Microwave Engineering 2-5

Chapter 2 Transmission Line

Prof. Jeong, Yongchae

Learning Objectives

- Learn circuit parameters measurement with network analyzer
- § Understanding *λ*/4 impedance transformer operation
- § Understanding *λ*/4 impedance transformer with multiple reflections
- What is the condition for impedance matching?

Learning contents

- Circuit Measurements: Vector Network Analyzer (VNA)
- § Quarter-wavelength (*λ*/4) Transformer
- § Multiple Reflection Viewpoint for *λ*/4 Impedance Transformer
- § Impedance Matchings

- § In stead of slotted line, modern network analyzers can measure the related parameters.
- Scalar Network analyzer: only signal magnitude measurable
- Vector Network Analyzer (VNA): Magnitude+ phase
- VNAs are extremely versatile instruments that can characterize source *S*-parameters, match complex impedances, (V)SWR, group delay, insertion phase.
- **Figure*** shows general block diagram of VNA
- Signal can be sent through the device under test (DUT) from input port to output port.
- Network analyzer's receivers measure the incident, reflected, and transmitted signal to calculate *S*-parameters.

*https://www.keysight.com/us/en/solutions/measurement-fundamentals/network-analysis.html

power

- Reflection measurement: 1-port device under test (DUT)
- Reflection coefficient (or S_{11} -parameters):

$$
S_{11} = \Gamma = \frac{V_{reflected}}{V_{incident}} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0}
$$

- Return loss (RL):
	-
- (Voltage) Standing wave ratio ((V)SWR):

 $1-\vert\Gamma\vert$ $\text{SWR} = \frac{1}{1 + |S|}$ $1 + |\Gamma|$ $=\frac{1}{4}$ $\frac{|1|}{|1|}$

Input impedance:

$$
Z_{\text{in}} = Z_0 \left(\frac{1+\Gamma}{1-\Gamma} \right) = Z_0 \left(\frac{1+S_{11}}{1-S_{11}} \right)
$$

■ Reflection measurement examples: 1-port device under test (DUT)

■ Transmission measurement examples on 2-port devices or circuits

- Transmission measurement: 2-port devices or circuits $-S$ -parameters: $S_{11}, S_{21}, S_{12}, S_{22}$ 1 \boldsymbol{V} **rcuit Measurement:** 2-port devices

mission measurement: 2-port devices

ameters: S_{11} , S_{21} , S_{12} , S_{22}
 $S_{11} = \Gamma_{\text{in}} = \frac{V_{reflected}^{Port1}}{V_{reflected}^{Port1}}$ $S_{21} = \frac{V_{transmitted}^{Port2}}{V_{incident}^{Port1}}$
 $S_{12} = \frac{V_{reflected}^{Port1}}{V_{resmitted}^{host1}}$ *Port reflected Port reflected* $V_{reflected}^{Port1}$ $V_{transmitted}^{Port2}$ $S_{11} = \Gamma_{\text{in}} = \frac{rejected}{\pi r_{\text{Port}}}$ $S_{21} =$ $V_{reflected}^{Port1}$ $V_{incident}^{Port1}$ **Casurements:** Vector Network

ission measurement: 2-port devices or circuits

incident Port 1

incident Port 1
 $= \Gamma_{\text{in}} = \frac{V_{reflected}^{Port1}}{V_{reflected}^{Port2}}$
 $= \Gamma_{\text{out}} = \frac{V_{reflected}^{Port2}}{V_{reflected}^{Port2}}$
 $S_{12} = \frac{V_{transmitted}^{Port1}}{V_{incident}^{Port2}}$
 $= \Gamma$ 2 V^P mission measurement: 2-port devices

ameters: S_{11} , S_{21} , S_{12} , S_{22}
 $S_{11} = \Gamma_{in} = \frac{V_{reflected}^{Port1}}{V_{reflected}^{Port1}}$ $S_{21} = \frac{V_{transmitted}^{Port2}}{V_{incident}^{Port1}}$
 $S_{22} = \Gamma_{out} = \frac{V_{reflected}^{Port2}}{V_{reflected}^{Port2}}$ $S_{12} = \frac{V_{transmitted}^{Port1}}{V_{incident}^{Port2}}$
 $S_{$ *Port reflected* \mathbf{C} \mathbf{C} \mathbf{r} tras *Port reflected* $V_{reflected}^{Port1}$ $V_{transmitted}^{Port1}$ $S_{22} = \Gamma_{\text{out}} = \frac{rejected}{\pi r^{\text{Port}}}$ S_{12} $V_{reflected}^{Port2}$ 12 $V_{incident}^{Port2}$ **Calcular Measurement:** 2-port devices or circuits

ission measurement: 2-port devices or circuits

incident Port 1
 $=\Gamma_{\text{in}} = \frac{V_{reduced}^{Port1}}{V_{reduced}^{Port1}}$ $S_{21} = \frac{V_{rcontrol}^{Port1}}{V_{incident}^{Port1}}$
 $=\Gamma_{\text{out}} = \frac{V_{reduced}^{Port1}}{V_{reduced}^{Port2}}$ S_{1 2 $21 - I$ *Port trasmitted Port incident* $S_{21} = \frac{r_{transmitted}}{r_{\tau}$ $=\frac{r_{transmitted}}{rr^{Port1}}$ Refleo 1 $12 - T$ *Port trasmitted Port incident* $S_{12} = \frac{r_{\text{transmitted}}}{r_{\text{F}}\text{Port2}}$ $=\frac{7 \text{ transmitted}}{15 P \cdot 2}$ = $\Gamma_{\text{in}} = \frac{V_{reflected}^{Port1}}{V_{reflected}^{Port1}}$ $S_{21} = \frac{V_{transmitted}^{Port2}}{V_{incident}^{Port1}}$ Reflected

