Microwave Engineering 5-2

Chapter 5 Impedance Matching

Prof. Jeong, Yongchae

Learning Objectives

- Understanding about single stub matching
- Learn how to match impedance using Smith chart
- Learn how to match impedance using mathematical equations
- Practice impedance matching with examples

Learning contents

- Introduction about Single Stub Matching
- § Shunt- and Series-Stub Matching using Graphical Solution
- § Shunt- and Series-Stub Matching using Mathematical Solution
- Impedance Matching Example using Calculation and Smith Chart

1 Introduction about Single Stub Matching

Single stub: single open- or short-circuited length of transmission line (a 'stub'), connected either in parallel or in series with the transmission line at a certain distance from load.

- Shunt stub matching is easy relatively than series stub in realization of microstrip line or strip line forms.
- Open-circuited stubs are easier to fabricate since a via hole through the substrate to ground plane is not needed
- -
	- $Y_L \rightarrow Y_0 + jB$ (by using transmission line with length *d*) \rightarrow *Y*₀ (by using transmission line having length *l*)
- Shunt stub case matching Series stub case matching

$$
-Z_L \to Z_0 + jX
$$

$$
\to Z_0
$$

§ Depending on the length and direction of transmission line, load reflection coefficient rotates along WTG or WTL with same radius on Smith chart. Wavelengths toward generator

6

- Mathematical evaluation of **shunt-stub matching**
	- Derivation of formulas for *d* and *l*
	- Load impedance (or admittance)

$$
Z_L = 1/Y_L = R_L + jX_L
$$

- Impedance *Z* down a length, *d*, of transmission line from load

$$
Z_0 R_L (1 + t^2) = R_L^2 + (X_L + Z_0 t)^2
$$

\n
$$
Z_0 (R_L - Z_0) t^2 - 2X_L Z_0 t + (R_L Z_0 - R_L^2 - X_L^2) = 0
$$

- (continued)

Shunt- and Series-Stub Matching using Mathematical Solution
\n- (continued)
\n
$$
Z_0(R_L - Z_0)t^2 - 2X_LZ_0t + (R_LZ_0 - R_L^2 - X_L^2) = 0
$$
\n
$$
t = \tan \beta d = \tan \frac{2\pi}{\lambda} d = \frac{X_L \pm \sqrt{R_L[(Z_0 - R_L)^2 + X_L^2]/Z_0}}{R_L - Z_0} = f(Z_0, R_L, X_L)
$$
\n: known values $\omega R_L \neq Z_0$
\n
$$
\frac{d}{\lambda} = \begin{cases} \frac{1}{2\pi} \tan^{-1}t, & \text{for } t \ge 0 \\ \frac{1}{2\pi} (\pi + \tan^{-1}t), & \text{for } t < 0. \end{cases}
$$
\n- If $R_L = Z_0$, then $t = -X_L / 2Z_0$.
\n- To find required sub lengths, $B_S = -B$.
\n1) For an open-circuited stub,
\n $jB_S = jY_0 \tan \beta l_o = jY_0 \tan (2\pi l_o/\lambda) = -jB$
\n $\frac{l_o}{\lambda} = \frac{1}{2\pi} \tan^{-1} \left(\frac{B}{Y_0}\right) = \frac{-1}{2\pi} \tan^{-1} \left(\frac{B}{Y_0}\right)$
\n+ If the lengths (l_o, l_s) are negative, λ 2 can be added to give positive results.
\n3

$$
jB_S = jY_0 \tan\beta l_o = jY_0 \tan(2\pi l_o/\lambda) = -j.
$$

$$
\frac{l_o}{\lambda} = \frac{1}{2\pi} \tan^{-1} \left(\frac{B_S}{Y_0}\right) = \frac{-1}{2\pi} \tan^{-1} \left(\frac{B}{Y_0}\right)
$$

1) For an open-circuited stub, 2) For a short-circuited stub,

$$
jB_S = -jY_0 \cot\beta l_s = -jY_0 \cot(2\pi l_s/\lambda) = -jB
$$

$$
\left(\frac{B}{Y_0}\right)
$$

$$
\frac{l_s}{\lambda} = \frac{-1}{2\pi} \tan^{-1} \left(\frac{Y_0}{B_S}\right) = \frac{1}{2\pi} \tan^{-1} \left(\frac{Y_0}{B}\right)
$$

 \rightarrow *If the lengths* (l_o , l_s) are negative, $\lambda/2$ can be added to give positive results.

- Mathematical evaluation of **series-stub matching**
	- Derivation of formulas for *d* and *l*
	- Load admittance (or impedance)

$$
Y_L = 1/Z_L = G_L + jB_L
$$

- Admittance *Y* down a length, *d*, of transmission line from load

Shunt- and Series-Stub Matching using Mathematical Solution
\nMathematical evaluation of **series-stub matching**
\nDerivation of formulas for *d* and *l*
\nLoad admittance (or impedance)
\n
$$
Y_L = 1/Z_L = G_L + jB_L
$$

