faradays’s law

changing magnetic field.
d® Noos .
emf =——— [V 7
o V] L\

dd . . .
where - flux changing rate according to time

(-) : opposing flux direction sign 2/27



dd

2 #0

1) A time-changing flux linking a stationary closed path

2)Relative motion between a steady flux and a closed path
3) A combinations of 1) and 2)

* If the closed path 1s taken by an N-turns filamentary conductor,

dd
emf = —N — <@ flux passing through any one of N

comcident paths.
emf = C_‘SE .dL @ eletromagetic fields are time-varying

__4e _ _ij B-dS <« (ﬁljjx dL =0 @time-invariant
dt dt?s
> dS ggoz § O| S7t= H|E Z(closed-path) 0| A & ZF LIAF BEF
oz I = 0lo 7|
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* 18t investigation: Total emf made by a changing field within a

stationary path
emf = CJSE-dZ = 40 = —ijé-dg = —ja—B-dg < Stoke's theorem
dt dt ot
= | (VxE)-dS
VxE-dS z—@-dg
Ot
- 0B . ,
(VxE)= Y : point form of Faraday’s Law

ct.) For electrostatic case,

—>

> VXE=0, [(VXE)-dS=¢E-dL=0

> SR A M 5SS | loop SOIM &7 = E2 07 4/27




[Ex.] B=Be"a, for p<b (cylindrical region)
where B,: constant
Choose the circular path p =a (a < b) in z = 0 plane

B(/)

Method 1) emf = §E dL = 7[(2a)E¢

AAAAAAA i 0 .
_ 4 5l
N dt dt Jg
T d okt 2
1T L IIn Radius a = _d_(BOe - TTa )
; i t
acpu =—kBoekt-7ra2
—kBge*t - ma? 1
_ _ k
Ep = S = —EkBOe ta

E = —%kBOekfp% = (a —2 p)
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Method 11) (VXE)Z = agz =—kB,e"

B(?)
1 8( pE ) method [ 3 & o]H
AAAAAAA A AAAAA = Q ~_
} p  Op
y ; L ~ (10lpE,) 10E. .
A (FaL VXE=()a,+()a, + ('O ¢)— 2 la.)
il | TTH Radius a P 5,0 P a¢
%& B 1
quv, — —EkB ektpz
Lo _ kt o3
b= 2 kBoe™pag Az9 B
/ N S7hE
" A7,
B=B"d, O E=-E"q, aa—]folzi H=-H¢"a,
N 5 N7 = . o] N7HA 27}
o ;] e ;}z ;]M wy =>» Lenz’s Law
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- 20d investigation: Time-constant flux and a moving closed path

- Sliding bar, moving at constant velocity v
- Flux passing through perfect-conducting sliding bar surface with
closed path

S S

= Byd
dd d
emf = — 2 — Yy — _Bud
dt dt

- Et = 0 @conducting bar
- fﬁ .dL =0 @except volmeter region

- Due to ‘-Bvd’, terminals 2 and 1 are positive and negative,
respectively.
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Motional EMF

* Force on a charge QO moving with a velocity v in a magnetic field B:

F — QV >< B ‘_I R B{unii‘orm)

F
— =vxB

* Motional (electric) field intensity:

E,, =vxB

* The motional emf1s produced by the moving conductor on uniform
magnetic filed.

emf = §E §(v xB) - dL

:jdedx:—Bvd <—f5><§:Ivld’yXIBId’Z=|v||B|5ix

: Same result with the previous method 8/27



Two Contributions to emf

 If B 1s also changing with time beside of moving conducting bar,

B
emf:%E-dL:— a—-dS—FjIg(VXB)-dL
g Ot

Due to time changing rate B Due to motional circuit

— 7
el

dd
dt
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9.2 Displacement Current

* Faraday’s experimental law:

0B e e

VxE=—-— ej(VxE)-dS:it;E-dL:—dE: ja—B ds
ot dt ot
Source

* Point form of Ampere’s circuital law at steady magnetic fields:
VxH=]
V- (VxH)=V-J=—

O 1=§J-d5=-2%

ot - :I(V-j)dv:—%j p.dv
=0 =>» only true @ at" = () | op.
(Curl®] divergence= “0”) Ot

- an unrealistic limitation

6 F7HEASEe T A[ZHO)| 2 ™S} HBtEF0| L0 OF,
> 04—. %753’53( ntmultyeq)oﬂ 9|3H HSHE 2 M7t fR=5EH,

) So what is wrong?