= $\Gamma_{\text{out}} = \frac{V_{reflected}^{Port2}}{V_{reflected}^{Port2}}$ $S_{12} = \frac{V_{transmitted}^{Port1}}{V_{incident}^{Port2}}$

and output return losses (RLs): Fransmite
 $\Gamma_{\text{in}}(dB) = -20 \log_{10} (|S_{11}|)$
 Fortherm $V_{reflected}^{Port1}$
 $= \Gamma_{out} = \frac{V_{reflected}^{Port1}}{V_{reflected}^{Port2}}$ $S_{12} = \frac{V_{transmitted}^{Port1}}{V_{incident}^{Port2}}$

and output return losses (RLs):
 $\Gamma_{in} (dB) = -20 \log_{10} (|S_{11}|)$
 $\Gamma_{out} (dB) = -20 \log_{10} (|S_{22}|)$

and output VSWRs:
 $\Gamma_{out} = 1 - \Gamma_{in}$ and $\$ **Measurement:** 2-port devices or circuits
 V_{S11} , S_{21} , S_{12} , S_{22}
 $V_{reduced}^{Port1}$
 $V_{reduced}^{Port2}$ The phase $S_{11} = \Gamma_{in} \frac{V_{reflected}^{Port1}}{V_{reflected}^{Port1}}$
 $S_{21} = \Gamma_{in} \frac{V_{reflected}^{Port1}}{V_{reflected}^{Port2}}$
 $S_{22} = \Gamma_{out} \frac{V_{reflected}^{Port1}}{V_{reflected}^{Port2}}$
 $S_{12} = \frac{V_{rguncted}^{Port1}}{V_{inclient}^{port2}}$
 $S_{12} = \frac{V_{rgpartified}^{Port1}}{V_{inclient}^{port2}}$
 $S_{12} = \frac{V_{rgpartified}^{Port1}}{V_{inclient}^{port$ $V_{\text{reflected}}^{Port1}$
 $V_{\text{reflected}}^{Port2}$
 $V_{\text{reflected}}^{Port1}$
 $V_{\text{reflected}}^{Port2}$
 $V_{\text{reflected}}^{Port2}$
 $V_{\text{reflected}}^{Port2}$
 $V_{\text{reflected}}^{Port2}$
 $V_{\text{reflected}}^{Port1}$
 $S_{12} = \frac{V_{\text{resonified}}^{Port1}}{V_{\text{resonified}}^{Port1}}$
 $S_{13} = \frac{V_{\text{resonified}}^{Port1}}{V_{\text{incident}}^{Port1}}$
 S
	- Input and output return losses (RLs):
- RL_{in} (dB) = -20 log_{10} (| S_{11} |) RL_{out} (dB) = -20 log_{10} (| S_{22} |) V reflected

d output return losses (RLs):
 $(dB) = -20 log_{10} (|S_{11}|)$
 $(dB) = -20 log_{10} (|S_{22}|)$

d output VSWRs:
 $\begin{aligned}\n&= \frac{1-\Gamma_{in}}{1+\Gamma_{in}}, \text{ SWR}_{out} = \frac{1-\Gamma_{out}}{1+\Gamma_{out}} \quad &\text{IL}_{dB} = -20\n\end{aligned}$

mase: $IL_{phase} = \angle S_{21}$ - Group delay return losses (RLs):

Transmitted

-20 $log_{10} (|S_{11}|)$
 $-20 log_{10} (|S_{22}|)$

VSWRs:
 $\frac{sin}{\pi}$, SWR_{out} $= \frac{1-\Gamma_{out}}{1+\Gamma_{out}}$
 $\frac{1-\Gamma_{out}}{1+\Gamma_{out}}$
 $\frac{1}{1+\Gamma_{out}}$
 $\frac{1}{1+\Gamma_{out}}$
 $\frac{1}{1+\Gamma_{out}}$
 $\frac{1}{1+\Gamma_{out}}$
 $\frac{1}{1+\Gamma_{out}}$

	- Input and output VSWRs:

$$
SWR_{in} = \frac{1 - \Gamma_{in}}{1 + \Gamma_{in}}, \quad SWR_{out} = \frac{1 - \Gamma_{out}}{1 + \Gamma_{out}} \qquad \qquad IL_{dB} = -20 \log_{10} (
$$

- Insertion loss (IL) and Gain:

$$
IL_{dB} = -20 log_{10} (|S_{11}|)
$$
 Gain (dB) = 20 log_{10} (|S_{21}|)

- Group delay:
$$
\tau = -\frac{d \angle S_{21}}{d \omega}
$$

7

• Transmission examples: 2-port device under test (DUT)

Quarter-wavelength (*λ***/4) Transformer 2**

- Useful and practical circuit in microwave system
- Transmission line terminated with resistance load (*R_L*)

 quarter-wavelength transmission line of *Z*₁
	-
	- Feedline characteristic impedance: Z₀
	- Input impedance:

- In order for $\Gamma = 0$, we must have $Z_{\text{in}} = Z_0$.

- $1 \sqrt{20} \Omega_L$ 2 $1 - 7$ \rightarrow 7. 0 $L_1 - \sqrt{L_0} \mathbf{R}$ *L* Z_1^2 \rightarrow Z \sqrt{Z} \rightarrow $Z_0 \Leftrightarrow Z_1 = \sqrt{Z_0 R_L}$ R_{L} ⁰ ¹ **v** ⁰ ^L
- \rightarrow Geometric mean of load and source impedances
- \rightarrow No standing waves on feedline (SWR = 1)
- \rightarrow Only when the length of the matching section is $\lambda/4$ or $(2n + 1)\lambda/4$
- è *A perfect match may be achieved at one frequency (or center frequency)*
- **E** *Reflection tolerance* permits an operating bandwidth, not only center frequency

Quarter-wavelength (*λ***/4) Transformer 2**

■ Example quarter-wavelength impedance transformer
- *R_L* = 100 Ω, *Z*₀ = 50 Ω,
- Find characteristic impedance of transmission line of *Z*₁ and normalized frequency characteristics

Solution) Characteristic impedance of Z_1 :

$$
Z_1 = \sqrt{Z_0 R_L} = \sqrt{50 \times 100} = 70.71 \, [\Omega]
$$

- Reflection coefficient magnitude:

