Microwave Engineering

2-2

Chapter 2Transmission Line

Prof. Jeong, Yongchae

Learning Objectives

- Learn limitation of low frequency circuit elements in microwave frequency.
- Learn general transmission line characteristics.
- Learn operation of terminated lossless transmission line

Learning contents

- Frequency dependance of microwave components
- ٠ Wave equations of transmission Line
- ٠ Terminated lossless transmission lines

1Frequency Dependance of Microwave Components

■ General lumped elements (*R*, *^L*, *^C*, etc.) frequency dependent characteristics

It is not easy to fabricated inductor on microwave frequency range.

S

σ

1Frequency Dependance of Microwave Components

 \rightarrow Even though relatively easy to fabricated than inductor, it is also not easy to fabricated capacitor in microwave frequency microwave frequency.

☻ *How to realize R, L, and C on the microwave/millimeter frequency ranges?*

 \blacksquare **Two-wire line** as typical transmission line and **its equivalent circuits** for short piece length (Δ*z*)

- Low pass characteristics
- - γ \sim , , $, C = \frac{\varepsilon}{d} \leftarrow \varepsilon = \varepsilon' - j\varepsilon''$ $d\phi$ _{*r}* di </sub> Li, $v = \frac{v}{l} = L\frac{v}{l}$ *dt dtdQ dv* $Q = CV$, $i = \frac{dQ}{dV} = C\frac{dV}{dV}$ *dt dt* L ^{*S*} $R = \frac{1}{\epsilon}, C = \frac{1}{\epsilon} \leftarrow \epsilon = \epsilon - j\epsilon$ *S d* $\phi = Li, \quad v = \frac{d\phi}{dt} =$ ε $\overline{\sigma S}$, $C = \overline{}_d \leftarrow \varepsilon = \varepsilon - j\varepsilon$ $=$ CV, $l = \frac{\cdot}{\cdot}$ = $=\frac{\ }{\sigma S},C=\frac{\ }{d}\leftarrow \mathcal{E}=\mathcal{E}-$
- *^L*: series inductance per unit length [H/m] *C*: shunt capacitance per unit length [F/m]

R: series resistance per unit length [Ω/m]*G*: shunt conductance per unit length [S/m or ℧/m]

 \blacksquare Kirchhoff's voltage law

$$
v(z,t) - R\Delta z i(z,t) - L\Delta z \frac{\partial i(z,t)}{\partial t} - v(z + \Delta z, t) = 0
$$
 (1)

Kirchhoff's current law

$$
i(z,t) - C\Delta z \frac{\partial v(z + \Delta z, t)}{\partial t} - G\Delta z v(z + \Delta z, t) - i(z + \Delta z, t) = 0 \quad (2)
$$

 \blacksquare ■ Dividing (2.1a) and (2.1b) by Δz and taking the limit as $\Delta z \rightarrow 0$:

$$
\lim_{\Delta z \to 0} \frac{v(z + \Delta z, t) - v(z, t)}{\Delta z} = \frac{\partial v(z, t)}{\partial z} = -L \frac{\partial i(z, t)}{\partial t} - Ri(z, t)
$$

$$
\lim_{\Delta z \to 0} \frac{i(z + \Delta z, t) - i(z, t)}{\Delta z} = \frac{\partial i(z, t)}{\partial z} = -C \frac{\partial v(z, t)}{\partial t} - Gv(z, t)
$$

Е By assuming sinusoidal steady state condition, time domain forms can be changed cosine-based **^phasor forms**.

$$
\frac{dV(z)}{dz} = -(R + j\omega L)I(z) \qquad (3) \quad \frac{dI(z)}{dz} = -(G + j\omega C)V(z) \qquad (4) \qquad \text{cf.}) \quad v(z, t) \leftrightarrow V(z)
$$
\n
$$
i(z, t) \leftrightarrow I(z)
$$

6

By differentiating (3) with (4)

$$
\frac{d^2V(z)}{dz^2} = -(R + j\omega L)\frac{dI}{dz} = (R + j\omega L)(G + j\omega C)V(z) = \gamma^2 V(z)
$$

$$
\frac{d^2V(z)}{dz^2} - \gamma^2 V(z) = 0
$$
 (5)

By same manner

$$
\frac{d^2I(z)}{dz^2} - \gamma^2 I(z) = 0\tag{6}
$$

where $\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)} = f(\omega)$: complex propagation constant α : attenuation constant, β : phase constant

п Traveling wave equations on space domain:

