Microwave Engineering 2-3

Chapter 2 Transmission Line

Prof. Jeong, Yongchae

Learning Objectives

- Learn how to realize microwave *L* and *C* with transmission line
- Learn what will be done in transmission lines connection
- Understanding decibel units
- Learn utilities of Smith chart

Learning contents

- Microwave *L* and *C* using Transmission Line
- § Transmission Lines Connection
- § Decibel
- § Smith Chart

Microwave *L* **and** *C* **using Transmission Line 1**

• Transmission line circuit **terminated with short circuit** $(Z_L = 0)$

- Repeated inductive & capacitive characteristics along transmission line
- Different reactance characteristics according to frequency (or wavelength)
- Repeated reactance characteristics according to harmonics $(f_0, 3f_0,$ ⋯, $(2n+1)f_0$)

Microwave *L* **and** *C* **using Transmission Line 1**

- **•** Transmission line circuit **terminated with open circuit** $(Z_L = \infty)$ $-$ At load, $I = 0$ and $V = \infty$ - Input impedance \rightarrow -*j* $\infty \le Z_{\text{in}} \le +j\infty$ 4 | \ | **EVOWAVE L and C using Transmission Line**

ssion line circuit terminated with open circuit $(Z_L = \infty)$
 $\frac{-Z_0}{+Z_0}\Big|_{Z_t=\infty} = 1 = \frac{V^+}{V^-}$
 $I = 0$ and $V = \infty$

reedance
 $\frac{Z_L + jZ_0 \tan \beta \ell}{Z_0 + jZ_L \tan \beta \ell}\Big|_{Z_L=\infty} = -jZ_0 \cot \$ Figure 1.1 and capacitor (C) can be realized by using transmission line circuit terminated $\frac{\lambda_L = 0}{\lambda_L}$
 Z_{in} , β $Z_{\text{in}} - \infty$ V_L
 $Z_{\text{in}} - \infty$
 Z **IMICYOWAVE L and C using Transmission Line**

Transmission line circuit terminated with open circuit $(Z_L = \infty)$
 $\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}\Big|_{Z_L = \infty} = 1 = \frac{V'}{V}$

At load, $I = 0$ and $V = \infty$

Imput impedance
 $Z_{\text{in}} = Z_0 \frac{Z_L$ $\theta = \beta l = \frac{2\pi}{3}l, \ 0 < \theta < \frac{\pi}{2} \Longleftrightarrow 0 < \frac{2\pi}{3}l < \frac{\pi}{2} \Longleftrightarrow 0 < l < \frac{\pi}{2} \frac{\lambda}{2\pi} = \frac{\lambda}{4}$ λ λ λ simission line circuit terminated with open circuit $(Z_L = \infty)$
 $\frac{Z_L - Z_0}{Z_L + Z_0}\Big|_{Z_L - \infty} = 1 = \frac{V^+}{V}$
 $\left[\begin{array}{ccc} \frac{Z_L - Z_0}{Z_L + Z_0}\Big|_{Z_L - \infty} & = -\frac{V^+}{V} \end{array}\right]$
 $\left[\begin{array}{ccc} \frac{Z_L - Z_0}{Z_0} & \frac{Z_L - Z_0}{Z_0} & \frac{Z_L - Z_0}{Z_0} \\$ ansmission line circuit terminated with open circuit $(Z_L = \infty)$
 $\frac{Z_L - Z_u}{Z_L + Z_0}\Big|_{Z_L = \infty} = 1 = \frac{V^+}{V^-}$
 $\frac{Z_0, \beta \qquad Z_L = \infty \qquad V_L = 0$

t load, $I = 0$ and $V = \infty$

put impedance
 $\left[\frac{Z_L - Z_u}{Z_0 + jZ_L \tan \beta t}\right]_{Z_L = \infty} = -jZ_$ $\frac{0}{-1}$ $\frac{1}{-1}$ $0|_{Z_t=\infty}$ \blacksquare $1 = \frac{1}{1}$ L^{∞} $L \sim 0$ $-1-\frac{r}{r}$ $L + Z_0 \Big|_{Z_L = \infty}$ V^- **Iicrowave L and C using Transmiss**

smission line circuit terminated with open circuit $(Z_L = \infty)$
 $\left. \frac{Z_L - Z_0}{Z_L + Z_0} \right|_{Z_L = \infty} = 1 = \frac{V^+}{V^-}$

aad, $I = 0$ and $V = \infty$

t impedance **Iicrowave L and C using Transmission Line**

imission line circuit terminated with open circuit $(Z_L = \infty)$
 $\frac{Z_L - Z_0}{Z_L + Z_0}\Big|_{Z_L = \infty} = 1 = \frac{V^+}{V^-}$

and, $I = 0$ and $V = \infty$
 $Z + iZ$ tan $B\ell$ + **-** *Company of the company of the company* Microwave L and C using Transmission Lin