Quarter-wavelength (
$$
\lambda/4
$$
) **Transformer**
\n
$$
L = 100 \Omega, Z_0 = 50 \Omega,
$$
\nind characteristic impedance of transmission line of Z_1
\n
$$
Z_1 = \sqrt{Z_0 R_L} = \sqrt{50 \times 100} = 70.71 [\Omega]
$$
\n
$$
Z_1 = \sqrt{Z_0 R_L} = \sqrt{50 \times 100} = 70.71 [\Omega]
$$
\n
$$
= \frac{Z_0 = 50 \Omega}{Z_0 + Z_0} = \frac{Z_1 + jZ_0 \tan \beta l}{Z_0 + jZ_1 \tan \beta l}
$$
\n
$$
= \frac{Z_1 - Z_0}{Z_1 + Z_0} = \frac{Z_0 \frac{Z_1 + jZ_0 \tan \beta l}{Z_0 + jZ_1 \tan \beta l}}{Z_0 + \frac{Z_1}{Z_0} + \frac{Z_2}{Z_0}} = \frac{Z_1 \frac{Z_1 + jZ_0 \tan \beta l}{Z_0}}{Z_0 + \frac{Z_1}{Z_0} + \frac{Z_2}{Z_0}} = \frac{Z_1 \frac{Z_1 + jZ_0 \tan \beta l}{Z_0}}{Z_0 + \frac{Z_1}{Z_0} + \frac{Z_2}{Z_0}} = \frac{Z_1 \frac{Z_2 + jZ_0 \tan \beta l}{Z_0}}{Z_0 + \frac{Z_1}{Z_0} + \frac{Z_2}{Z_0}} = \frac{Z_1 \frac{Z_2 + jZ_0 \tan \beta l}{Z_0}}{Z_0 + \frac{Z_2}{Z_0} + \frac{Z_2}{Z_0}} = \frac{Z_1 \frac{Z_2 + jZ_0 \tan \beta l}{Z_0}}{Z_0 + \frac{Z_1}{Z_0} + \frac{Z_2}{Z_0}} = \frac{Z_1 \frac{Z_1 + jZ_0 \tan \beta l}{Z_0}}{Z_0 + \frac{Z_1}{Z_0} + \frac{Z_2}{Z_0}} = \frac{Z_1 \frac{Z_1 + jZ_0 \tan \beta l}{Z_0}}{Z_0 + \frac{Z_1}{Z_0} + \frac{Z_2}{Z_0}} = \frac{Z_1 \frac{Z_1 + jZ_0 \tan \beta l}{Z_0}}{Z_0 + \frac{Z_1}{Z_0} + \frac{Z_2}{Z
$$

Quarter-wavelength (*λ***/4) Transformer 2**

- Reflection coefficient characteristics according to normal frequency (f/f_0)

Multiple reflection Viewpoint for *λ***/4 Impedance Transformer 3**

- Reflection and transmission for $\lambda/4$ impedance transformer
- **-** Γ : overall reflection coefficient of incident wave
- Γ_1 : partial reflection coefficient of wave incident on load Z_1 from Z_0 line
- Γ_2 : partial reflection coefficient of wave incident on load Z_0 from Z_1 line
- G³ : partial reflection coefficient of wave incident on load *R^L* from Z_1 line
- T_1 : partial transmission coefficient of wave from Z_0 line into Z_1 line
- *-* T_2 : partial transmission coefficient of a wave from Z_1 line into Z_0 line $\hspace{1cm}$ 1
- Individual coefficients

from
$$
Z_0
$$
 line
\n Γ_2 : partial reflection coefficient of wave incident on load Z_0
\nfrom Z_1 line
\n Γ_3 : partial reflection coefficient of wave incident on load R_L
\nfrom Z_1 line
\n T_1 : partial transmission coefficient of wave from Z_0 line into Z_1 line
\n T_2 : partial transmission coefficient of a wave from Z_1 line into Z_0 line
\n Γ_2 : partial transmission coefficient of a wave from Z_1 line into Z_0 line
\nIndividual coefficients
\n $\Gamma_1 = \frac{Z_1 - Z_0}{Z_1 + Z_0}, \quad \Gamma_2 = \frac{Z_0 - Z_1}{Z_0 + Z_1} = -\Gamma_1, \quad \Gamma_3 = \frac{R_L - Z_1}{R_L + Z_1},$
\n $T_1 = 1 + \Gamma_1 = \frac{2Z_1}{Z_1 + Z_0}, \quad T_2 = 1 + \Gamma_2 = \frac{2Z_0}{Z_1 + Z_0}$

Multiple reflection Viewpoint for *λ***/4 Impedance Transformer** 0 phase shift **3**

Total reflection coefficient

Multiple reflection Viewpoint for
$$
\lambda/4
$$
 Impedance Transf
\ntotal reflection coefficient
\n
$$
\Gamma = \Gamma_1 - T_1 T_2 \Gamma_3 + T_1 T_2 \Gamma_1^2 - T_1 T_2 \Gamma_2^2 \Gamma_3^3 + \cdots \leftarrow 180^\circ \text{ phase shift}
$$
\n
$$
= \Gamma_1 - T_1 T_2 \Gamma_3 \sum_{n=0}^\infty (-\Gamma_2 \Gamma_3)^n
$$
\nSince $|\Gamma_3| < 1$ and $|\Gamma_2| < 1$,
\n
$$
\Gamma = \Gamma_1 - \frac{T_1 T_2 \Gamma_3}{1 + \Gamma_2 \Gamma_3} \leftarrow \sum_{n=0}^\infty x^n = \frac{1}{1-x} \text{ for } |x| < 1
$$
\n
$$
= \frac{\Gamma_1 + \Gamma_1 \Gamma_2 \Gamma_3 - T_1 T_2 \Gamma_3}{1 + \Gamma_2 \Gamma_3} = \frac{\Gamma_1 - \Gamma_1^2 \Gamma_3 - T_1 T_2 \Gamma_3}{1 + \Gamma_2 \Gamma_3}
$$
\nimplified numerator: $\Gamma_1 - \Gamma_3 (\Gamma_1^2 + T_1 T_2) = \Gamma_1 - \Gamma_3 \left[\frac{(Z_1 - Z_0)^2}{(Z_1 + Z_0)^2} + \frac{4Z_1 Z_0}{(Z_1 + Z_0)^2} \right] = \Gamma_1 - \Gamma_3$ \n
$$
= \frac{(Z_1 - Z_0) - (R_L - Z_1)}{(Z_1 + Z_0) - (R_L + Z_1)} = \frac{(Z_1 - Z_0)(R_L + Z_1) - (R_L - Z_1)(Z_1 + Z_0)}{(Z_1 + Z_0)(R_L + Z_1)}
$$

