Chapter 5 Impedance Matching

Prof. Jeong, Yongchae

Learning Objectives

- Learn why impedance matching is important in system viewpoints.
- Learn how impedance matching can be done.
- Understanding real microwave lumped elements

Learning contents

- Matching Network with Lumped Elements (L-section)
- Impedance Matching Example using Calculation and Smith Chart
- Microwave Lumped Elements

Usefulness of Impedance Matchings

- Matching network usefulness
 - The *maximum power* is delivered when the load is matched to the transmission line (assuming the generator is matched), and power loss in the feed line is minimized.
 - Impedance matching sensitive receiver components (antenna, low-noise amplifier, etc.) *improves the signal-to-noise ratio(SNR)* of the receiving system.
 - Impedance matching in a power distribution network (such as an antenna array feed network) will *reduce amplitude and phase errors spatially*.
- Important factors in selection of particular matching network
 - Complexity: simple
 - Bandwidth: restricted/broad/multi frequency band
 - Implementation: easy
 - Adjustability: tunable

Matching Network with Lumped Elements (L-section)

- L-section matching network
 - Simplest matching network including two reactive elements
 - Normalized load impedance: $z_L = Z_L / Z_0$ and $Z_L = R_L + jX_L$
 - X and B: lumped or distributed (reactive and susceptive) element depending on operating frequency
 - Matching network for (a) z_L inside of 1 + jx circle and (b) z_L outside of 1 + jx circle on Smith chart

$$\text{Re}[Z_{\text{in}}'] < R_L$$

For (b),

$$Z_{\text{in}}' = (Z_L + jX) / / \frac{1}{jB} = \frac{(Z_L + jX) / jB}{(Z_L + jX) + \frac{1}{jB}} = \frac{Z_L + jX}{1 + jB(Z_L + jX)}$$

$$Re[Z_{in}'] > R_L$$

Matching Network with Lumped Elements (L-section)

Smith chart: reflection coefficient plane

$$\Gamma = \Gamma_r + j\Gamma_i Z_L \stackrel{\text{or}}{=} |\Gamma| e^{j\phi}$$

$$z = r + jx$$

- Matching condition: $|\Gamma| = 0$ or $z = 1 + j0 \iff y = 1 + j0$
- For z_L inside of 1 + jx circle $(r_L > 1)$,

$$z_L \rightarrow y_{\rm in}' = 1 + jx \text{ circle} \rightarrow z_{\rm in} = 1 + j0$$

Matching Network with Lumped Elements (L-section)

Smith chart: reflection coefficient plane

$$\Gamma = \Gamma_r + j\Gamma_i Z_L \stackrel{\text{or}}{=} |\Gamma| e^{j\phi}$$

$$z = r + jx$$

- Matching condition: $|\Gamma| = 0$ or $z = 1 + j0 \iff y = 1 + j0$
- For z_L outside of 1 + jx circle $(r_L < 1)$,

$$z_L \rightarrow z_{\rm in}' = 1 + jb \text{ circle} \rightarrow y_{\rm in} = 1 + j0$$

Matching Network with Lumped Elements (L-section)

- Analytic solution for z_L inside 1 + jx circle $(r_L > 1)$
 - $Z_L = R_L + jX_L$ (assumption: $Z_0 < R_L$)
 - Input impedance seen looking into the matching network:

$$\begin{split} Z_{\text{in}} &= Z_0 \\ &= jX + \frac{1}{jB + 1/(R_L + jX_L)} \\ Z_0 - jX &= \frac{R_L + jX_L}{(1 - BX_L) + jBR_L} \\ (Z_0 - jX)\{(1 - BX_L) + jBR_L\} &= R_L + jX_L \\ \{Z_0 + B(R_LX - X_LZ_0)\} + j\{BR_LZ_0 - X(1 - BX_L)\} &= R_L + jX_L \end{split}$$

- Rearranging and separating into real and imaginary parts:

real part:
$$B(R_L X - X_L Z_0) = R_L - Z_0$$

imaginary part: $X(1-BX_L) = BR_L Z_0 - X_L$

Matching Network with Lumped Elements (*L***-section)**

- Solving and substituting *X* for *B*

$$B = \frac{X_L + X_L - Z_0 \sqrt{R_L + X_L^2 - Z_0 R_L}}{R_L^2 + X_L^2}$$
where $R_L^2 + X_L^2 - Z_0 R_L > 0$ (:: $R_L > Z_0$)
$$X = \frac{BX_L Z_0 + R_L - Z_0}{BR_L} = \frac{1}{B} + \frac{X_L Z_0}{R_L} - \frac{Z_0}{BR_L}$$

- Analytic solution for z_L outside 1 + jx circle $(r_L < 1)$
 - Input admittance seen looking into the matching network:

$$Y_{in} = jB + \frac{1}{R_L + j(X + X_L)} \leftarrow Z_L = R_L + jX_L$$
$$= \frac{1}{Z_0}$$

Matching Network with Lumped Elements (L-section)

- Rearranging and separating into real and imaginary parts:

$$BZ_0(X + X_L) = Z_0 - R_L$$
$$(X + X_L) = BZ_0R_L$$

- Solving for *X* and *B*:

$$X = \pm \sqrt{R_L(Z_0 - R_L)} - X_L$$

$$B = \pm \sqrt{\frac{(Z_0 - R_L)}{R_L}}$$

$$Y_{\text{in}}$$

- \rightarrow Two solutions: dual valued components (B, X)
- Addition series L/C on fixed impedance and shunt L/C on fixed admittance

$$Z + j\omega L \text{ (or } -j\frac{1}{\omega C}) = R + j(X + \omega L) (\text{or } R + j(X - \frac{1}{\omega C}))$$

$$Y + j\omega C$$
 (or $-j\frac{1}{\omega L}$) = $G + j(B + \omega C)$ (or $G + j(B - \frac{1}{\omega L})$)

Impedance Matching Example using Calculation and Smith Chart

• Design an *L*-section matching network to match a series *RC* load with an impedance $Z_L = 100 + j200 [\Omega]$ to 50 $[\Omega]$ transmission line at a frequency of 1 GHz.