Fransmission line circuit terminated with open circuit $(Z_L = \infty)$
 $\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}\Big|_{Z_L = \infty} = 1 = \frac{V^+}{V^-}$

At load, $I = 0$ and $V = \infty$

(nput impedance $\begin{bmatrix} 0 & \tan P^{\chi} \end{bmatrix}$ __ controlled the circuit **terminated with open circuit (Z_L** = ∞)
 $\left[\frac{Z_L - Z_0}{Z_L + Z_0}\right]_{Z_L = \infty} = 1 = \frac{V^+}{V^-}$

t load, $I = 0$ and $V = \infty$

aput impedance
 $\left[\frac{Z_L + jZ_0 \tan \beta \ell}{Z_0 + jZ_L \tan \beta \ell}\right]_{Z_L = \infty} = -jZ_0 \cot \beta \ell$
 $0 \perp J$ \sim L tan P ^{\sim} \mid Z_{L} $\tan \beta \ell$ \mathbb{Z} and $\alpha \ell$ $\cot \beta \ell$ $\left.\tan \beta \ell \right|_{z=\infty}$ $\frac{1}{z}$ L^{∞} L^{-1} \int L_0 tail P^{χ} L *Lettar* $P^{\mathcal{L}}|_{Z_L = \infty}$ **Microwave** *L* **and** *C* **using Transmission Line

Fransmission line circuit terminated with open circuit** $(Z_L = \infty)$ **
** $\Gamma = \frac{Z_L - Z_u}{Z_L + Z_0}\Big|_{Z_L = \infty} = 1 = \frac{V^+}{V^-}$ **

At load,** $I = 0$ **and** $V = \infty$ **

Input impedance
 Z_m = Z_0 \frac{Z_L + j Prowave** *L* **and** *C* **using Transmission**

sion line circuit terminated with open circuit $(Z_L = \infty)$
 $\frac{Z_0}{Z_0}\Big|_{Z_L = \infty} = 1 = \frac{V^+}{V^-}$
 $I = 0$ and $V = \infty$

pedance
 $\frac{Z_L + jZ_0 \tan \beta \ell}{Z_0 + jZ_L \tan \beta \ell}\Big|_{Z_L = \infty} = -jZ_0 \cot \beta \$ $\frac{+jZ_0 \tan \beta \ell}{+jZ_L \tan \beta \ell} \bigg|_{Z_L = \infty} = -jZ_0 \cot \beta \ell$ $\beta\ell$, and the set of β Microwave L and C using Transmission Line

ssmission line circuit terminated with open circuit $(Z_L = \infty)$
 $\frac{Z_L - Z_0}{Z_L + Z_0}\Big|_{Z_L = \infty} = 1 = \frac{V^+}{V^-}$
 $\frac{Z_0}{Z_0}$
 $\frac{Z_1}{Z_0} = 0$ and $V = \infty$
 $\frac{Z_{10}}{Z_0 + jZ_L \tan \beta \ell}\Big$ l ℓ $\frac{1}{2}$ ℓ _z \sim ℓ
	- Same electrical characteristics as like transmission line terminated with short circuit
- § *Microwave inductor (L) and capacitor (C) can be realized by using transmission line circuit terminated with short or open circuits!!!*

2 Transmission Lines Connection

• Input impedance in case of $l = \lambda/2$ transmission line terminated with load (Z_L)

Transmission Lines Connection
put impedance in case of
$$
l = \lambda/2
$$
 transmission line terminated with load (Z_L)

$$
Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l} = Z_0 \frac{Z_L + jZ_0 \tan \frac{2\pi \lambda}{\lambda}}{Z_0 + jZ_L \tan \frac{2\pi \lambda}{\lambda} \frac{2}{2}} = Z_L \Leftrightarrow Z_{in} = Z_L
$$
put impedance in case of $l = \lambda/4 + n\lambda/2$ transmission line terminated with load (Z_L)

• Input impedance in case of $l = \lambda/4 + n\lambda/2$ transmission line terminated with load (Z_L)