- Since $|\Gamma_3|$ < 1 and $|\Gamma_2|$ < 1,

3 **Multiple reflection Viewpoint for**
$$
\lambda/4
$$
 Impedance Trans
\nTotal reflection coefficient
\n
$$
\Gamma = \Gamma_1 - T_1 T_2 \Gamma_3 + T_1 T_2 \Gamma_2 \Gamma_3^2 - T_1 T_2 \Gamma_2^2 \Gamma_3^3 + \cdots \quad \leftarrow 180^\circ \text{ phase shift}
$$
\n
$$
= \Gamma_1 - T_1 T_2 \Gamma_3 \sum_{n=0}^\infty (-\Gamma_2 \Gamma_3)^n
$$
\n
$$
\text{Since } |\Gamma_3| < 1 \text{ and } |\Gamma_2| < 1,
$$
\n
$$
\Gamma = \Gamma_1 - \frac{T_1 T_2 \Gamma_3}{1 + \Gamma_2 \Gamma_3} \quad \leftarrow \sum_{n=0}^\infty x^n = \frac{1}{1-x} \quad \text{for } |x| < 1
$$
\n
$$
= \frac{\Gamma_1 + \Gamma_1 \Gamma_2 \Gamma_3 - T_1 T_2 \Gamma_3}{1 + \Gamma_2 \Gamma_3} = \frac{\Gamma_1 - \Gamma_1^2 \Gamma_3 - T_1 T_2 \Gamma_3}{1 + \Gamma_2 \Gamma_3}
$$
\n
$$
\text{Simplified numerator: } \Gamma_1 - \Gamma_3 (\Gamma_1^2 + T_1 T_2) = \Gamma_1 - \Gamma_3 [\frac{(Z_1 - Z_0)^2}{(Z_1 + Z_0)^2} + \frac{4Z_1 Z_0}{(Z_1 + Z_0)^2}] = \Gamma_1 - \Gamma_3 \qquad \frac{1}{T_1 T_2 \Gamma_3}
$$
\n
$$
= \frac{(Z_1 - Z_0) - (R_L - Z_1)}{(Z_1 + Z_0)^2} = \frac{(Z_1 - Z_0)(R_L + Z_1) - (R_L - Z_1)(Z_L + Z_0)}{(Z_1 + Z_0)^2}
$$

0

n=0

2 AZ ² 1 0 1 0 1,

1,
 $x'' = \frac{1}{1-x}$ for $|k| < 1$
 $\frac{1}{x_0}$
 $\frac{1}{1+x_1}$
 $\frac{1}{1+x_2}$
 $1+\Gamma_2\Gamma_3$
 $1-\Gamma_3(\Gamma_1^2+T_1T_2) = \Gamma_1 - \Gamma_3[\frac{(Z_1-Z_0)^2}{(Z_1+Z_0)^2} + \frac{4Z_1Z_0}{(Z_1+Z_0)^2}] = \Gamma_1 - \Gamma_3$
 $\frac{1}{1+\Gamma_1T_2}$
 $\frac{1}{1+\Gamma_1T_2}$
 $\frac{1}{$

Section Viewpoint for
$$
\lambda/4
$$
 Impedance Transformer
\n
$$
\sum_{j=1}^{n} -T_{j}T_{2}\Gamma_{2}^{2}\Gamma_{3}^{3} + \cdots \leftarrow 180^{\circ} \text{ phase shift}
$$
\n
$$
\sum_{j=1}^{n} \sum_{j=1}^{n} \text{ for } |x| < 1
$$
\n
$$
\sum_{k=1}^{n} x_{k} = \frac{1}{1-x} \text{ for } |x| < 1
$$
\n
$$
\sum_{k=1}^{n} \sum_{
$$

 \rightarrow If $Z_1 = \sqrt{Z_0 R_L}$, then $\Gamma = 0$ and the transmission line is matched.

13

 Z_0 *Z*₁

 $100 - 1$ $\Gamma \leftarrow 000$

 $1 \quad T_1$

 T_2 ^{Γ_2}

 Γ_2

 $-T_1T_2\Gamma_3$

 $\overline{\Gamma_1^-}$

 T_2

 $T_1T_2\Gamma_3^2\Gamma_2$

 $\overline{\neg \rightarrow \Gamma_2}$

 T_{1}

 $\lambda/4$ $-$

 Γ_3

 Γ_3

 Γ_3

- Lossless transmission line circuit with arbitrary generator and load impedances
	- Input impedance looking into terminated transmission line from generator:

Impedance Matchings
\nLossless transmission line circuit with arbitrary generator and load impedances
\n- Input impedance looking into terminated transmission line from generator:
\n
$$
Z_{\text{in}} = \frac{V_{\text{in}}}{L_{\text{in}}} = \frac{(V_0^+ e^{-j\beta t} + V_0^- e^{-j\beta t})}{(V_0^+ e^{-j\beta t} + V_0^- e^{-j\beta t})/Z_0} = Z_0 \frac{1 + V_0^- e^{-j2\beta t}}{1 - \Gamma_0 e^{-j2\beta t}}
$$
\n
$$
= Z_0 \frac{Z_1 + jZ_0 \tan \beta l}{Z_0 + jZ_1 \tan \beta l}
$$
\nwhere Γ_i : reflection coefficient at load
\n*l*: length from load
\n*l*: length from load
\n- Voltage wave at arbitrary location of transmission line:
\n
$$
V(z) = (V_0^+ e^{-j\beta z} + V_0^- e^{-j\beta z}) = V_0^+ (e^{-j\beta z} + \Gamma_1 e^{j\beta z}) \leftarrow \Gamma_i = \frac{Z_i - Z_0}{Z_i + Z_0}
$$
\n- Voltage at generator end (ω $z = -i)$
\n
$$
V(-i) = V_g \frac{Z_{\text{in}}}{Z_g + Z_{\text{in}}} = V_0^+ (e^{j\beta t} + \Gamma_1 e^{-j\beta t})
$$
\n
$$
V_0^+ = V_g \frac{Z_{\text{in}}}{Z_{\text{in}}} + \frac{1}{Z_g} \frac{1}{(e^{j\beta t} + \Gamma_1 e^{-j\beta t})}
$$
\n14

