Microwave Engineering 5-1

Chapter 5 Impedance Matching

Prof. Jeong, Yongchae

Learning Objectives

- Learn why impedance matching is important in system viewpoints.
- Learn how impedance matching can be done.
- Understanding real microwave lumped elements

Learning contents

- Matching Network with Lumped Elements (L-section)
- Impedance Matching Example using Calculation and Smith Chart
- § Microwave Lumped Elements

1 Usefulness of Impedance Matchings

- § Matching network usefulness
	- The *maximum power* is delivered when the load is matched to the transmission line (assuming the generator is matched), and power loss in the feed line is minimized.
	- Impedance matching sensitive receiver components (antenna, low-noise amplifier, etc.) *improves the signalto-noise ratio(SNR)* of the receiving system.
	- Impedance matching in a power distribution network (such as an antenna array feed network) will *reduce amplitude and phase errors spatially*.
- Important factors in selection of particular matching network
	- Complexity: simple
	- Bandwidth: restricted/broad/multi frequency band
	- Implementation: easy
	- Adjustability: tunable

- L-section matching network
	- Simplest matching network including two reactive elements
	- Normalized load impedance: $z_L = Z_L / Z_0$ and $Z_L = R_L + jX_L$
	- *X* and *B*: lumped or distributed (reactive and susceptive) element depending on operating frequency
	- Matching network for (a) z_L <u>inside of 1 + *jx* circle</u> and (b) z_L <u>outside of 1 + *jx* circle</u> on Smith chart

 $-$ For (a), $\qquad \qquad$ $\qquad \qquad$ \qquad \qquad in \mathcal{L}_L ^{''} : \mathbf{D} 1 Z_L / iB Z_L L^{11} $:\mathbf{D}$ 1 L ¹ *jB* $+\frac{1}{\cdot}$ $1 \pm j D Z_L$

$$
\frac{Z_L}{+jBZ_L} \qquad \frac{\text{For (b),}}{Z_{\text{in}}} = (Z_L + jX) / \frac{1}{jB} = \frac{(Z_L + jX) / jB}{(Z_L + jX) + \frac{1}{jB}} = \frac{Z_L + jX}{1 + jB(Z_L + jX)}
$$

 $\binom{m}{i}$ > R_L *L*

- § Smith chart: reflection coefficient plane or $= |\Gamma| e^{j\phi}$ **Matching Network with Lumped Elen**
 z = *r* + *j***r**_{*i*} Z_{*L*} = $|\Gamma|e^{j\phi}$
 z = *r* + *j***x**

(atching condition: $|\Gamma| = 0$ or $z = 1 + j0$ (\leftrightarrow $y = 1 + j0$)

or z_L inside of 1 + *j***x** circle ($r_L > 1$),
 $z_L \rightarrow y_{in} =$ **Matching Network with Lumped Elements (***i*

inth chart: reflection coefficient plane
 $\Gamma = \Gamma_r + j\Gamma_i Z_L \stackrel{\text{or}}{=} |\Gamma|e^{j\phi}$
 $z = r + jx$

(atching condition: $|\Gamma| = 0$ or $z = 1 + j0 \ (\Leftrightarrow y = 1 + j0)$

or z, inside of $1 + jx$ circle **Tatching Network with Lumped El**

th chart: reflection coefficient plane
 $=\Gamma_r + j\Gamma_i Z_L = |\Gamma|e^{j\phi}$
 $=r + jx$

ching condition: $|\Gamma| = 0$ or $z = 1 + j0 \ (\Leftrightarrow y = 1 + j0)$
 z_L inside of $1 + jx$ circle $(r_L > 1)$,
 $\rightarrow y_{in} = 1 + jx$ circl
	- Matching condition: $|\Gamma| = 0$ or $z = 1 + j0 \ (\Leftrightarrow y = 1 + j0)$
	- For z_L inside of $1 + jx$ circle $(r_L > 1)$,

 $z_L \rightarrow y_{in}$ ² = 1 + *jx* circle $\rightarrow z_{in}$ = 1 + *j***0**

- § Smith chart: reflection coefficient plane or $= |\Gamma| e^{j\phi}$ **Matching Network with Lumped Elen**

inth chart: reflection coefficient plane
 $\Gamma = \Gamma_r + j\Gamma_i Z_L = |\Gamma|e^{j\phi}$
 $z = r + jx$

