Chapter 2 Transmission Line

Prof. Jeong, Yongchae

Learning Objectives

- Learn limitation of low frequency circuit elements in microwave frequency.
- Learn general transmission line characteristics.
- Learn operation of terminated lossless transmission line

Learning contents

- Frequency dependance of microwave components
- Wave equations of transmission Line
- Terminated lossless transmission lines

Frequency Dependance of Microwave Components

- General lumped elements (R, L, C, etc.) frequency dependent characteristics
 - Inductor

Coil inductor

$$\phi = Li, \quad v = \frac{d\phi}{dt} = L\frac{di}{dt}$$

$$R = \frac{L}{\sigma S}, \quad Q = Cv$$

Equivalent circuit

Electrical characteristic

- Self resonance frequency (SRF): a resonant frequency where the reactive component is zero. (Im(Z) = 0)
- → It is not easy to fabricated inductor on microwave frequency range.

Frequency Dependance of Microwave Components

- Capacitor

Typical capacitor coil inductor

Chip capacitor

- → Even though relatively easy to fabricated than inductor, it is also not easy to fabricated capacitor in microwave frequency.
- How to realize R, L, and C on the microwave/millimeter frequency ranges?

Wave Equations of Transmission Line

• Two-wire line as typical transmission line and its equivalent circuits for short piece length (Δz)

$$\begin{array}{cccc}
 & i(z,t) & i(z+\Delta z, t) \\
+ & & \\
v(z,t) & v(z+\Delta z, t)
\end{array}$$

- Low pass characteristics

-
$$\phi = Li$$
, $v = \frac{d\phi}{dt} = L\frac{di}{dt}$
 $Q = Cv$, $i = \frac{dQ}{dt} = C\frac{dv}{dt}$
 $R = \frac{L}{\sigma S}$, $C = \frac{\varepsilon S}{d} \leftarrow \varepsilon = \varepsilon' - j\varepsilon''$

L: series inductance per unit length [H/m]C: shunt capacitance per unit length [F/m]

R: series resistance per unit length $[\Omega/m]$

G: shunt conductance per unit length $[S/m \text{ or } \mho/m]$

Wave Equations of Transmission Line

Kirchhoff's voltage law

$$v(z,t) - R\Delta z i(z,t) - L\Delta z \frac{\partial i(z,t)}{\partial t} - v(z + \Delta z,t) = 0$$
 (1)

Kirchhoff's current law

$$i(z,t) - C\Delta z \frac{\partial v(z + \Delta z, t)}{\partial t} - G\Delta z v(z + \Delta z, t) - i(z + \Delta z, t) = 0 \quad (2)$$

• Dividing (2.1a) and (2.1b) by Δz and taking the limit as $\Delta z \rightarrow 0$:

$$\lim_{\Delta z \to 0} \frac{v(z + \Delta z, t) - v(z, t)}{\Delta z} = \frac{\partial v(z, t)}{\partial z} = -L \frac{\partial i(z, t)}{\partial t} - Ri(z, t)$$

$$\lim_{\Delta z \to 0} \frac{i(z + \Delta z, t) - i(z, t)}{\Delta z} = \frac{\partial i(z, t)}{\partial z} = -C \frac{\partial v(z, t)}{\partial t} - Gv(z, t)$$

By assuming sinusoidal steady state condition, time domain forms can be changed cosine-based phasor forms.

$$\frac{dV(z)}{dz} = -(R + j\omega L)I(z) \qquad (3) \qquad \frac{dI(z)}{dz} = -(G + j\omega C)V(z) \qquad (4) \qquad \text{cf.)} \quad v(z, t) \leftrightarrow V(z)$$
$$i(z, t) \leftrightarrow I(z)$$

Wave Equations of Transmission Line

By differentiating (3) with (4)

$$\frac{d^2V(z)}{dz^2} = -(R + j\omega L)\frac{dI}{dz} = (R + j\omega L)(G + j\omega C)V(z) = \gamma^2 V(z)$$

$$\frac{d^2V(z)}{dz^2} - \gamma^2 V(z) = 0$$
(5)