0

- Voltage at generator end (@ *z* = -*l*)

voltage wave at arbitrary location of transmission line:
\n
$$
V(z) = (V_0^+ e^{-j\beta z} + V_0^- e^{-j\beta z}) = V_0^+ (e^{-j\beta z} + \Gamma_l e^{j\beta z}) \leftarrow \Gamma_l =
$$
\n
$$
V(\text{diage at generator end } (\text{Q } z = -l)
$$
\n
$$
V(-l) = V_g \frac{Z_{in}}{Z_g + Z_{in}} = V_0^+ (e^{j\beta l} + \Gamma_l e^{-j\beta l})
$$
\n
$$
V_0^+ = V_g \frac{Z_{in}}{Z_{in} + Z_g} \frac{1}{(e^{j\beta l} + \Gamma_l e^{-j\beta l})}
$$

Impedance Matchings
\n- Voltage at generator end
$$
(\hat{\omega}) z = -l(V_0^+)
$$

\n
$$
V_0^+ = V_s \frac{Z_{\text{in}}}{Z_{\text{in}} + Z_s} \frac{1}{(e^{j\beta t} + \Gamma_i e^{-j\beta t})} \leftarrow Z_{\text{in}} = Z_0 \frac{1 + \Gamma_i e^{-j2\beta t}}{1 - \Gamma_i e^{-j2\beta t}}
$$
\n
$$
= V_s \frac{1 + \Gamma_i e^{-2j\beta t}}{Z_0 \frac{1 + \Gamma_i e^{-2j\beta t}}{1 - \Gamma_i e^{-2j\beta t}} + Z_s \frac{e^{j\beta t} + \Gamma_i e^{-j\beta t}}{1 - \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 + Z_s \frac{1 - \Gamma_i e^{-2j\beta t}}{1 - \Gamma_i e^{-j\beta t}} + \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 + Z_s \frac{1 - \Gamma_i e^{-2j\beta t}}{1 - \Gamma_i e^{-2j\beta t}} + \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 + Z_s \frac{1}{e^{j\beta t} + \Gamma_i e^{-j\beta t}} + \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 e^{j\beta t} + \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 e^{j\beta t} + \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 e^{j\beta t} + \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 + Z_s} \frac{1}{e^{j\beta t} + \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 + Z_s} \frac{1}{e^{j\beta t} - \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 + Z_s} \frac{1}{e^{j\beta t} - \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 + Z_s} \frac{1}{e^{j\beta t} - \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 + Z_s} \frac{1}{e^{j\beta t} - \Gamma_i e^{-j\beta t}} = V_s \frac{Z_0}{Z_0 + Z_s} \frac{1}{e^{j\beta t} - \Gamma_i e^{-j\beta t}} = V_s \frac{1}{Z_0 + Z_s} \frac{1}{e^{j\
$$

15

- *-* (Averaging) Power delivered to load: *V^g z -l Z^g* Z_0, β *Z*in 0 *+ - + -* Γ $I_{\rm in}$ Γ_l Γ_{g} $*$ 1 and 1 2 p $\begin{array}{c} 1 \end{array}$ edance Matchings
g) Power delivered to load:
 $\left[\frac{I_{\text{in}}^*}{2} \frac{I_{\text{in}}^*}{\sqrt{2}}\right] = \frac{1}{2} \text{Re}[V_{\text{in}} I_{\text{in}}^*] = \frac{1}{2} |V_{\text{in}}|^2 \text{Re}[\frac{1}{Z_{\text{in}}^*}]$ **Iatchings**

ered to load:
 $\begin{aligned}\n\sum_{\text{in}} I_{\text{in}}^* &= \frac{1}{2} |V_{\text{in}}|^2 \operatorname{Re}[\frac{1}{Z_{\text{in}}^*}] \\
\frac{1}{2} \end{aligned}$ in V 2 a set of \sim 2 \mathcal{L}_{in} \mathcal{L}_{in} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} $g \mid \mathcal{F} \mid \mathcal{F} \mid$ \mathcal{F} \mathcal{F} Power delivered to load:
 $\frac{\sin \frac{\pi}{2}}{1} = \frac{1}{2} \text{Re}[V_{in}I_{in}^*] = \frac{1}{2}|V_{in}|^2 \text{Re}[\frac{1}{Z_{in}^*}]$
 $\frac{Z_{in}}{1} + Z_g \bigg|^{2} \text{Re}[\frac{1}{Z_{in}^*}]$

eneral source and load conditions: $Z_{in} = R_{in} +$ **If the Contract Contra npedance Matchings**

aging) Power delivered to load:
 $Re[\frac{V_{in}}{\sqrt{2}} \frac{I_{in}^*}{\sqrt{2}}] = \frac{1}{2}Re[V_{in}I_{in}^*] = \frac{1}{2}|V_{in}|^2 Re[\frac{1}{Z_{in}^*}]$
 $V_g \bigotimes \frac{Z_g}{Z_{in}^*} = \frac{1}{2}V_g$
 $\frac{1}{Z_{in} + Z_g}$
 $Re[\frac{1}{Z_{in}^*}]$
 $Re[\frac{1}{Z_{in}^*}]$
 V $g \mid \qquad \qquad$ \qquad *in* **Impedance Matchings**

Averaging) Power delivered to load:
 $P = \text{Re}\left[\frac{V_{\text{in}}}{\sqrt{2}} \frac{\vec{I_{\text{in}}}}{\sqrt{2}}\right] = \frac{1}{2} \text{Re}[V_{\text{in}} I_{\text{in}}^*] = \frac{1}{2} |V_{\text{in}}|^2 \text{Re}\left[\frac{1}{Z_{\text{in}}^*}\right]$
 $= \frac{1}{2} |V_g|^2 \left|\frac{Z_{\text{in}}}{Z_{\text{in}} + Z_g}\right|^2$ $Z_{\rm in}^*$ \overline{Y} $=\frac{1}{2}|V_{\rm g}|^2\left|\frac{Z_{\rm in}}{Z_{\rm g}}\right|$ Re $[\frac{1}{Z_{\rm g}}]$ **dance Matchings**