> $V(z) = V_o^+ e^{-\gamma z} + V_o^- e^{\gamma z}$ (7) $I(z) = I_o^+ e^{-\gamma z} + I_o^- e^{\gamma z}$ (8) $I(z) = I_o^+ e^{-\gamma z} + I_o^- e^{\gamma z}$

where $e^{-\gamma z}$: wave propagation for $+z$ direction (or forward direction) *e*^{*r*z}: wave propagation for -*z* direction (or backward direction)

- From (3) and (4), *z o* $\int_{0}^{+}e^{-\gamma z}$ *z o* $\left(V_o^{\dagger}e^{-\gamma z}\right)$ *eVeI eI e* dz $R + j\omega L$ $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$ $\qquad \qquad$ *dV* $\frac{1}{R+j\omega L} \frac{dV(z)}{dz}$ *I z* $V^{\pi} - V^{\pi} \rho^{\chi} = I^{\pi} \rho^{-\chi} + I^{\pi} \rho^{\chi}$ ω γ ω $^+$ $\rho^ ^{-}e^{\chi}$] = I^{+} − v *P* I − I *P* + T I =+ $+10L$ = $+ 100L$ dz = $-\frac{1}{R + i\omega l}\frac{d\psi}{dz} = -\frac{1}{R + i\omega l}[V_0^{\top}e^{-\gamma l} - V_0^{\top}e^{\gamma l}]$ 1 $(z) = -\frac{1}{R + i cL} \frac{dV(z)}{dz}$ $I_o^+ = \frac{I_o}{R + i\omega I} V_o^+$ $I_o^- = -\frac{I_o}{R + i\omega I} V_o^ V_o^+ = \frac{\gamma}{R + j\omega L} V_o^+$ $I_o^- = -\frac{\gamma}{R + j\omega L} V_o^-$
- Characteristic impedance: a ratio of voltage wave to current wave

$$
Z_0 = \frac{V_o^+}{I_o^+} = -\frac{V_o^-}{I_o^-} = \frac{R + j\omega L}{\gamma} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \qquad (9) \qquad \leftarrow \quad \gamma = \sqrt{(R + j\omega L)(G + j\omega C)}
$$

Voltage-current combined current waveform

 \blacksquare

$$
I(z) = \frac{V_o^+}{Z_0} e^{-\gamma z} - \frac{V_o^-}{Z_0} e^{\gamma z} = I_o^+ e^{-\gamma z} + I_o^- e^{\gamma z}
$$
 (10)

П Sinusoidal voltage wave can be recovered by using $v(z, t) = \text{Re}[V(z)e^{j\omega t}]$ and $\gamma = \alpha + j\beta$. $=$ KeIV (2.1e^o) $(z,t) = |V_a^+| \cos(\omega t - \beta z + \phi^+)e^{-\alpha z} + |V_a^-| \cos(\omega t + \beta z + \phi^-)e^{\alpha z}$ $v(z,t) = |V_o^+| \cos(\omega t - \beta z + \phi^+) e^{-\alpha z} + |V_o^-| \cos(\omega t + \beta z + \phi^-) e^{\alpha z}$

where ϕ^{\pm} : phase angle of voltage wave V_0^{\pm} ex.) $V_0^+ = |V_0^{\pm}|e^{j\phi^{\pm}}$

■ Wavelength (: distance between consecutive corresponding points of same phase (2*π*)) on transmission line:

$$
\lambda = \frac{2\pi}{\beta} \qquad [\frac{\text{rad}}{\text{rad/m}}] = [\text{m}] \tag{11}
$$

 \blacksquare Phase velocity (rate at the wave propagates in any medium) on transmission line:

$$
v_p = \frac{\lambda}{t} = \frac{2\pi f}{\beta} = \frac{\omega}{\beta} = f\lambda \quad \text{[m/sec]}
$$
 (12)

 \blacksquare For lossless transmission line (\mathcal{Q} $R = G = 0$),

$$
\gamma = \sqrt{(R + j\omega L)(G + j\omega C)}\Big|_{R = G = 0} = j\omega\sqrt{LC} \quad (= \alpha + j\beta) \qquad \Leftrightarrow \qquad \alpha = 0 \quad \& \quad \beta = \omega\sqrt{LC}
$$
\n
$$
Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}\Big|_{R = G = 0} = \sqrt{\frac{L}{C}} \qquad (13)
$$
\nWave equations:

\n
$$
V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z} \qquad (14)
$$
\n
$$
I(z) = I_0^+ e^{-j\beta z} + I_0^- e^{j\beta z} = \frac{V_0^+}{Z} e^{-j\beta z} - \frac{V_0^-}{Z} e^{j\beta z}
$$

ons:
$$
V(z) = V_o^+ e^{-j\beta z} + V_o^- e^{j\beta z}
$$
 (14) $I(z) = I_o^+ e^{-j\beta z} + I_o^- e^{j\beta z} = \frac{V_o^+}{Z_0} e^{-j\beta z} - \frac{V_o^-}{Z_0} e^{j\beta z}$

$$
=V_o^+e^{-j\beta z}+V_o^-e^{j\beta z} \qquad (14) \qquad I(z) = I_o^+e^{-j\beta z}+I_o^-e^{j\beta z} = \frac{V_o^+}{Z_0}e^{-j\beta z}-\frac{V_o^-}{Z_0}e^{j\beta z} \qquad (15)
$$

Wavelength:
$$
\lambda = \frac{2\pi}{\beta} = \frac{2\pi}{\omega\sqrt{LC}}
$$
 (16) Phase velocity: $v_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$ (17)

- П A lossless transmission line terminated in an arbitrary load impedance *ZL*
	- \sim Incident voltage wave: $V_0^+e^{-j\beta z}$
	- $Z_0(\neq Z_L^{} ,$ typ.): ratio of traveling voltage wave to traveling current wave on transmission line

- Total voltage and current waves consisted of incident and reflected voltage/current waves due to $Z_0 \neq Z_L$:

$$
V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z}
$$
 (1)

$$
I(z) = \frac{V_0^+}{Z_0} e^{-j\beta z} - \frac{V_0^-}{Z_0} e^{j\beta z}
$$
 (2)

- Load impedance:
$$
Z_L = \frac{V(z)}{I(z)}\Big|_{z=0} = \frac{V_0^+ + V_0^-}{V_0^+ - V_0^-} Z_0
$$

Reflected voltage wave: $V_o^- = \frac{Z_L - Z_0}{Z_L + Z_0} V_o^+$
 $V_g \bigoplus \frac{Z_g}{Z_{in} \bigoplus_{i=0}^{N_{in}}} Z_0$

- Voltage reflection coefficient (Γ) = Reflected voltage wave amplitude / Incident voltage wave amplitude

$$
\Gamma = \frac{V_0^-}{V_0^+} = \frac{|V_0^-| e^{j\phi^-}}{|V_0^+| e^{j\phi^+}} = \frac{Z_L - Z_0}{Z_L + Z_0} = |\Gamma| e^{j\theta}
$$
 (3) : **complex** (: Z_L: complex)
phase deviation between incident and reflected voltage waves

- Total voltage and current waves on transmission line:

$$
V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z} = V_0^+ [e^{-j\beta z} + (V_0^- / V_0^+) e^{j\beta z}] = V_0^+ [e^{-j\beta z} + \Gamma e^{j\beta z}] \tag{4}
$$

$$
I(z) = \frac{V_0^+}{Z_0} [e^{-j\beta z} - \Gamma e^{j\beta z}] \tag{5}
$$

- Standing waves: superposition of an incident and reflected waves as $V_o^+e^{-i\beta z}+V_o^-e^{i\beta z}$ and μ_0
g waves: superposition of an incident and reflected waves as $V_o^+e^{-j\beta z} + V_o^-e^{j\beta z}$ and $I_o^+e^{-j\beta z} + I_o^-e^{j\beta z}$

- If $\Gamma = 0$, **no reflected wave**. $\rightarrow Z_L = Z_0$ ((Impedance) Matching!!)

■ Time-average power flowing along transmission line (*@ z*)

$$
P_{av} = \frac{1}{2} \text{Re}[V(z)I(z)^{*}] = \frac{1}{2} \frac{|V_{0}^{+}|^{2}}{Z_{0}} \text{Re}\{1 - \Gamma^{*}e^{-2j\beta z} + \Gamma e^{2j\beta z} - |\Gamma|^{2}\} = \frac{1}{2} \frac{|V_{0}^{+}|^{2}}{Z_{0}} (1 - |\Gamma|^{2})
$$

- Incident power: $V_0^+ \Big|^2 / 2Z_0$
- Reflected power: $|V_0^+|^2 |\Gamma|^2 / 2Z_0$
- Delivered power (*^Pav*) = Incident power Reflected power
- If $\Gamma = 0$, the maximum power is delivered to the load If $|\Gamma| = 1$, no power is delivered.
- When the load is mismatched ($|\Gamma| \neq 0$ or $Z_L \neq Z_0$), then not all of the available power from the generator is delivered to the load.
- \blacksquare Return loss (RL) = Reflected power / Incident power
	- $RL = -20log|\Gamma|$ [dB]
	- $-F(x.)$ RL = ∞ dB $\omega \Gamma = 0$