Transmission Lines Connection
put impedance in case of
$$
I = \lambda/2
$$
 transmission line terminated with load (Z_L)

$$
Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l} = Z_0 \frac{Z_L + jZ_0 \tan \frac{2\pi \lambda}{\lambda} \frac{\lambda}{2}}{Z_0 + jZ_L \tan \frac{2\pi \lambda}{\lambda} \frac{\lambda}{2}} = Z_L \Leftrightarrow Z_{in} = Z_L
$$

put impedance in case of $I = \lambda/4 + n\lambda/2$ transmission line terminated with load (Z_L)

$$
Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta \ell}{Z_0 + jZ_L \tan \beta \ell} \Big|_{\ell = \lambda/4} = Z_0 \frac{Z_L + jZ_0 \tan \frac{2\pi \lambda}{\lambda} \frac{\lambda}{4}}{Z_0 + jZ_L \tan \frac{2\pi \lambda}{\lambda} \frac{\lambda}{4}} = \frac{Z_0^2}{Z_L} : \text{Quarter-wave (length) transcript}
$$

Transmission Lines Connection 2

- **Transmission line of characteristic impedance** Z_0 **feeding different characteristic impedance** (Z_1) **transmission line**
	- Reflection coefficient
		- $Z_1 + Z_0$ $\Gamma = \frac{Z_1 - Z_0}{Z_1 - Z_0}$
		- \rightarrow Some portion of the incident wave is reflected and the remained is transmitted into the second line. of the incident wave is reflected and
is transmitted into the second line.
each transmission lines
 $j^{\beta z} + \Gamma e^{j\beta z}$ (a) $z < 0$
 $(j\beta z)$ (a) $z > 0$ of the incident wave is reflected as
 is transmitted into the second line

		each transmission lines
 $\frac{d^2y}{dt^2} + \Gamma e^{j\beta z}$ (a) $z < 0$

		(a) $z > 0$

		smission coefficient at $z = 0$: of the incident wave is reflected and
s transmitted into the second line.
each transmission lines
 $\beta^z + \Gamma e^{i\beta z}$ (a) $z < 0$
 $\frac{\beta^z}{\beta^z}$ (a) $z > 0$
	- Voltage waves on each transmission lines $V(z) = V_0^+(e^{-j\beta z} + \Gamma e^{j\beta z})$ rtion of the incident wave is reflect
ined is transmitted into the second l
s on each transmission lines
 $^{+}(e^{-j\beta z} + \Gamma e^{j\beta z})$ @ $z < 0$
 $^{+}Te^{-j\beta z}$ @ $z > 0$ rtion of the incident wave is reflected

	ined is transmitted into the second l

	s on each transmission lines
 ${}^{+}(e^{-j\beta z} + \Gamma e^{j\beta z})$ @ z < 0
 ${}^{+}Te^{-j\beta z}$ @ z > 0
 ${}^{+}Te^{-j\beta z}$ @ z > 0
 \therefore transmission c
		- $V(z) = V_0^+ T e^{-j\beta z}$ ω z > 0
	- Continuity of transmission coefficient at *z* = 0:

$$
T = 1 + \Gamma = 1 + \frac{Z_1 - Z_0}{Z_1 + Z_0} = \frac{2Z_1}{Z_1 + Z_0}
$$

- Insertion loss (IL): $IL = -20 log |T| dB$

Decibel [dB] 3

- § Decibel (dB): **relative unit** of measurement equal to one tenth of a **bel** (**B**)
- Power gain in decibel $=10 \log \frac{I_1}{I_1}$ [dB] Ex.] $P_1/P_2 = 0.5 = 1/2 \rightarrow -3$ dB, $P_1/P_2 = 10 \rightarrow 10$ dB - Voltage gain in decibel: - Current gain in decibel: 10k where R_1, R_2 : load resistances $V_{1, 2}$, $I_{1, 2}$: voltages across specific ports and currents passing specific nodes Neper [Np]: ratio of voltages across equal load resistances 2 **a** it of measurement equal to one tenth of a **bel (B)**

10log $\frac{P_1}{P_2}$ [dB]