Power delivered to load:
 $\frac{I_{\text{in}}^*}{\sqrt{2}} = \frac{1}{2} \text{Re}[V_{\text{in}} I_{\text{in}}^*] = \frac{1}{2} |V_{\text{in}}|^2 \text{Re}[\frac{1}{Z_{\text{in}}^*}]$
 $\frac{Z_{\text{in}}}{Z_{\text{in}} + Z_g}|^2 \text{Re}[\frac{1}{Z_{\text{in}}^*}]$

general source and load conditions: Z **Impedance Matchings**

veraging) Power delivered to load:

= Re[$\frac{V_{\text{in}}}{\sqrt{2}} \frac{I_{\text{in}}}{\sqrt{2}}$] = $\frac{1}{2}$ Re[$V_{\text{in}} I_{\text{in}}^*$] = $\frac{1}{2} |V_{\text{in}}|^2$ Re[$\frac{1}{Z_{\text{in}}^*}$]

= $\frac{1}{2} |V_g|^2$ $\left| \frac{Z_{\text{in}}}{Z_{\text{in}} + Z$ $+Z_{\rm e}$ $Z_{\rm in}$ ^{*} $V_{\text{in}} I_{\text{in}}^* = \frac{1}{2} |V_{\text{in}}|^2 \text{ Re}[\frac{1}{Z_{\text{in}}^*}]$
 $V_g \bigotimes \frac{Z_g}{Z_{\text{in}}^*} \xrightarrow{V_{\text{in}}} Z_{\text{in}} \xrightarrow{Z_{\text{in}}} Z_{\text{in}}$
 $\frac{1}{Z_{\text{in}}^*}$
 \therefore $Z_{\text{in}} = R_{\text{in}} + jX_{\text{in}}$ and $Z_g = R_g + jX_g$
 $\frac{2}{X_{\text{in}} + X_g}$
 $\frac{2}{X_{\text{in$ $\sqrt{\frac{1}{2}} \frac{1}{\sqrt{2}} = \frac{1}{2} \text{Re}[V_{in}I_{in}] = \frac{1}{2}|V_{in}|$ $\text{Re}[\frac{1}{Z_{in}^{*}}]$
 $\begin{aligned}\n &\begin{bmatrix}\nZ_{in} \\
Z_{in} + Z_{g}\n\end{bmatrix}^{2}$ $\text{Re}[\frac{1}{Z_{in}^{*}}]$
 $\text{Re}[\frac{1}{Z_{in}^{*}}]^{2}$
 $\text{Re}[\frac{1}{Z_{in}^{*}}]^{2}$
 $\text{Re}[\frac{Z_{in}|^{2}}{(R_{in} + R_{g})^{2} +$ **In pedance Matchings**
 $\begin{array}{l}\n\text{r}_2 \frac{1}{\sqrt{2}} \int_{\sqrt{2}}^{\sqrt{2}} \frac{1}{\sqrt{2}} e^{-\frac{1}{2} \int_{\sqrt{2$ raging) Power delivered to load:
 $\text{Re}[\frac{V_m}{\sqrt{2}} \frac{I_m^*}{\sqrt{2}}] = \frac{1}{2} \text{Re}[V_{ia}I_m^*] = \frac{1}{2} |V_{ia}|^2 \text{Re}[\frac{1}{Z_m^*}]$
 $V_{ii} \bigotimes \frac{\sqrt{2}}{Z_m} \bigotimes \frac{I_{\infty}^{-1} - I_{ia}}{Z_m}$
 $V_{ii} \bigotimes \frac{Z_m - I_{ia}}{Z_m - Z_m}$
 $V_{ii} \bigotimes \frac{Z_m - I_{ia}}{Z_m - Z$ Example Provident to boat.

Ret $\left[\frac{V_{\text{in}}}{\sqrt{2}}\frac{I_{\text{in}}}{\sqrt{2}}\right] = \frac{1}{2} \text{Re}[V_{\text{in}}I_{\text{in}}^*]=\frac{1}{2}|V_{\text{in}}|^2 \text{Re}[\frac{1}{Z_{\text{in}}^*}]$
 $V_{\text{in}} \left[\frac{Z_{\text{in}}}{Z_{\text{in}}}\right] = \frac{1}{2}|V_{\text{in}}|^2 \text{Re}[\frac{1}{Z_{\text{in}}^*}]$

Summe genera **Impedance Matchings**

Averaging) Power delivered to load:
 $P = \text{Re}[\frac{V_{\text{in}}}{\sqrt{2}}\frac{I_{\text{in}}}{\sqrt{2}}] = \frac{1}{2}\text{Re}[V_{\text{in}}I_{\text{in}}^*] = \frac{1}{2}|V_{\text{in}}|^2 \text{ Re}[\frac{1}{Z_{\text{in}}^*}]$
 $= \frac{1}{2}|V_{\text{in}}|^2 \left|\frac{Z_{\text{in}}}{Z_{\text{in}} + Z_{\text{in}}}\right|^2 \$ **Example 12 Converted to load:**
 Power delivered to load:
 $\frac{r_{\text{in}}}{\sqrt{2}} = \frac{1}{2} \text{Re} [Y_{\text{in}} I_{\text{in}}^*] = \frac{1}{2} |V_{\text{in}}|^2 \text{Re} [\frac{1}{Z_{\text{in}}^*}]$
 $\frac{Z_{\text{in}}}{Z_{\text{in}}^* + Z_{\text{in}}} = \frac{1}{2} |V_{\text{in}}|^2 \text{Re} [\frac{1}{Z_{\text{in}}^*}]$
 ging) Power delivered to load:
 $\left|Y_x\right|^2 \frac{I_w}{\sqrt{2}} \frac{I_w}{\sqrt{2}} = \frac{1}{2} \text{Re}[V_w I_w^*] = \frac{1}{2} |V_w|^2 \text{ Re}[\frac{1}{Z_m^*}]$
 $\left|V_x\right|^2 \left|\frac{Z_m}{Z_m + Z_g}\right|^2 \text{ Re}[\frac{1}{Z_m^*}]$
 $\left|V_x\right|^2 \left|\frac{Z_m}{Z_m + Z_g}\right|^2 \text{ Re}[\frac{1}{Z_m^*}]$
 $\left|V_x\right|^2 \frac{Z_m -$ *P* $\frac{V_m^2}{\sqrt{2}} = \frac{1}{2} \text{Re}[V_{\text{in}}I_{\text{in}}^{\dagger}] = \frac{1}{2} |V_{\text{in}}|^2 \text{ Re}[\frac{1}{Z_{\text{in}}^2}]$
 $\frac{Z_{\text{in}}}{\sqrt{2}} = \frac{Z_{\text{in}}}{2} \text{ Re}[\frac{1}{Z_{\text{in}}^2}]$
 $\frac{Z_{\text{in}}}{\sqrt{2}} = \frac{Z_{\text{in}}}{2} \text{ Re}[\frac{1}{Z_{\text{in}}^2}]$
 $\frac{Z_{\text{in}}}{\sqrt{2}} = \frac{Z$ **Impedance Matchings**