1) Theoretical solutions

- Characteristic admittance:
$$Y_0 = \frac{1}{Z_0} = \frac{1}{50} = 0.02$$

 \Rightarrow **Solution #01**: (series *L* & shunt *C*) can be found

$$-B = \frac{X_L + \sqrt{R_L / Z_0} \sqrt{R_L^2 + X_L^2 - Z_0 R_L}}{R_L^2 + X_L^2} = \frac{200 + \sqrt{100 / 50} \times \sqrt{100^2 + 200^2 - 50 \times 100}}{100^2 + 200^2} = 0.01 \rightarrow b = \frac{B}{Y_0} = \frac{0.01}{0.02} = 0.5$$

$$-X = \frac{1}{B} + \frac{X_L Z_0}{R_L} - \frac{Z_0}{BR_L} = \frac{1}{0.01} + \frac{200 \times 50}{100} - \frac{50}{0.01 \times 100} = 150 \rightarrow x = \frac{X}{Z_0} = \frac{150}{50} = 3$$

$$\rightarrow C = \frac{b}{2\pi f Z_0} = \frac{0.5}{2\pi \times 10^9 \times 50} = 1.59 \, \text{pF} \leftarrow B = b Y_0 = \frac{b}{Z_0} = \omega C, C = \frac{b}{\omega Z_0}$$

$$\rightarrow L = \frac{x Z_0}{2\pi f} = \frac{3 \times 50}{2\pi \times 10^9} = 23.87 \, \text{nH} \quad \leftarrow X = x Z_0 = \omega L, L = \frac{x Z_0}{\omega}$$

Impedance Matching Example using Calculation and Smith Chart

1) Theoretical solutions

 \Rightarrow Solution #02: (series C & shunt L) can be found

$$-B = \frac{X_L - \sqrt{R_L / Z_0} \sqrt{R_L^2 + X_L^2 - Z_0 R_L}}{R_L^2 + X_L^2} = \frac{200 + \sqrt{100 / 50} \times \sqrt{100^2 + 200^2 - 50 \times 100}}{100^2 + 200^2} = -0.002 \rightarrow b = \frac{B}{Y_0} = \frac{-0.002}{0.02} = -0.1$$

$$-X = \frac{1}{B} + \frac{X_L Z_0}{R_L} - \frac{Z_0}{BR_L} = \frac{1}{-0.002} + \frac{200 \times 50}{100} - \frac{50}{-0.002 \times 100} = -150 \rightarrow x = \frac{X}{Z_0} = \frac{150}{50} = -3$$

$$\rightarrow C = -\frac{1}{2\pi f x Z_0} = -\frac{1}{2\pi \times 10^9 \times (-3) \times 50} = 1.06 \text{ pF} \quad \leftarrow jX = jxZ_0 = -j\frac{1}{\omega C}, \quad C = -\frac{1}{\omega x Z_0}$$

$$\rightarrow L = -\frac{Z_0}{2\pi f b} = -\frac{50}{2\pi \times 10^9 \times (-0.1)} = 79.58 \text{ nH} \quad \leftarrow jB = jbY_0 = \frac{jb}{Z_0} = -j\frac{1}{\omega L}, \quad L = -\frac{Z_0}{\omega b}$$

Impedance Matching Example using Calculation and Smith Chart

2) Smith chart solutions

$$-Z_L = 100 + j200 \rightarrow z_L = \frac{Z_L}{Z_0} = 2 + j4 \rightarrow y_L = \frac{1}{z_L} = 0.1 - j0.2$$

⇒ Solution #01: (Denoted by blue color on Smith chart)

-
$$y = y_L + jb = \frac{1}{z} = (0.1 - j0.2) + j0.5 = 0.1 + j0.3 \leftarrow b = 0.5$$

- Interconnection with impedance circle of 1 - jx

$$z_{in} = z + jx = (1 - j3) + j3 = 1 - j0$$
 $\rightarrow x = 3$

⇒ Solution #02: (Denoted by pink color on Smith chart)

-
$$y' = y_L + jb' = \frac{1}{z'} = (0.1 - j0.2) - j0.1 = 0.1 - j0.3 \leftarrow jb = -j0.1$$

- Interconnection with impedance circle of 1 + jx

$$z_{in} = z' + jx = (1 + j3) - j3 = 1 + j0 \rightarrow x = -3$$

 \Rightarrow Finally, L & C can be found by using these formula:

$$C = \frac{b}{2\pi f Z_0}$$
, $L = \frac{xZ_0}{2\pi f}$: approximately same with theorical solution

Impedance Matching Example using Calculation and Smith Chart

Impedance Matching Example using Calculation and Smith Chart

- Solution #01

Microwave Lumped Elements

planar resistor

(high impedance) meander line inductor

spiral inductors

Air-bride

Microwave Lumped Elements

interdigital gap capacitors

chip capacitor

Metal-insulator-metal capacitors

5 Review

- Matching network useful for maximum power transmission, improvement of signal-to-noise ratio(SNR), reduction of amplitude and phase errors spatially, etc.
- L-section matching network: simplest matching network including two reactive elements

Microwave Lumped Elements