By same manner

$$\frac{d^2I(z)}{dz^2} - \gamma^2I(z) = 0 \tag{6}$$

where $\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)} = f(\omega)$: complex propagation constant α : attenuation constant, β : phase constant

Traveling wave equations on space domain:

$$V(z) = V_o^+ e^{-\gamma z} + V_o^- e^{\gamma z}$$
 (7)
$$I(z) = I_o^+ e^{-\gamma z} + I_o^- e^{\gamma z}$$
 (8)

where $e^{-\gamma z}$: wave propagation for +z direction (or forward direction)

 $e^{\gamma z}$: wave propagation for -z direction (or backward direction)

Wave Equations of Transmission Line

• From (3) and (4),

$$I(z) = -\frac{1}{R + j\omega L} \frac{dV(z)}{dz} = \frac{\gamma}{R + j\omega L} [V_o^+ e^{-\gamma z} - V_o^- e^{\gamma z}] = I_o^+ e^{-\gamma z} + I_o^- e^{\gamma z}$$

$$I_o^+ = \frac{\gamma}{R + j\omega L} V_o^+ \qquad I_o^- = -\frac{\gamma}{R + j\omega L} V_o^-$$

• Characteristic impedance: a ratio of voltage wave to current wave

$$Z_0 = \frac{V_o^+}{I_o^+} = -\frac{V_o^-}{I_o^-} = \frac{R + j\omega L}{\gamma} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \qquad (9) \qquad \leftarrow \quad \gamma = \sqrt{(R + j\omega L)(G + j\omega C)}$$

Voltage-current combined current waveform

$$I(z) = \frac{V_o^+}{Z_o} e^{-\gamma z} - \frac{V_o^-}{Z_o} e^{\gamma z} = I_o^+ e^{-\gamma z} + I_o^- e^{\gamma z}$$
(10)

Sinusoidal voltage wave can be recovered by using $v(z, t) = \text{Re}[V(z)e^{j\omega t}]$ and $\gamma = \alpha + j\beta$.

$$v(z,t) = |V_o^+|\cos(\omega t - \beta z + \phi^+)e^{-\alpha z} + |V_o^-|\cos(\omega t + \beta z + \phi^-)e^{\alpha z}$$

where ϕ^{\pm} : phase angle of voltage wave V_0^{\pm} ex.) $V_0^{+} = |V_0^{+}| e^{j\phi^{+}}$

Wave Equations of Transmission Line

• Wavelength (: distance between consecutive corresponding points of same phase (2π)) on transmission line:

$$\lambda = \frac{2\pi}{\beta} \qquad \left[\frac{\text{rad}}{\text{rad/m}}\right] = [m] \tag{11}$$

Phase velocity (rate at the wave propagates in any medium) on transmission line:

$$v_p = \frac{\lambda}{t} = \frac{2\pi f}{\beta} = \frac{\omega}{\beta} = f\lambda \quad \text{[m/sec]}$$
 (12)

• For lossless transmission line (@ R = G = 0),

$$\gamma = \sqrt{(R + j\omega L)(G + j\omega C)}\Big|_{R = G = 0} = j\omega\sqrt{LC} \ (= \alpha + j\beta) \qquad \Leftrightarrow \qquad \alpha = 0 \ \& \ \beta = \omega\sqrt{LC}$$

$$Z_0 = \sqrt{\frac{R + j\omega L}{G + j\omega C}}\bigg|_{R = G = 0} = \sqrt{\frac{L}{C}}$$
(13)

Wave equations:
$$V(z) = V_o^+ e^{-j\beta z} + V_o^- e^{j\beta z}$$
 (14) $I(z) = I_o^+ e^{-j\beta z} + I_o^- e^{j\beta z} = \frac{V_o^+}{Z_o} e^{-j\beta z} - \frac{V_o^-}{Z_o} e^{j\beta z}$ (15)