veraging) Power delivered to load:
 $= \text{Re}\left[\frac{Y_n}{\sqrt{2}}\frac{I_n'}{\sqrt{2}}\right] = \frac{1}{2}\text{Re}\left[Y_m I_m' \right] = \frac{1}{2}|V_m|^{2} \text{Re}\left[\frac{1}{Z_m'}\right]$
 $= \frac{1}{2}|V_n|^2 \left|\frac{Z_n}{Z_n + Z_g}\right|^{2} \text{Re}\left[\frac{1}{Z_n'}\right]$

assume general source **Impedance Matchings**

veraging) Power delivered to load:
 $= \text{Re} \left[\frac{V_n}{\sqrt{2}} \frac{I_{\infty}^*}{\sqrt{2}} \right] = \frac{1}{2} \text{Re} \left[V_{\text{in}} I_{\text{in}}^* \right] = \frac{1}{2} |V_{\text{in}}|^2 \text{ Re} \left[\frac{1}{Z_{\text{in}}^*} \right]$
 $= \frac{1}{2} |V_g|^2 \left| \frac{Z_n}{Z_n + Z_g} \right|^2 \text{ Re} \$ ver definited to foad.
 $V_{\text{in}} = \frac{1}{2} \text{Re}[V_{\text{in}}V_{\text{in}}^{\dagger}] = \frac{1}{2} |V_{\text{in}}|^2 \text{ Re}[\frac{1}{Z_{\text{in}}^{\dagger}}]$
 $V_{\text{in}} \left(\frac{Z_{\text{in}}}{Z_{\text{in}}^{\dagger}} \right)$
 $V_{\text{in}} \left(\frac{Z_{\text{in}}}{Z_{\text{in}}^{\dagger}} \right)$
 $V_{\text{in}} \left(\frac{Z_{\text{in}}}{Z_{\text{in}}^{\dagger$
- *-* Let assume general source and load conditions: $Z_{in} = R_{in} + jX_{in}$ and $Z_g = R_g + jX_g$

$$
V_{\rm g} \bigotimes Z_{\rm in} V_{\rm g} \bigotimes Z_{\rm in} V_{\rm g} \bigotimes Z_{\rm in} Z_{\
$$

- Assume that the generator impedance (*Zg*) is fixed and consider three cases according to load impedance.

■ Case study 1: load matched to transmission line

$$
Z_l = Z_0 \longrightarrow \Gamma_l = 0 \& (V)SWR = 1.
$$

- $Z_{in} = Z_0 \neq Z_g$

-
- *-* Power delivered to load:

1 Impedance Matchings
\nCase study 1: load matched to transmission line
\n
$$
Z_{1} = Z_{0} \rightarrow \Gamma_{I} = 0 \& (V)SWR = 1.
$$
\n
$$
Z_{in} = Z_{0} \neq Z_{g}
$$
\n
$$
= \frac{1}{2} |V_{g}|^{2} \frac{R_{in}}{(R_{in} + R_{g})^{2} + (X_{in} + X_{g})^{2}} \Big|_{Z_{1} = Z_{0} = R_{0}} = \frac{1}{2} |V_{g}|^{2} \frac{Z_{0}}{(Z_{0} + R_{g})^{2} + X_{g}^{2}}
$$
\n**1**\n**1**\n**2**\n**1**\n**2**\n**2**\n**3**\n**3**\n**4**\n**4**\n**5**\n**5**\n**6**\n**6**\n**6**\n**7**\n**7**\n**8**\n**8**\n**9**\n**10**\n**10**\n**11**\n**12**\n**13**\n**14**\n**15**\n**16**\n**17**\n**18**\n**19**\n**10**\n**10**\n**10**\n**11**\n**12**\n**13**\n**14**\n**15**\n**16**\n**17**\n**18**\n**19**\n**10**\n**10**\n**10**\n**11**\n**12**\n**13**\n**14**\n**15**\n**16**\n**17**\n**18**\n**19**\n**10**\n**10**\n**11**\n**11**\n**12**\n**13**\n**13**\n**14**\n**15**\n**16**\n**17**\n**18**\n**19**\n**19**\n**10**\n**10**\n**11**

- § Case study 3: *conjugate matching*
	- Assumption: fixed generator impedance (*Zg*)
	- Variable input impedance (Z_{in}) due to unknown load impedance (Z_l) and length of transmission line Conditions for maximum power delivered to load:
	-

Impedance Matchings
\nCase study 3: *conjugate matching*
\nAssumption: fixed generator impedance
$$
(Z_{\mu})
$$