 $RL = 0 dB \omega |\Gamma| = 1$

- In case of $Z_L \neq Z_0$, voltage standing wave due to reflected wave at $z = -l$ $|V(-l)| = |V_0^*||e^{j\beta l} + \Gamma e^{-j\beta l}| = |V_0^*||e^{j\beta l}||1 + \Gamma e^{-2j\beta l}| = |V_0^*||1 + \Gamma e^{-2j\beta l}| = |V_0^*||1 + |\Gamma|e^{j(\theta - 2\beta l)}|,$ (6) where $\Gamma = |\Gamma| e^{j\theta}$ and θ : phase of reflection coefficient $- \text{In case of } e^{j(\theta - 2\beta l)} = 1, \quad V_{\text{max}} = |V_0^+| (1 + |\Gamma|)$ Γ $V_{\rm min}$ $\mathbf{I} \cdot \mathbf{I} \cdot \mathbf{n} = |V_0^+| (1 - |\mathbf{\Gamma}|)$
- (Voltage) Standing wave ratio (V**SWR**):

$$
SWR = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{1+|\Gamma|}{1-|\Gamma|}
$$
 (7)
\n
$$
1 \leq SWR \leq \infty \quad (\because 0 \leq |\Gamma| \leq 1) \quad \text{: another expression of reflection coefficient}
$$

- Two successive voltage maxima (or minima) on transmission line: П $(\theta - 2\beta l_1) - (\theta - 2\beta l_2) = 2\beta (l_2 - l_1) = 2\beta l = 2\pi \qquad \leftarrow l = l_2 - l_1$ $l = 2\pi / 2\beta = \pi / \beta = \pi \lambda / 2\pi = \lambda / 2$
	- Distance between two successive voltage maximum and minimum points: *l* ⁼*π*/2β=*λ*/4

- Reflection coefficient at $z = -l$: $\Gamma(-l) = \frac{v_0 e}{V_0^+ e^{j\beta l}} = \Gamma(0) e^{-j2}$ 0 $(-l) = \frac{0}{\sqrt{1 + e^{i\beta l}}} = \Gamma(0)$ $\frac{f}{j\beta l}$ = $\Gamma(0)e^{-j2\beta l}$ $V_0^-e^$ l *e* $\frac{0}{V_0} \cdot e^{j\beta l} = \Gamma(0)e^{-j\beta l}$ $\frac{e^{-\beta\beta l}}{e^{\beta l}} = \Gamma(0)e^{-j2\beta l}$ $\Gamma(-l) = \frac{C_0 - c}{V_0^+ e^{j\beta l}} = \Gamma(0)e^{-l}$
	- $\Gamma(0)$: reflection coefficient $\mathcal{Q}_z = 0$
	- **'**Load reflection @*z* ⁼ ⁰**'** ⁺ **'**two times ^phase shift**'**
- Е **I** Input impedance seen looking toward the load at $z = -l: Z_{\text{in}}$

$$
Z_{in} = \frac{V(-l)}{I(-l)} = \frac{V_0^+[e^{j\beta l} + \Gamma e^{-j\beta l}]}{V_0^+[e^{j\beta l} - \Gamma e^{-j\beta l}]} Z_0 = \frac{e^{j\beta l} + \Gamma e^{-j\beta l}}{e^{j\beta l} - \Gamma e^{-j\beta l}} Z_0 \qquad (8) \qquad \frac{L}{I(-l)} = \frac{e^{j\beta l} + \frac{Z_L - Z_0}{Z_L + Z_0} e^{-j\beta l}}{Z_L + Z_0} Z_0 \qquad \leftarrow \Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} Z_0
$$
\n
$$
= Z_0 \frac{(Z_L + Z_0)e^{j\beta l} + (Z_L - Z_0)e^{-j\beta l}}{(Z_L + Z_0)e^{j\beta l} - (Z_L - Z_0)e^{-j\beta l}} = Z_0 \frac{Z_L(e^{j\beta l} + e^{-j\beta l}) + Z_0(e^{j\beta l} - e^{-j\beta l})}{Z_0(e^{j\beta l} + e^{-j\beta l}) + Z_L(e^{j\beta l} - e^{-j\beta l})}
$$
\n
$$
= Z_0 \frac{Z_L \cos \beta l + jZ_0 \sin \beta l}{Z_0 \cos \beta l + jZ_L \sin \beta l} = Z_0 \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l} \qquad (9)
$$
\n
$$
= f(Z_0, Z_L, l)
$$

Review4

- ■ Lumped elements (*L* and *C*) frequency dependances
	- -Self resonance
	- -Element value variation according to frequency
- \blacksquare Terminated lossless transmission lines
	- -Reflection coefficient (Γ)
	- -(V)SWR
	- -Input impedance of transmission line circuit terminated with load