* For time-varying field,

VxH=J+6G
3 Error correction term ~
0=-""1v.G o v.G= —(v py=v.P
ot Ot Ot
oD
G=—
dt

- Ampere’s circuital law 1n point form for time-varying field,

’BD\
VX H= J—I—\ |

t / : : :
\8 " Dimension of current density [A/m?]
N, displacement current density

=J +J
-7

\
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* Currents

(motion of charge in region of

J=ocF : conduction current density zero net charge density)

—

J=p v : convection current density (motion of volume charge density)

- oD . | A t
VxH = . in nonconduction mediun’® YO!\me charge density.
ﬁl‘ time varying current)

analogy

o VxF— 53 (Note the symmetry when
5 t comparing to Faraday’s law)

" Total displacement current crossing any given surface:

—»

I,=[J,-dS= D 43
Js S Ot

* Time-varying version of Ampere’s circuital law:

jS(VXﬁ).dészJ.d§+jS%—lz dSs

L oD
§H.dL=1+1d=1+ o .dS 12127




Demonstration of Displacement Current

* The magnetic field 1s presumed time-varying within the loop, thus

it generates emf, which in turn provides the current.

Parallel-plate
c capacitor

emf =V, coswt [V]

_dO _d
dt dt

=—-wCV, sin wt

I (CV)

- Apply Ampere’s circuital law about the small closed circular path £.

Cﬁk H-dL=1 « conduction current 1397



- At parallel-plate capacitor, the conduction current 1s zero due to no
connection conductor between two plates in capacitor.

D:gE:gVOCOSM
d
[, =] — a’S
S@t
v

=(—ew—sinwt)-S
( y )

=—a)§VO sinwt =1,
d

=» Displacement current is associated with time-varying electric
fields and therefore exists in all imperfect conductor carrying a
time-varying conduction current. 14/27



9.3 Maxwell’s Equations in Point Form

* Maxwell’s equations for time-varying fields

V x E — _@_E Faraday’s Law of Induction
ot
V X H = j T aa_lt) Ampere’s Circuital Law
V-D= £, Gauss’ Law for the electric field
V- E = () Gauss’s Law for the magnetic field
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* Auxiliary equations
~ ~ ~ — polarization
D=¢cEk=¢,E @

B=uH = u,(H ) magnetization

For linear materials, P = )(egOE and M = ;(mﬁ

» Conduction current density: J =gk

+ Convection current density: J = o,V

* Lorentz force equation in point form: f =P, (E +V X E)
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9.3 Maxwell’s Equations in Integral Form

* Faraday’s law using Stoke’s theorem BAA AHdAS A
R l
j(vxE)-dS=§E-dL j—ds (S >

S C 1~ E
= ——/B S = _W
* Ampere’s circuital law
_ — _ — ds
[(VxH)-dS=¢H-dL - AMA A
|
oD
s [Bs o G
S S (975 C T~ H
. 1,
=1+ @—DdS I+1,
S Ot
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- Gauss’s law

: (V-D)dy = Cﬁgﬁ .dS = LOZ p,dv =0

'(V-E)dvzcﬁsé-dﬁzo

* Boundary conditions

E,.=F, {DNI_DN2:/()S

Hﬂ:th BN1:BN2 . .
J=o F

- For a perfect conductor( o = o0, J = finite ) VN
E 0 finite infinite .0
— H =0 (- Forsatisfying vxg :aa_[)
= J=0 (- H=0) t
- Current must be carried on the conduct(lr surface as a surface
current K . (.~ volume current density J =0) 18/27




- If region 1 1s a dielectric material and region 2 1s a perfect conductor,

E, =0
H,=K (4,
Dy, = p;
B, =0
/%%%fz
< N >

« H AL-H AL =KAL

fH.-dL=[(VxH)-dS = [(J +

lim | H -dL = H AL

h—0

= lim [, joD -dS + klinon .dS
= KAL

o5
ot

(H, =0 atX=A)

)-dS
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9.5 The Retarded Potentials (or Time-varying Potential)

* Scalar electric potential

dv . B Ame.r  Are
V= / Py (static) : °
Vv

ol 4TER

1

1
——) =V, =V

VAB:_J;:E'dZ:_.[A erz -2

V, =  _ 1 Ipvdv

dre,r, 4drer,

(

Iy

I'p

* Vector magnetic potential

A:f nJ dv (@)
vol

AR

* Differential equations:

VZV _ _& (static) (: Poisson’s eq.
€

1

VA = —uJ  (do)

V-D=p,,V-D=V-(sE)=-V-(sVV)=p,
V.V =V =-£r
g
_ 1 J. dv
Jop, gyo—, AV: Ax:J' Ho (_V:J‘ p,dv
£ vl 47 R vl 4 g R
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* Having (or knowing) V and A, the fundamental fields are obtained by

—

I. E=-VV (static) . Static == DC2| Z20|= E,
- - .~ Time-varying® A0 HAEX
I. B=Vx4 (dco) Time-varying Z4 2 Ut&5g 2

4= -

* Time-varying case (B =Vx 4= d.c ¥k o} g} time-varying case o &= 7+55)

II. V-B=0
V- (VxA)=0

("~ The divergence of the curl is zero. =» Proven!)

L VxE=-VxVV
VxVV =0 (Appendix Eq.(A.19))
. VxE=0 = By Faraday’s law, VxE # 0 in general.
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Hence, let E =-V/JV + N

And curling
VXE=Vx(=VV+N)=-VxVV+VxN=0+VxN
OB
= —— (By Faraday’s law)
ot
VXN:—G—B =——(V><A)——V><a—A
Ot Ot
A 8/1
ot
So [ E=-VV+N = —VV—(ZI —@

_ B=VxA —©
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» Substituting egs. (D and @ into two of Maxwell equations in below

Vxﬁ=j+&—D
{ or
V-D=p,
2
o tycvxi- ]+ga—E—j+g(V8V 6124)
u u ot ot Ot
~EV-E:gV-(—VV—a—A):g(—V-VV—gV-Z):pV
Ot Ot
ov 0% A
V(V-A)=V?*A4A=uJ — ue(v —®3
{ (V-A4)- pJ — pe( Py atz)
V2V+Q(V.Z1):—p" — @
ot E
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- Under static or DC condition, eqs. @ and @ are simplified as below.

,Uoj 1dv

Vi=-ul | (2,
V-4=0 =

<
VV—— V- ;12_&_‘. a’v1=0

E 477 vol R12

(HIZ2 YT A (static)@| AL AT WHACZ QEEX|TO|H2Z 49} —%%dé‘l g2

o st
T s 5, B=VxA 2t SFR =0, StLEL| vectore curlZ2BH= Ho|E = 815)

ot

=>» Necessary, but not sufficient conditions!!!
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* For example, choose a very simple vector potential field (4, = 4, = 0).

- B, =0 = =
X (B=VxA)
0A
- X
Byeq. @, 4 B, =
yeq ®’ g 0z =» No information is available.
oA Information could be found if we knew the
— BZ - X value of the divergence A
Oy
-~ OA, , ]
= V-A4A= 3 Al curl®} divergenceol] T3}
X

>

27% 9w E,VE 3% 78 5 928

o]
A

=>» A vector field is defined completely when both its curl and

divergence are given and when its value is known at any one
point (including infinity). \

Boundary condition
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* Define below equation for seeking the simplest expression.

V. A — ga_V (EZVXZEPECUI‘IEEE%‘E(}IEEE
- Ot divergencev-ﬁﬁiﬂgg.)

* From eqs. Q) and @), («V-A=0)

> 0° A
~ V4= 2 ~ Eq.®: (V- Aj V24 = yf — ue(V gztf
t
— 2y (3 -
2 1% . 9] . p
-V V:—gv+,u887 ‘Eq.@.VZV'i‘a(V'A))——;
B=Vx4 (Time varying R0 MZ B QI E £ & 4= Q= HO|.
7 oV 2 20| wave equationt FAHCh. 11))
V-4= —
%
oy > Propagation element (or speed)
E=-VV--— (= proven)

ot
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* Propagation: Any electromagnetic wave disturbance 1s found to

. 1 .
travel at a velocity v = T through any homogeneous medium.

* The potential at any point i1s due not to have the value of charge
density at some distant point at the same instant, but to its value at
some previous time, since the effect propagate at a finite velocity.

. dv dv
Hence 5 _ A o oy lnl

vol Are R vol AreR

. » R

p, =€ coswi —>  |p,]=e cos{a)(t — ﬂ
N
R .
where t' =t — = retarded time
(RA7|T7F ¢ = 2 A|ZH Sotof vEte 222 A2| ROFE 0| S8HS LIEFY )

 Retarded vector magnetic potential:

- o ulJ]
A= jvol dv 27/27
4 R