Wavelength:
$$\lambda = \frac{2\pi}{\beta} = \frac{2\pi}{\omega\sqrt{LC}}$$
 (16) Phase velocity: $v_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$ (17)

[3]

Terminated Lossless Transmission Lines

- A lossless transmission line terminated in an arbitrary load impedance Z_L
 - Incident voltage wave: $V_0^+e^{-j\beta z}$
 - $Z_0 \neq Z_L$, typ.): ratio of traveling voltage wave to traveling current wave on transmission line

- Total voltage and current waves consisted of incident and reflected voltage/current waves due to $Z_0 \neq Z_L$:

$$V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z}$$
 (1)

$$I(z) = \frac{V_0^+}{Z_0} e^{-j\beta z} - \frac{V_0^-}{Z_0} e^{j\beta z}$$
 (2)

Terminated Lossless Transmission Lines

- Load impedance:
$$Z_L = \frac{V(z)}{I(z)}\Big|_{z=0} = \frac{V_0^+ + V_0^-}{V_0^+ - V_0^-} Z_0$$

Reflected voltage wave:
$$V_o^- = \frac{Z_L - Z_0}{Z_L + Z_0} V_o^+$$

- Voltage reflection coefficient (Γ) = Reflected voltage wave amplitude / Incident voltage wave amplitude

$$\Gamma = \frac{V_0^-}{V_0^+} = \frac{\left|V_0^-\right| e^{j\phi^-}}{\left|V_0^+\right| e^{j\phi^+}} = \frac{Z_L - Z_0}{Z_L + Z_0} = \left|\Gamma\right| e^{j\theta}$$
(3) : **complex** (: Z_L : complex)

Total voltage and current ways on transmission line:

(3) : **complex** (
$$: Z_L$$
: complex)

- Total voltage and current waves on transmission line:

$$V(z) = V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z} = V_0^+ [e^{-j\beta z} + (V_0^- / V_0^+) e^{j\beta z}] = V_0^+ [e^{-j\beta z} + \Gamma e^{j\beta z}]$$
(4)

$$I(z) = \frac{V_0^+}{Z_0} [e^{-j\beta z} - \Gamma e^{j\beta z}]$$
 (5)

- Standing waves: superposition of an incident and reflected waves as $V_o^+ e^{-j\beta z} + V_o^- e^{j\beta z}$ and $I_o^+ e^{-j\beta z} + I_o^- e^{j\beta z}$
- If $\Gamma = 0$, no reflected wave. $\rightarrow Z_L = Z_0$ ((Impedance) Matching!!)

(3)

Terminated Lossless Transmission Lines

• Time-average power flowing along transmission line (@ z)

$$P_{av} = \frac{1}{2} \text{Re}[V(z)I(z)^*] = \frac{1}{2} \frac{|V_0^+|^2}{Z_0} \text{Re}\{1 - \Gamma^* e^{-2j\beta z} + \Gamma e^{2j\beta z} - |\Gamma|^2\} = \frac{1}{2} \frac{|V_0^+|^2}{Z_0} (1 - |\Gamma|^2)$$

- Incident power: $\left|V_0^+\right|^2/2Z_0$
- Reflected power: $|V_0^+|^2 |\Gamma|^2 / 2Z_0$
- Delivered power (P_{av}) = Incident power Reflected power
- If $\Gamma=0$, the maximum power is delivered to the load If $|\Gamma|=1$, no power is delivered.
- When the load is mismatched ($|\Gamma| \neq 0$ or $Z_L \neq Z_0$), then not all of the available power from the generator is delivered to the load.
- Return loss (RL) = Reflected power / Incident power
 - RL = $-20\log|\Gamma|$ [dB]
 - Ex.) RL = ∞ dB @ Γ = 0

$$RL = 0 dB @ |\Gamma| = 1$$

3 Terminated Lossless Transmission Lines

• In case of $Z_L \neq Z_0$, voltage standing wave due to reflected wave at z = -l

$$|V(-l)| = |V_0^+| |e^{j\beta l} + \Gamma e^{-j\beta l}| = |V_0^+| |e^{j\beta l}| |1 + \Gamma e^{-2j\beta l}| = |V_0^+| |1 + \Gamma e^{-2j\beta l}| = |V_0^+| |1 + |\Gamma e^{-2j\beta l}|, \quad (6)$$