→ -3 dB, $P_1/P_2 = 10$ → 10 dB

10log $\frac{P_1}{P_2} = 10$ log $\frac{V_1^2/R_1}{V_2^2/R_2} = 20$ log $\frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB] P_2 $=10 \log \frac{1}{D} [dB]$ $1 - \mathbf{R}_2$ 2 a set of \sim 3 a set of \sim $\frac{1}{2}$ [dB] \leftarrow If $R_1 = R_2$ 2 $[AB]$ 2 V^{1} $1/\mathbf{R}$ 1 \mathbf{R} 1 $2 \sqrt{11}$ 2 \mathbf{p} \sim \sim \mathbf{v} \sim \mathbf{v} \sim \sim $2 \frac{N_1}{N_2}$ $2 \frac{N_1}{N_1}$ $^{2} - 20 \cdot \frac{1}{1}$ $2\,$ D \qquad \q 1^{12} – 2010['] 2 $\binom{2}{1}$ 2 \sqrt{D} 1010 σ $\sqrt{2}$ 2 $\binom{1}{2}$ $1 - 10 \log^{11} N_2$ $2/D$ V^2 17 10 -10 10 2 V_2 / N_2 $\frac{1}{V_2^2} = 10 \log \frac{V_1}{V_2^2/R_2} = 10 \log \frac{V_1}{V_2^2 R_1} = 20 \log \frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]
= 20 log $\frac{V_1}{V_1}$ [dB] \leftarrow If $R_1 = R_2$ $/R_2$ V_2^2 $10\log\frac{P_1}{P_1} = 10\log\frac{V_1^2/R_1}{V_1^2/I} = 10\log\frac{V_1^2R_2}{V_1^2I} = 20$ V_2 V_{1} \sim Γ P P R_1 R_{2} ϵ Ω V_2 $\bigvee R_1$ \bigvee V_1 $\left| R_2 \right|$ $\left| R_2 \right|$ $V_2^2 R_1$ $V_2 \sqrt{R_1}$ $V_1^2 R_2$ 2012 V_1 R_2 5.401 V_2^2/R_2 $V_2^2R_1$ $V_2\sqrt[R_1]{R_1}$ V_1^2/R_1 **1012** $V_1^2R_2$ **2012** V_1 $|R_2|$ P_2 V_2^2/R_2 $V_2^2R_1$ P_1 101₂, V_1^2/R_1 101₂, $V_1^2R_2$ $= 20 \log \frac{1}{\epsilon} \left[\text{dB} \right] \qquad \leftarrow \text{If} \quad R_1 = R_2$ $= 10 \log \frac{11 + 11}{2} = 10 \log \frac{11 + 11}{2} = 20 \log \frac{11}{2} \left(\frac{11}{2} \right)$ [dB] 0 → 10 dB

²/R₁</sub> = 10 log $\frac{V_1^2 R_2}{V_2^2 R_1}$ = 20 log $\frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]

[dB] ← If $R_1 = R_2$
 $\frac{2R_1}{V_2}$ = 10 log $\frac{I_1^2}{I_2^2}$ = 20 log $\frac{I_1}{I_2}$ [dB] ← If $R_1 = I_2$

ad resistances 3, $P_1/P_2 = 10 \rightarrow 10 \text{ dB}$
 $\frac{1}{2} = 10 \log \frac{V_1^2 / R_1}{V_2^2 / R_2} = 10 \log \frac{V_1^2 R_2}{V_2^2 R_1} = 20 \log \frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]
 $= 20 \log \frac{V_1}{V_2}$ [dB] \leftarrow If $R_1 = R_2$
 $\frac{P_1}{P_2} = 10 \log \frac{I_1^2 R_1}{I_2^2 R_2} = 10 \log \frac$ $2^2/R_1 = 10 \log \frac{V_1^2 R_2}{V_2^2 R_1} = 20 \log \frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]

[dB] \leftarrow If $R_1 = R_2$
 $\frac{R_1}{V_2} = 10 \log \frac{I_1^2}{I_2^2} = 20 \log \frac{I_1}{I_2}$ [dB] \leftarrow If $R_1 = R_2$

ad resistances

voltages across specific ports 3, $P_1/P_2 = 10 \rightarrow 10$ dB
 $\frac{1}{V_2^2 + R_1} = 10 \log \frac{V_1^2 R_2}{V_2^2 R_2} = 20 \log \frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]
 $= 20 \log \frac{V_1}{V_2}$ [dB] \leftarrow If $R_1 = R_2$
 $\frac{P_1}{P_2} = 10 \log \frac{I_1^2 R_1}{I_2^2 R_2} = 10 \log \frac{I_1^2}{I_2^2} = 20 \log \frac{I$ **11** of measurement equal to one tenth of a **bel (B)**

10log $\frac{P_1}{P_2}$ [dB]

→ 3 dB, $P_1/P_2 = 10 \rightarrow 10$ dB
 $10 \log \frac{P_1}{P_2} = 10 \log \frac{V_1^2/R_1}{V_2^2/R_1} = 10 \log \frac{V_1^2 R_2}{V_2^2 R_1} = 20 \log \frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]