(atching condition: $|\Gamma| = 0$ or $z = 1 + j0$ ($\leftrightarrow y = 1 + j0$)

or z_L outside of $1 + jx$ circle ($r_L < 1$),
 \leftrightarrow **Matching Network with Lumped Elements (***i*

inth chart: reflection coefficient plane
 $\Gamma = \Gamma_r + j\Gamma_i Z_L \stackrel{\text{or}}{=} |\Gamma|e^{j\phi}$
 $z = r + jx$

(atching condition: $|\Gamma| = 0$ or $z = 1 + j0 \ (\Leftrightarrow y = 1 + j0)$

or z, outside of $1 + ix$ circle **Tatching Network with Lumped El**

th chart: reflection coefficient plane
 $=\Gamma_r + j\Gamma_i Z_L = |\Gamma|e^{j\phi}$
 $=r + jx$

ching condition: $|\Gamma| = 0$ or $z = 1 + j0 \ (\Leftrightarrow y = 1 + j0)$
 z_L outside of $1 + jx$ circle $(r_L < 1)$,
 $\rightarrow z$. $\rightarrow 1 + ib$ cir
	- Matching condition: $|\Gamma| = 0$ or $z = 1 + j0 \leftrightarrow y = 1 + j0$
	- For z_L outside of $1 + jx$ circle $(r_L < 1)$,
		- $z_L \rightarrow z_{in}$ ³ = 1 + *jb* circle \rightarrow y_{in} = 1 + *j*0

- Analytic solution for z_L inside $1 + jx$ circle $(r_L > 1)$
	- $Z_L = R_L + jX_L$ (assumption: $Z_0 \le R_L$)
	- Input impedance seen looking into the matching network:

2 Matching Network with Lumped Elements (L-section)
\n• Analytic solution for
$$
z_L
$$
 inside $1 + jx$ circle $(r_L > 1)$
\n $-Z_L = R_L + jX_L$ (assumption: $Z_0 < R_L$)
\n- Input impedance seen looking into the matching network:
\n $Z_{in} = Z_0$
\n $= jX + \frac{1}{jB + 1/(R_L + jX_L)}$
\n $Z_0 - jX = \frac{R_L + jX_L}{(1 - BX_L) + jBR_L}$
\n $(Z_0 - jX)\{(1 - BX_L) + jBR_L\} = R_L + jX_L$
\n $\{Z_0 + B(R_LX - X_LZ_0)\} + j\{BR_LZ_0 - X(1 - BX_L)\} = R_L + jX_L$
\n- Rearranging and separating into real and imaginary parts:
\nreal part: $B(R_LX - X_LZ_0) = R_L - Z_0$
\nimaginary part: $X(1 - BX_L) = BR_LZ_0 - X_L$

- Rearranging and separating into real and imaginary parts: imaginary part: $X(1 - BX_L) = BR_L Z_0 - X_L$

- Solving and substituting *X* for *B*

Matching Network with Lumped Elements (L-section)
\nolving and substituting X for B
\n
$$
B = \frac{X_L \left(\frac{1}{2}\right) \sqrt{R_L / Z_0} \sqrt{R_L^2 + X_L^2 - Z_0 R_L}}{R_L^2 + X_L^2}
$$
\nwhere $R_L^2 + X_L^2 - Z_0 R_L > 0$ ($\because R_L > Z_0$)
\n
$$
X = \frac{BX_L Z_0 + R_L - Z_0}{BR_L} = \frac{1}{B} + \frac{X_L Z_0}{R_L} - \frac{Z_0}{BR_L}
$$
\n
$$
\Rightarrow
$$
 Two solutions: dual valued components (B, X)
\nnalytic solution for z_L outside 1 + *ix* circle $(r_L < 1)$
\nput admittance seen looking into the matching network:
\n
$$
Y_{\text{in}} = jB + \frac{1}{R_L + j(X + X_L)} \leftarrow Z_L = R_L + jX_L
$$
\n
$$
Y_{\text{in}} \qquad Y_{\text{in}}
$$

 \rightarrow Two solutions: dual valued components (*B*, *X*)