 V_{\min}

where $\Gamma = |\Gamma| e^{j\theta}$ and θ : phase of reflection coefficient

- In case of $e^{j(\theta 2\beta l)} = 1$, $V_{\text{max}} = |V_0^+|(1+|\Gamma|)$
- In case of $e^{j(\theta 2\beta l)} = -1$, $V_{\min} = |V_0^+|(1-|\Gamma|)$
- (Voltage) Standing wave ratio (VSWR):

$$SWR = \frac{V_{\text{max}}}{V_{\text{min}}} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$
 (7)

- → $1 \le SWR \le \infty$ (: $0 \le |\Gamma| \le 1$) : another expression of reflection coefficient
- Two successive voltage maxima (or minima) on transmission line:

$$(\theta - 2\beta l_1) - (\theta - 2\beta l_2) = 2\beta (l_2 - l_1) = 2\beta l = 2\pi$$
 $\leftarrow l = l_2 - l_1$
 $l = 2\pi / 2\beta = \pi / \beta = \pi \lambda / 2\pi = \lambda / 2$

- Distance between two successive voltage maximum and minimum points: $l = \pi/2\beta = \lambda/4$

[3]

Terminated Lossless Transmission Lines

- Reflection coefficient at z = -l: $\Gamma(-l) = \frac{V_0^- e^{-j\beta l}}{V_0^+ e^{j\beta l}} = \Gamma(0)e^{-j2\beta l}$
 - $\Gamma(0)$: reflection coefficient @ z = 0
 - 'Load reflection @ z = 0' + 'two times phase shift'
- Input impedance seen looking toward the load at z = -l: Z_{in}

$$Z_{\rm in} = \frac{V(-l)}{I(-l)} = \frac{V_0^{+} [e^{j\beta l} + \Gamma e^{-j\beta l}]}{V_0^{+} [e^{j\beta l} - \Gamma e^{-j\beta l}]} Z_0 = \frac{e^{j\beta l} + \Gamma e^{-j\beta l}}{e^{j\beta l} - \Gamma e^{-j\beta l}} Z_0$$
(8)

$$= \frac{e^{j\beta l} + \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} e^{-j\beta l}}{e^{j\beta l} - \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} e^{-j\beta l}} Z_{0} \qquad \leftarrow \Gamma = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}}$$

$$= Z_{0} \frac{(Z_{L} + Z_{0}) e^{j\beta l} + (Z_{L} - Z_{0}) e^{-j\beta l}}{(Z_{L} + Z_{0}) e^{j\beta l} - (Z_{L} - Z_{0}) e^{-j\beta l}} = Z_{0} \frac{Z_{L} (e^{j\beta l} + e^{-j\beta l}) + Z_{0} (e^{j\beta l} - e^{-j\beta l})}{Z_{0} (e^{j\beta l} + e^{-j\beta l}) + Z_{L} (e^{j\beta l} - e^{-j\beta l})}$$

$$= Z_{0} \frac{Z_{L} \cos \beta l + j Z_{0} \sin \beta l}{Z_{0} \cos \beta l + j Z_{L} \sin \beta l} = Z_{0} \frac{Z_{L} + j Z_{0} \tan \beta l}{Z_{0} + j Z_{L} \tan \beta l} \qquad (9)$$

$$= f(Z_{0}, Z_{L}, l)$$

4 Review

- Lumped elements (*L* and *C*) frequency dependances
 - Self resonance
 - Element value variation according to frequency
- Terminated lossless transmission lines
 - Reflection coefficient (Γ)
 - (V)SWR
 - Input impedance of transmission line circuit terminated with load