= reasurement equal to one tenth of a **bel (B)**
 P₂ (dB)
 P₃ $P_1/P_2 = 10 \rightarrow 10$ dB
 P₁ = 10log $\frac{V_1^2 / R_1}{V_2^2 / R_2} = 10 \log \frac{V_1^2 R_2}{V_2^2 R_1} = 20 \log \frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]

= 20log $\frac{V_1}{V_2}$ [dB] surement equal to one tenth of a bel (B)

HB]
 $P_1/P_2 = 10 \rightarrow 10 \text{ dB}$
 $= 10 \log \frac{V_1^2/R_1}{V_2^2/R_2} = 10 \log \frac{V_1^2 R_2}{V_2^2 R_1} = 20 \log \frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]
 $= 20 \log \frac{V_1}{V_2}$ [dB] \leftarrow If $R_1 = R_2$
 $= 10 \log \frac{I_$ n in decibel: $10 \log \frac{P_1}{P_2} = 10 \log \frac{I_1^2 R_1}{I_2^2 R_2} = 10 \log \frac{I_1^2}{I_2^2} = 20 \log \frac{I_1}{I_2}$ [dB] \leftarrow H
where R_1, R_2 : load resistances
 $V_{1,2}, I_{1,2}$: voltages across specific ports and cur
ratio of voltages acro n in decibel: $10 \log \frac{P_1}{P_2} = 10 \log \frac{I_1^2 R_1}{I_2^2 R_2} = 10 \log \frac{I_1^2}{I_2^2} = 20 \log \frac{I_1}{I_2}$ [dB] ← If
where R_1 , R_2 : load resistances
 $V_{1, 2}, I_{1, 2}$: voltages across specific ports and cur
ratio of voltages a Ex.] $P_1/P_2 = 0.5 = 1/2 \rightarrow 3$ dB, $P_1/P_2 = 10 \rightarrow 10$ dB
 $\frac{P_1}{P_2} = 10 \log \frac{V_1^2 / R_1}{V_2 / R_2} = 10 \log \frac{V_1^2 R_2}{V_2 / R_1} = 20 \log \frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]
 $= 20 \log \frac{V_1}{V_2}$ [dB] \leftarrow If $R_1 = R_2$
 \therefore Current gain $_{1}/P_{2} = 10 \rightarrow 10$ dB
 $_{1}/P_{2} = 10 \rightarrow 10$ dB
 $_{1}/P_{2} = 10 \log \frac{V_{1}^{2}/R_{2}}{V_{2}^{2}/R_{1}} = 20 \log \frac{V_{1}}{V_{2}} \sqrt{\frac{R_{2}}{R_{1}}}$ [dB]
 $_{2}/P_{2} = 20 \log \frac{V_{1}}{V_{2}}$ [dB] \leftarrow If $R_{1} = R_{2}$
 $_{3}/P_{2} = 10 \log \frac{I_{1}^{2}R_{1}}{I_{2}^{2}R_{2$ $V_2 = 0.5 = 1/2 \rightarrow -3$ dB, $P_1/P_2 = 10 \rightarrow 10$ dB

in in decibel: $10 \log \frac{P_1}{P_2} = 10 \log \frac{V_1^2/R_1}{V_2^2/R_2} = 10 \log \frac{V_1^2 R_2}{V_2^2 R_1} = 20 \log \frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]
 $= 20 \log \frac{V_1}{V_2}$ [dB] \leftarrow If $R_1 = R_2$

in in d *V*₂ = 0.5 = 1/2 → 3 dB, $P_1/P_2 = 10 \rightarrow 10$ dB

in in decibel: $10 \log \frac{P_1}{P_2} = 10 \log \frac{V_1^2 / R_1}{V_2^2 / R_2} = 10 \log \frac{V_1^2 R_2}{V_2^2 R_1} = 20 \log \frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]
 $= 20 \log \frac{V_1}{V_2}$ [dB] \leftarrow 1f $R_1 = R_2$

in $e^{i\theta}P_2$ = 0.5 = 1/2 → 3 dB, P_1/P_2 = 10 → 10 dB

e gain in decibel: $10 \log \frac{P_1}{P_2}$ = $10 \log \frac{V_1^2/R_1}{V_2^2/R_2}$ = $10 \log \frac{V_1^2 R_2}{V_2^2/R_1}$ = $20 \log \frac{V_1}{V_2} \sqrt{\frac{R_2}{R_1}}$ [dB]
 $= 20 \log \frac{V_1}{V_2}$ (dB] \leftarrow

$$
\text{neper} = \ln \frac{V_1}{V_2} = \ln \left[\left(\frac{V_1}{V_2} \right)^2 \right]^{1/2} = \ln \left[\left(\frac{V_1^2 / R}{V_2^2 / R} \right) \right]^{1/2} = \frac{1}{2} \ln \frac{P_1}{P_2} \quad \text{[Np]} \quad \text{Ex.} \quad 1 \text{ Np} = 10 \log e^2 = 8.686 \text{ dB}
$$