- Analytic solution for z_L outside $1 + jx$ circle $(r_L < 1)$
	- Input admittance seen looking into the matching network:

$$
\frac{1}{BR_L} = \frac{1}{B} + \frac{1}{R_L} = \frac{1}{BR_L}
$$

\n
$$
\frac{1}{B}
$$
 Two solutions: dual valued components (B, X)
\n
$$
= \frac{1}{B}
$$
 outside $1 + jx$ circle $(r_L < 1)$
\nbut admittance seen looking into the matching network:
\n
$$
Y_{in} = jB + \frac{1}{R_L + j(X + X_L)} \leftarrow Z_L = R_L + jX_L
$$

\n
$$
= \frac{1}{Z_0}
$$

1.1 Matching Network with Lumped Elements (*L***-section) 2 atching Network with Lumped**
anging and separating into real and imaginary parts:
 $\int_0^0 (X + X_L) = Z_0 - R_L$
 $+ X_L = BZ_0 R_L$
and R : **Matching Network with Lumped Elements (***L*

extranging and separating into real and imaginary parts:
 $BZ_0(X+X_L)=Z_0-R_L$
 $(X+X_L)=BZ_0R_L$
 $\lim_{X\to\infty}$ for *X* and *B*:
 $X=\hat{\pm}X/R$, $(Z_0-R_L) - X$, $\lim_{X\to\infty}$ $\begin{pmatrix} x_0 \\ y_1 \\ z$

- Rearranging and separating into real and imaginary parts:

 $(X+X_L) = BZ_0R_L$

- Solving for *X* and *B*:

 \rightarrow Two solutions: dual valued components (B, X)

 \blacksquare Addition series L/C on fixed impedance and shunt L/C on fixed admittance

Rearranging and separating into real and imaginary parts:
\n
$$
BZ_0(X+X_L) = Z_0 - R_L
$$
\n
$$
(X+X_L) = BZ_0R_L
$$
\nSolving for *X* and *B*:
\n
$$
X = \frac{1}{x} \sqrt{\frac{R_L(Z_0 - R_L) - X_L}{Z_0}}
$$
\n
$$
B = \frac{1}{x} \sqrt{\frac{(Z_0 - R_L)/R_L}{Z_0}}
$$
\n
$$
= \frac{1}{x} \sqrt{\frac{(Z_0 - R_L)/R_L}{Z_0}}
$$
\n
$$
= \frac{1}{x} \sqrt{\frac{Q_0 - R_L}{Z_0}}
$$
\n
$$

$$

Impedance Matching Example using Calculation and Smith Chart 3

Besign an *L*-section matching network to match a series *RC* load with an impedance $Z_L = 100 + j200$ [Ω] to 50 Ω transmission line at a frequency of 1 GHz.

1) Theoretical solutions

- Characteristic admittance: $Y_0 = \frac{1}{7} = \frac{1}{50} = 0.02$ $\frac{50}{ }$ $Y_0 = \frac{1}{7} = \frac{1}{50} = 0.02$ Z_0 50

 \Rightarrow **Solution** #01: (series *L* & shunt *C*) can be found

1 1 0.02 = = = 9 0 0 0 0 0.5 1.59pF , 2 2 10 50 *^b ^C Z b b C B bY C fZ Z* w ^p ^p ^w ® = = = = = = ¬ ⁼ ´ ´ 0 0 0 1 1 200 50 50 150 - 150 3 0.01 100 0.01 100 50 *L L L X Z Z X X x B R BR Z* ´ = + - = + - = ® = = = ´ 0 0 9 0 3 50 23.87 nH , 2 2 10 *xZ ^L ω xZ L X xZ ωL πf π* ´ ® ¬ = = = = = ⁼ ´ 2 2 2 2 0 0 *L L L L L* 2 2 2 2 0 / 200 100 / 50 100 200 50 100 0.01 - 0.01 0.5 100 200 0.02 *L L X R Z R X Z R ^B B b R X Y* ⁺ + - ⁺ ´ + - ´ = = = ® = = = + +