\nVariable input impedance (Z_{μ}) due to unknown load impedance (Z_{l}) and length of transmission line
\nCondition for maximum power delivered to load:
\nCondition 1: $\frac{\partial P}{\partial R_{in}} = \frac{\partial}{\partial R_{in}} \left[\frac{1}{2} |V_{\mu}|^{2} \frac{R_{in}}{(R_{in} + R_{g})^{2} + (X_{in} + X_{g})^{2}} \right] = 0 \leftarrow \frac{d}{dx} \left(\frac{f}{g} \right) = \frac{f'g - fg'}{g^{2}}$
\n
$$
\rightarrow \frac{1}{(R_{in} + R_{g})^{2} + (X_{in} + X_{g})^{2} + (X_{in} + R_{g})^{2} + (X_{in} + R_{g})^{2}} = 0
$$
\n
$$
(R_{in} + R_{g})^{2} + (X_{in} + X_{g})^{2} - 2R_{in} (R_{in} + R_{g}) - 0
$$
\n
$$
R_{g}^{2} - R_{in}^{2} + (X_{in} + X_{g})^{2} = 0 \qquad (*)
$$
\nCondition 2: $\frac{\partial P}{\partial X_{in}} = 0 \rightarrow \frac{-2R_{in} (X_{in} + X_{g})}{[(R_{in} + R_{g})^{2} + (X_{in} + X_{g})^{2}]^{2}} = 0$
\n
$$
R_{in} (X_{in} + X_{g}) = 0 \qquad (*)
$$
\n
$$
R_{in} (X_{in} + X_{g}) = 0 \qquad (*)
$$
\n
$$
R_{in} (X_{in} + X_{g}) = 0 \qquad (*)
$$
\n
$$
R_{in} (X_{in} + X_{g}) = 0 \qquad (*)
$$
\n13

- Solving (*) and (**) simultaneously for $R_{\text{in}} \neq 0$) and X_{in}

 $(R_{\text{in}} = R_g \text{ and } X_{\text{in}} = -X_g) \leftrightarrow Z_{\text{in}} = Z_g^*$
- Maximum power delivered to load:

Impedance Matchings
\nolving (*) and (**) simultaneously for
$$
R_{in} \neq 0
$$
) and X_{in}
\n $(R_{in} = R_g$ and $X_{in} = -X_g$) $\leftrightarrow Z_{in} = Z_g^*$
\n
\n**Maximum power delivered to load:**
\n
$$
P = \frac{1}{2} |V_g|^2 \frac{R_{in}}{(R_{in} + R_g)^2 + (X_{in} + X_g)^2} \Big|_{R_{in} = R_g \& X_{in} = -X_g}
$$
\n
$$
= \frac{1}{2} |V_g|^2 \frac{R_g}{(R_g + R_g)^2 + (-X_g + X_g)^2} = \frac{1}{2} |V_g|^2 \frac{1}{4R_g}
$$
\n
\n**Conjugate matching**

è **Conjugate matching**

è **Maximum power transfer** to load for fixed generator impedance

Solving (*) and (*) simultaneously for
$$
R_{in} \neq 0
$$
 and X_{in}
\n $(R_{in} = R_g$ and $X_{in} = -X_g$) $\Leftrightarrow Z_{in} = Z_g^*$
\nMaximum power delivered to load:
\n
$$
P = \frac{1}{2} |V_g|^2 \frac{R_n}{(R_{in} + R_g)^2 + (X_{in} + X_g)^2} \Big|_{R_{in} = R_g \& x_{in} = X_g}
$$
\n
$$
= \frac{1}{2} |V_g|^2 \frac{R_g}{(R_g + R_g)^2 + (-X_g + X_g)^2} = \frac{1}{2} |V_g|^2 \frac{1}{4R_g}
$$
\n
$$
\Leftrightarrow \text{Conjugate matching}
$$
\n
$$
\Leftrightarrow \text{Maximum power transfer to load for fixed generator impedance}
$$
\n
$$
F = \frac{1}{2} |V_g|^2 \frac{R_n}{(R_{in} + R_g)^2 + (X_{in} + X_g)^2} \Big|_{Z_g = Z_g = R_m} = \frac{1}{2} |V_g|^2 \frac{Z_0}{(Z_0 + R_g)^2 + X_g^2}
$$
 (case study #1)\n
$$
P = \frac{1}{2} |V_g|^2 \frac{R_n}{(R_{in} + R_g)^2 + (X_{in} + X_g)^2} \Big|_{Z_g = Z_n} = \frac{1}{2} |V_g|^2 \frac{R_g}{4(R_g^2 + X_g^2)}
$$
 (case study #2)

- Network analyzer
- General and widely used circuit measurement system 1 ~ *ⁿ* ports network measurement **Review**

twork analyzer

eneral and widely used circuit measurement system
 $\sim n$ ports network measurement

agnitude and phase

parameters, RL, IL, GD, etc

4 Impedance Transformer

pedance matching
 $Z_{in} = Z_g^*$ or $Z_g =$ malyzer
 Z and widely used circuit measurement system
 z and phase
 Z and phase
 Z and phase
 Z and **EVIEW**

ork analyzer

ral and widely used circuit measurement system

ports network measurement

nitude and phase

ameters, RL, IL, GD, etc

npedance Transformer

lance matching
 $= Z_g^*$ or $Z_g = Z_m^*$
 $\Leftrightarrow Z_m = R_m + jX_m = R_g -$
	-
	- Magnitude and phase
	- *S*-parameters, RL, IL, GD, etc
- § *λ*/4 Impedance Transformer
- § Impedance matching
	- $Z_{\text{in}} = Z_{\text{g}}^{*}$ or $Z_{\text{g}} = Z_{\text{in}}^{*}$
- de and phase

tters, RL, IL, GD, etc

dance Transformer

e matching
 \int_{g}^{*} or $Z_{g} = Z_{in}^{*}$
 $Z_{in} = R_{in} + jX_{in} = R_{g} jX_{g}^{*}$ gnitude and phase

arameters, RL, IL, GD, etc

Impedance Transformer

edance matching
 $\lim_{\text{in}} = Z_g^*$ or $Z_g = Z_{\text{in}}^*$
 $\Leftrightarrow Z_{\text{in}} = R_{\text{in}} + jX_{\text{in}} = R_g - jX_g^*$ * rs, RL, IL, GD, etc

nce Transformer

matching

or $Z_g = Z_{in}^*$
 \vdots = $R_{in} + jX_{in} = R_g - jX_g^*$

erence plane de and phase

eters, RL, IL, GD, etc

dance Transformer
 g_{g} or $Z_{g} = Z_{in}^{*}$
 $Z_{in} = R_{in} + jX_{in} = R_{g} - jX_{g}^{*}$

afore need plane. etc
 $g - jX_g^*$
	- At any reference plane