Decibel [dB] 3

- § Absolute decibel units: **absolute units** of measurement equal to one tenth to specific value
- If we let $P_2 = 1$ mW, P_1 [dBm] = $10 \log \frac{T_1 \text{ [mW]}}{1 \text{ mW}}$ Ex.] $P_1 = 1$ mW $\rightarrow 0$ dBm, $P_1 = 1$ W $\rightarrow 30$ dBm - If we let $V_2 = 1$ mV, $V_1 = 20 \log \frac{V_1}{1 \text{ mV}}$ [dBmV] Ex.] $V_1 = 1$ mV \rightarrow 0 dBmV, $V_1 = 1$ V \rightarrow 60 dBmV - If we let $I_2 = 1 \mu A$, $I_1 = 20 \log \frac{I_1}{1 \mu A} [\text{dB} \mu \text{A}]$ Ex.] $I_1=1 \mu A \rightarrow 0 \text{ dB} \mu A$, $I_1=1 \text{ mA} \rightarrow 60 \text{ dB} \mu A$ $1 \frac{1}{1}$ [mW W₁ \int **bsolute units** of measurement equal to one tenth to specific value
 $[dBm] = 10 log \frac{P_1}{1} [mW]$

m, $P_1 = 1 W \rightarrow 30 dBm$
 $= 20 log \frac{V_1}{1} [dBmV]$ 1 mW *P*₁ [mW] P_1 [dBm] = 10 log $\frac{P_1 + P_2}{P_1 + P_2}$ **absolute units** of measurement equal to one tenth to specific value
 P_1 [dBm] = 10log $\frac{P_1$ [mW]

1Bm, $P_1 = 1 \text{ W} \rightarrow 30 \text{ dBm}$
 $Y_1 = 20 \log \frac{V_1}{1 \text{ mV}}$ [dBmV]

BmV, $V_1 = 1 \text{ V} \rightarrow 60 \text{ dBmV}$

= 20log $\frac{I_1}{1 \mu$ $V_1 = 20 \log \frac{1}{1 + V}$ [dBmV] 3

2: absolute units of measurement equal to one tenth to specific value
 P_1 [dBm] = 10log $\frac{P_1$ [mW]

dBm, $P_1 = 1 \text{ W} \rightarrow 30 \text{ dBm}$
 $V_1 = 20 \log \frac{V_1}{1 \text{ mV}}$ [dBmV]

dBmV, $V_1 = 1 \text{ V} \rightarrow 60 \text{ dBmV}$
 $V_1 = 20 \log \frac{I$ $I_1 = 20 \log \frac{I_1}{I_1}$ [d μ A $= 20 \log \frac{1}{1}$ [dB μ A]

- § **Reflection coefficient plane**
- $\Gamma = |\Gamma| e^{j\theta}$ θ Smith Chart

Reflection coefficient plane
 $\Gamma = |\Gamma|e^{j\theta}$

where $0 \le |\Gamma| \le 1$, $0^{\circ} \le \theta \le 360^{\circ}$ (or $0 \le \theta \le 2\pi$)

Developed by P. Smith

at Rell Telenhone Laboratories in 1939
	- Developed by P. Smith at Bell Telephone Laboratories in 1939
	- Very useful when solving transmission line problems
		- \rightarrow Visualizing transmission line phenomenon
		- \rightarrow Intuition about transmission line and impedance-matching problems
	- **Normalized** impedance (or admittance): $z = Z / Z_0$ (or $y = Y / Y_0$)
	- $-Z_0$ (or Y_0): arbitrary value

Normalized Impedance **or** Admittance Coordinates

9

 $\overline{\mathbf{x}}$

 \overline{ax} a

If a lossless transmission line of characteristic impedance Z_0 is terminated with a load impedance Z_L , dance Z_0 is terminated with a load impedance Z_L ,
 $f(Z_L)$
 $f(Z_L)$
 $\frac{1+\Gamma e^{-j2\beta l}}{2}Z_0$,

