Chapter 2 Transmission Line

Prof. Jeong, Yongchae

Learning Objectives

- Learn what is Microwave Engineering
- Learn concept and operation of transmission lines
- Understanding real transmission lines

Learning contents

- Introduction of Microwave Engineering
- What is a 'Transmission Line'?
- Several types of transmission line

1 Introduction of Microwave Engineering?

- Field of electronic engineering that focus on study and application of electromagnetic waves in microwave frequencies
- Combining principles from electrical engineering and physics to design and develop systems on useful microwave frequency.
- Microwaves frequency range: 300 MHz to 300 GHz
- Explores the transmission, reception, and processing of microwave signals for wide array of applications

*https://doi.org/10.1103/PhysRevB.99.134426

*https://ijari.org/assets/papers/7/3/IJARI-EE-19-09-104.pdf

1.1

Electromagnetic spectrum

Electromagnetic Spectrum

1.1

Electromagnetic spectrum and frequency bands

*https://en.wikipedia.org/wiki/Electromagnetic spectrum

1.1 Frequency bands

Frequency range	Wavelength range	ITU designation		IEEE bands ^[6]
		Full name	Abbreviation ^[7]	TEEE Dands
Below 3 Hz	>10 ⁵ km			_
3-30 Hz	10 ⁵ –10 ⁴ km	Extremely low frequency	ELF	_
30-300 Hz	10 ⁴ –10 ³ km	Super low frequency	SLF	_
300-3000 Hz	10 ³ –100 km	Ultra low frequency	ULF	_
3–30 kHz	100–10 km	Very low frequency	VLF	_
30–300 kHz	10–1 km	Low frequency	LF	_
300 kHz – 3 MHz	1 km – 100 m	Medium frequency	MF	_
3-30 MHz	100–10 m	High frequency	HF	HF
30-300 MHz	10–1 m	Very high frequency	VHF	VHF
300 MHz – 3 GHz	1 m – 100 mm	Ultra high frequency	UHF	UHF, L, S
3–30 GHz	100–10 mm	Super high frequency	SHF	S, C, X, Ku, K, Ka
30–300 GHz	10–1 mm	Extremely high frequency	EHF	Ka, V, W, mm
300 GHz – 3 THz	1 mm - 0.1 mm	Tremendously high frequency	THF	_

■ Microwave (or centimeter wave): 1 GHz ~, Millimeter wave: 30 GHz ~ (due to wavelength)

1.2

Advantages and Limitations of Microwave

- ☐ Advantages of microwave
 - ✓ Short wavelength monochromatic radiation results in high directivity and resolving power of microwave antennas
 - ✓ Wide frequency spectrum available for communication
 - ✓ High bandwidth because of large frequency range
 - ✓ Higher speed of data transmission because of larger frequency bandwidths
 - ✓ Penetration through atmosphere

- ☐ Applications of microwaves: Communication systems
 - ✓ Mobile Communications ✓ Point-to-point microwave link
 - ✓ Cellular communication ✓ WLAN

^{*}https://onlinelibrary.wiley.com/doi/10.1155/2009/859232

^{*}https://www.sciencepublishinggroup.com/article/10.11648/j.cssp.20180701.12

- ☐ Applications of microwaves: Satellite communication
 - ✓ Satellite communications enable long-distance communication
 - ✓ Transmission of information between satellite and ground stations at microwave frequencies, particularly in C-band, Ku-band, Ka-band, and L-band

^{*}https://forum.huawei.com/enterprise/en/how-satellite-networks-transmit-data-from-space-to-earth/thread/700063387632943104-667213856692383744

- ☐ Applications of microwaves: Radar
 - ✓ Detection systems that uses radio waves to determine range, angle, or velocity of objects
 - ✓ Traffic radar systems: detection and measurement of traffic on roadways

^{*}http://www.engineeringexpert.net/Engineering-Expert-Witness-Blog/tag/magnetron-tube

^{*}https://www.scae.net/prodotti/sensore-traffico-rtms-sx-300/

- ☐ Applications of microwaves: Radar for automotive
 - ✓ Use radio waves with frequencies of 24 GHz, 77 GHz and 79 GHz
 - ✓ Various types of radar for autonomous vehicular applications such as impulse radar and frequency-modulated continuous wave (FMCW) radar

*https://www.renesas.com/us/en/blogs/basics-fmcw-radar

- ☐ Applications of microwaves: Defense radar
 - ✓ Used for military purpose to detect, track, and identify aircraft, missiles, ships and other objects in air, ground, or at sea.