1) Theoretical solutions

 \Rightarrow **Solution** #02: (series *C* & shunt *L*) can be found

3 **Impedance Matching Example using Calculation and Smith Chart**
\n1) Theoretical solutions
\n
$$
\Rightarrow \text{Solution #02: (series } C \& \text{shunt } L \text{) can be found}
$$
\n
$$
B = \frac{X_t(\frac{1}{2}\sqrt{R_t / Z_0})\sqrt{R_t^2 + X_t^2 - Z_0 R_t}}{R_t^2 + X_t^2} = \frac{200 + \sqrt{100/50} \times \sqrt{100^2 + 200^2 - 50 \times 100}}{100^2 + 200^2} = -0.002 \Rightarrow b = \frac{B}{Y_0} = \frac{-0.002}{0.02} = -0.1
$$
\n
$$
X = \frac{1}{B} + \frac{X_t Z_0}{R_t} - \frac{Z_0}{BR_t} = \frac{1}{-0.002} + \frac{200 \times 50}{100} - \frac{50}{-0.002 \times 100} = -150 \Rightarrow x = \frac{X}{Z_0} = \frac{150}{50} = -3
$$
\n
$$
\Rightarrow C = -\frac{1}{2\pi f x Z_0} = -\frac{1}{2\pi x 10^9 \times (-0.1)} = 79.58 \text{ nH} \quad \leftarrow jB = jb_0 = \frac{jb}{Z_0} = -j \frac{1}{\omega L}, \quad L = -\frac{Z_0}{\omega b}
$$
\n
$$
L = -\frac{Z_0}{2\pi f b} = -\frac{50}{2\pi \times 10^9 \times (-0.1)} = 79.58 \text{ nH} \quad \leftarrow jB = jb_0 = \frac{jb}{Z_0} = -j \frac{1}{\omega L}, \quad L = -\frac{Z_0}{\omega b}
$$
\n
$$
\begin{array}{|l|}\n\hline\n\text{1, } & \text{for } 0.02 \\
\hline\n\text{1, } & \text{for
$$

Impedance Matching Example using Calculation and Smith Chart 3 IMPORTIGE MATCHING Example using Calculation and Sm
 L = 100 + *j*200 → $z_L = \frac{Z_L}{Z_0} = 2 + j4$ → $y_L = \frac{1}{z_L} = 0.1 - j0.2$
 Olution #01: (Denoted by blue color on Smith chart)
 $y = y_L + jb = \frac{1}{z} = (0.1 - j0.2) + j0.5 = 0.1 + j0.3$

2) Smith chart solutions

$$
Z_L = 100 + j200 \rightarrow z_L = \frac{Z_L}{Z_0} = 2 + j4 \rightarrow y_L = \frac{1}{z_L} = 0.1 - j0.2
$$

 \Rightarrow **Solution #01:** (Denoted by blue color on Smith chart)

-
$$
y = y_L + jb = \frac{1}{z} = (0.1 - j0.2) + j0.5 = 0.1 + j0.3 \leftarrow b = 0.5
$$

- Interconnection with impedance circle of 1 – *jx*

⇒ **Solution #02:** (Denoted by pink color on Smith chart)

-
$$
y'=y_L+jb'=\frac{1}{z'}
$$
 = (0.1 – j0.2) – j0.1=0.1 – j0.3 \leftarrow jb = -j0.1

- Interconnection with impedance circle of 1 + *jx*

 \Rightarrow Finally, *L* & *C* can be found by using these formula:

 0 · annroximately ϵ $2\pi f Z_0$ $2\pi f$ 11 $C = \frac{b}{2\pi r^2}$, $L = \frac{xZ_0}{2\pi}$: approximately same w fZ_0 $2\pi f$ 11 $L = \frac{xZ_0}{2\pi}$: approximately same with theorical $=$ $\frac{\partial}{\partial \pi fZ_0}$, $L = \frac{\partial Z_0}{\partial \pi f}$: approximately same with theoric

Impedance Matching Example using Calculation and Smith Chart

Impedance Matching Example using Calculation and Smith Chart 3

- Solution #01

4 Microwave Lumped Elements

4 Microwave Lumped Elements

interdigital gap capacitors

Metal-**i**nsulator-**m**etal capacitors

chip capacitor

Review

- Matching network useful for maximum power transmission, improvement of signal-to-noise ratio(SNR), reduction of amplitude and phase errors spatially, etc.
- L-section matching network: simplest matching network including two reactive elements

• Microwave Lumped Elements