Smith Chart
a lossless transmission line of characteristic impedance
$$
Z_0
$$
 is terminated with a load impedance Z_L ,

$$
\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{(Z_L/Z_0) - 1}{(Z_L/Z_0) + 1} = \frac{z_L - 1}{z_L + 1} = \Gamma |e^{j\theta}, \leftarrow \Gamma = f(Z_L)
$$

where $z_L = Z_L/Z_0$: normalized load impedance
$$
\text{since } Z_{in} = \frac{V(-l)}{Z_L + Z_0} = \frac{V_0^+ [e^{j\beta l} + \Gamma e^{-j\beta l}]}{Z_L + \Gamma e^{-j\beta l} + \Gamma e^{-j\beta l} + \Gamma e^{-j\beta l}} = \frac{e^{j\beta l} + \Gamma e^{-j\beta l}}{(j\beta l - \Gamma) + (l\beta l - \Gamma)^{j\beta l}} Z_0 = \frac{1 + \Gamma e^{-j2\beta l}}{(l\beta l - \Gamma) + (l\beta l - \Gamma)^{j\beta l}} Z_0,
$$

where $z_L = Z_L/Z_0$: normalized load impedance

- Since , , (/) 1 1 *Z Z Z z* - - - ^q G = = = = G ¬ G = + + + 2 0 in 0 0 ² 0 0 () 1 [] () [] / 1 *j l j l j l j l j l j l j l j l j l j l V l e e e V e e Z Z Z I l V e e Z e e e* ^b + - - - + - - - - + G + G + G = = = = - - G - G - G 2 in 0 0 ⁰ ² 0 1 1 1 1 *j l j ^L j l r i ^l l ^e Z Z Z Z e j e* b q b - = - ⁼ + G + G = = = ¬ G = G = G + G - G - G () 1 1 *L L L ^j z z g Z Z e* + G + G = = = ¬ = - G - G

$$
z_L = \frac{Z_L}{Z_0} = \frac{1+\Gamma}{1-\Gamma} = \frac{1+\Gamma|e^{j\theta}}{1-|\Gamma|e^{j\theta}} \quad \leftarrow z_L = g(Z_L)
$$

It a tossess that
substationation line of characteristic impedance Σ₀ is terminated with a load impedance

$$
\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} = \frac{(Z_L / Z_0) - 1}{(Z_L / Z_0) + 1} = \frac{z_L - 1}{z_L + 1} = |\Gamma|e^{i\theta}, \quad \leftarrow \Gamma = f(Z_L)
$$

where $z_L = Z_L / Z_0$; normalized load impedance

$$
- Since Z_{in} = \frac{V(-l)}{I(-l)} = \frac{V_0^+ [e^{i\beta l} + \Gamma e^{-j\beta l}]}{V_0^+ [e^{i\beta l} - \Gamma e^{-j\beta l}]} / Z_0 = \frac{e^{i\beta l} + \Gamma e^{-j\beta l}}{e^{i\beta l} - \Gamma e^{-j\beta l}} Z_0 = \frac{1 + \Gamma e^{-j2\beta l}}{1 - \Gamma e^{-j2\beta l}} Z_0,
$$

$$
Z_{in}|_{z=0} = Z_L = \frac{1 + \Gamma e^{-j2\beta l}}{1 - \Gamma e^{-j2\beta l}} Z_0|_{z=0} = \frac{1 + \Gamma}{1 - \Gamma} Z_0 \quad \leftarrow \Gamma = |\Gamma|e^{i\theta} = \Gamma_r + j\Gamma_i
$$

$$
z_L = \frac{Z_L}{Z_0} = \frac{1 + \Gamma}{1 - \Gamma} = \frac{1 + |\Gamma|e^{i\theta}}{1 - |\Gamma|e^{i\theta}} \quad \leftarrow z_L = g(Z_L)
$$

$$
- Let \Gamma = \Gamma_r + j\Gamma_i
$$
 and $z_L = r_L + jx_L$.

$$
z_L = r_L + jx_L = \frac{1 + \Gamma}{1 - \Gamma} = \frac{(1 + \Gamma_r) + j\Gamma_i}{(1 - \Gamma_r) - j\Gamma_i} = \frac{\{(1 + \Gamma_r) + j\Gamma_i\}\{(1 - \Gamma_r) + j\Gamma_i\}}{(1 - \Gamma_r)^2 + \Gamma_i^2}
$$

$$
= \frac{(1 - \Gamma_r^2) - \Gamma_i^2 + j\Gamma_i(1 + \Gamma_r) + j\Gamma_i(1 - \Gamma_r)}{(1 - \Gamma_r)^2 + \Gamma_i^2}
$$