^{*}https://missiledefenseadvocacy.org/defense-systems/kalkan-air-defense-radar/

^{*}https://www.alamy.com/stock-photo/radar-equipment-and-armour.html?sortBy=relevant

- ☐ Applications of microwaves: Remote sensing
 - ✓ Acquisition of information about object or phenomenon without making physical contact with object
 - ✓ Environmental monitoring: tracking changes in ecosystems,
 - ✓ Meteorology: monitoring weather patterns, climate change and natural disasters

^{*}https://www.nist.gov/image/remote-sensing

^{*}https://sigmaearth.com/basics-of-remote-sensing-and-gis/

- ☐ Applications of microwaves: Radio Astronomy
 - ✓ Field of astronomy that studies celestial objects at radio frequencies

^{*}https://www.sciencedirect.com/science/article/pii/S0925231216314229

^{*}https://www.astronomy.com/science/how-do-radio-telescopes-work/

- ☐ Applications of microwaves: Medical applications
 - ✓ Microwave imaging for medical purpose: detecting/locating technique to evaluate hidden or embedded objects using electromagnetic waves in microwave regime
 - ✓ Microwave sensors can be used for non-invasive monitoring of various physiological parameters such as blood glucose levels.

^{*}https://www.slideshare.net/slideshow/microwaveengineering/792497614229

^{*}https://contest.techbriefs.com/2020/entries/medical/10764

- ☐ Applications of microwaves
 - ✓ Microwave imaging for food security
 - ✓ Millimeter wave scanner are superior to traditional metal detectors because they can identify and locate both metallic and nonmetallic threats.

^{*}https://www.mdpi.com/1424-8220/20/3/699

^{*}https://www.electronicdesign.com/technologies/analog/article/21276247/analog-devices-how-edge-processing-enables-next-gen-mmwave-scanners

- ☐ Industry applications of microwaves engineering
 - ✓ Microwave oven
 - ✓ Drying machines: textile, food, and paper industry for drying clothes, printed material etc
 - ✓ Food processing industry: processing/cooking, pasteurization/sterility, roasting of food grains
 - ✓ Rubber industry/plastic/chemical/forest product industries
 - ✓ Drying inks/textiles

*https://www.electrolux.co.th/en-th/blog/how-to-use-a-microwave-oven/

^{*}https://ferriteinc.com/industrial-microwave-systems/materials-processing/

2 What is a 'Transmission Line'?

• Transmission line: carrier to transmit electric energy, signals, data, and information from one point to another point with small insertion loss

2

What is a 'Transmission Line'?

- Lumped elements (R, L, C, etc.) ignores a time delay to traverse the elements
 - → Per-unit-distance basis

Distributed elements (transmission line) can't be ignored the time delay to traverse the elements

- → Over-unit-distance basis
- Analyzing approaches
 - 1) Maxwell's equations: electromagnetic field method (complete & accurate)
 - 2) Circuit equations: equivalent voltage and current analysis method (intuitive & inaccurate)

 - **Current wave** ↔ **Magnetic field**

^{*} Reference Textbook: Microwave Engineering (4th edition, David M. Pozar, John Wiley & Sons, Inc.)

2.1 Several Types of Transmission Line

2.2 Several Types of Transmission Line

Microstrip line

Coplanar waveguide

Suspended microstrip line

Strip line

Slot line

Substrate integrated Waveguide (SIW)

3 Review

- Microwave engineering and its applications
- Transmission lines
 - Definition
 - Physical realizations