11

Smith Chart
\n
$$
r_{L} = \frac{1 - \Gamma_{r}^{2} - \Gamma_{i}^{2}}{(1 - \Gamma_{r})^{2} + \Gamma_{i}^{2}}, \qquad x_{L} = \frac{2\Gamma_{i}}{(1 - \Gamma_{r})^{2} + \Gamma_{i}^{2}}
$$
\n(2
\n**Carrangement of real part (or resistance)**
\n
$$
r_{L} = \frac{1 - \Gamma_{r}^{2} - \Gamma_{i}^{2}}{1 - \Gamma_{r}^{2} - \Gamma_{i}^{2}}
$$

The Smith chart can also be graphical solution of the transmission line impedance equation in terms of the generalized reflection coefficient as \longrightarrow *I*_{in} $\stackrel{L}{\longrightarrow}$ I_L

where Γ : reflection coefficient at load *l*: (positive) length of transmission line from load - The normalized input impedance seen looking into a length *l* of transmission line terminated with z_L can be found by rotating the point **clockwisely** an amount $2\beta l$ (subtracting $2\beta l$ from θ) around the center of the chart. \rightarrow The same radius is maintained, since the magnitude of Γ does not change with position along the transmission line. $2j\beta l$ **Smith Chart**

Smith chart can also be graphical solu

ralized reflection coefficient as
 $\lim_{\text{in}} = Z_0 \frac{1 + \Gamma e^{-2j\beta l}}{1 - \Gamma e^{-2j\beta l}} \leftarrow \Gamma = |\Gamma| e^{j\theta}$

where Γ : reflection coefficient at loa $1+\Gamma e^{-2j\beta l}$ Γ $|\Gamma|$ $1 - \Gamma e^{-2j\beta l}$ art
also be graphical solution of the t
n coefficient as
 $\frac{d^{j\beta l}}{d^{j\beta l}} \leftarrow \Gamma = |\Gamma| e^{j\theta} \quad V_g \leftarrow$ $j\theta$ V_a (**art**
also be graphical solution of the t
n coefficient as
 $\frac{d}{d\beta l}$ $\leftarrow \Gamma = |\Gamma| e^{j\theta} V_g \bigotimes$
tion coefficient at load **Smith Chart**

e Smith chart can also be graphical solution of the transmission line impedance equation in

eralized reflection coefficient as
 $Z_{\text{in}} = Z_0 \frac{1 + \Gamma e^{-2i\beta l}}{1 - \Gamma e^{-2i\beta l}}$ $\leftarrow \Gamma = |\Gamma| e^{j\theta} V_{\text{st}} \bigoplus_{Z_{\text{in}}$ $e^{-2j\beta l}$ 1 βl θ V (λ βl $\left| \begin{array}{ccc} & & \\ & & \end{array} \right|$ $-2j\beta l$ **mith Chart**

mith chart can also be graphical solution of the transmission line impedance equation

lized reflection coefficient as
 $= Z_0 \frac{1 + \Gamma e^{-2/\beta l}}{1 - \Gamma e^{-2/\beta l}}$ $\leftarrow \Gamma = |\Gamma| e^{j\theta} V_R \oplus \frac{V_{\text{in}}}{Z_{\text{in}}} \oplus \frac{V_{\text{in}}}{Z$ **Chart**

art can also be graphical solution of the transmission line

flection coefficient as
 $+\Gamma e^{-2j\beta l}$
 $-\Gamma e^{-2j\beta l}$
 $\leftarrow \Gamma = |\Gamma| e^{j\theta} V_g \right\}$
 $\frac{Z_g}{Z_{in} \bigoplus_{j}^{V_{in}} Y_{in}}$
 \therefore reflection coefficient at load
 \therefore $V_g(\mathcal{S})$ $Z \left/ \begin{array}{c} \frac{\dot{x}}{2} \end{array} \right| \begin{array}{c} \frac{\dot{x}}{2} \\ \frac{\dot{y}}{2} \end{array}$ *-l* $Z_{\text{g}} \longleftarrow$ $Z_{\text{in}} \overset{V \text{ in}}{\Longrightarrow} Z_0, \beta \qquad V_L \overset{V_L}{=} Z_L$ *+ - +* \overrightarrow{V}_{in} Z_0 , β V_L $\overrightarrow{Z_L}$ V_L Z_L

(⸪ lossless transmission line)

- Microwave *L* and *C* using Transmission Line
	- Equivalent inductor
	- Equivalent capacitor
- Transmission lines connection
	- Reflection
	- Transmission
- § Smith chart
	- Reflection coefficient plane
	- Impedance and/or admittance chart
	- Transmission calculation tools