\nAdmittance *Y* down a length, *d*, of transmission line from load
\n $Y = Y_0 \frac{Y_L + jY_0 \tan \beta d}{Y_0 + jY_L \tan \beta d} = Y_0 \frac{(G_L + jB_L) + jY_0t}{Y_0 + j(G_L + jB_L)t}$
\nwhere $t = \tan \beta d, Y_0 = 1/Z_0$
\n $Z = \frac{1}{Y} = R + jX = Z_0 + jX$
\nwhere $R = \frac{G_L(1+t^2)}{G_L^2 + (B_L + Y_0t)^2} = Z_0 = \frac{1}{Y_0}$ and $X = \frac{G_L^2 t - (Y_0 - tB_L)(B_L + tY_0)}{Y_0[G_L^2 + (B_L + Y_0t)^2]}$
\n $Y_0G_L(1+t^2) = G_L^2 + (B_L + Y_0t)^2$
\n $Y_0(G_L - Y_0)t^2 - 2B_LY_0t + (G_LY_0 - G_L^2 - B_L^2) = 0$
\n9

 $2) - C^2 + (D + V)$ $Y_0 G_L (1 + t^2) = G_L^2 + (B_L + Y_0 t)^2$ $t^2 - 2B_L Y_0 t + (G_L Y_0 - G_L^2 - B_L^2) = 0$ $=0$

9

tinued) and the state of th

Shunt- and Series-Stub Matching using Mathematical Solution
\n- (continued)
\n
$$
Y_0(G_L - Y_0)t^2 - 2B_LY_0t + (G_LY_0 - G_L^2 - B_L^2) = 0
$$
\n
$$
t = \tan \beta d = \tan \frac{2\pi}{\lambda} d = \frac{B_L \pm \sqrt{G_L[(Y_0 - G_L)^2 + B_L^2]/Y_0}}{G_L - Y_0} = f(Y_0, G_L, B_L): \text{known values } \text{ or } G_L \neq Y_0
$$
\n
$$
\frac{d}{\lambda} = \begin{vmatrix}\n\frac{1}{2\pi} \tan^{-1}t, & \text{for } t \ge 0 \\
\frac{1}{2\pi} (\pi + \tan^{-1}t), & \text{for } t < 0.\n\end{vmatrix}
$$
\n- If $G_L = Y_0$, then $t = -B_L / 2Y_0$.
\n- To find the required sub lengths, $X_S = -X$.
\n1) For a short-circuited stub, $\int_{X_S} = jZ_0 \tan \beta I_S = jZ_0 \tan(2\pi I/\lambda) = -jX$
\n
$$
\frac{I_s}{\lambda} = \frac{1}{2\pi} \tan^{-1} \left(\frac{X_S}{Z_0}\right) = \frac{-1}{2\pi} \tan^{-1} \left(\frac{X}{Z_0}\right)
$$
\n
$$
\Rightarrow \text{If the lengths } (I_o, I_s) \text{ are negative, } \lambda \lambda \text{ can be added to give positive results.}
$$
\n10

- $-$ If $G_L = Y_0$, then $t = -B_L / 2Y_0$.
- To find the required stub lengths, $X_s = -X$.
-

$$
\lambda \left[\frac{1}{2\pi} (\pi + \tan^{-1} t), \quad \text{for } t < 0. \right]
$$
\n
$$
G_L = Y_0, \text{ then } t = -B_L / 2Y_0.
$$
\nfind the required stub lengths, $X_S = -X$.\n
$$
\text{For a short-circuited stub,}
$$
\n
$$
jX_S = jZ_0 \tan \beta l_s = jZ_0 \tan (2\pi l_s / \lambda) = -jX \qquad jX_S = \frac{l_s}{\lambda} = \frac{1}{2\pi} \tan^{-1} \left(\frac{X_S}{Z_0} \right) = \frac{-1}{2\pi} \tan^{-1} \left(\frac{X}{Z_0} \right) \qquad \frac{l_o}{\lambda} = \frac{1}{2\pi} \text{If the lengths } (l_o, l_s) \text{ are negative, } \lambda/2 \text{ can be added to gi.}
$$

1) For a short-circuited stub, 2) For an open-circuited stub, $iX_s = -jZ_0 \cot\beta l_o = -jZ_0 \cot(2\pi l_o/\lambda) = -jX$ $\frac{0}{\alpha}$ – $\frac{1}{\alpha}$ tan⁻¹ $\frac{L_0}{\alpha}$ S $\left\langle \right\rangle$ $\left\langle \right\r$

 \rightarrow *If the lengths (l_o, l_s) are negative,* $\lambda/2$ *can be added to give positive results.*

■ Ex. 1] Shunt single stub matching example

Design two single-stub (short circuit) shunt tuning networks to match a load impedance $Z_L = 80 + j100$ [Ω] to 50 $[\Omega]$ line at a frequency of 3 GHz. Plot the return loss in dB from 2 to 4 GHz for each solution.

1) Theoretical solutions

Impedance Matching Example using Calculation and Smith Chart
\nEx. 1] Shunt single stub matching example
\nDesign two single-stub (short circuit) shunt tuning networks to match a load impedance
$$
Z_L = 80 + j100
$$
 [\Omega] to
\n50 [Ω] line at a frequency of 3 GHz. Plot the return loss in dB from 2 to 4 GHz for each solution.
\n1) Theoretical solutions
\n
$$
t = \frac{X_L \pm \sqrt{R_L[(Z_0 - R_L)^2 + X_L^2]/Z_0}}{R_L - Z_0} = \frac{100 \pm \sqrt{80((50 - 80)^2 + 100^2)/50}}{80 - 50} = \begin{cases} 7.74 & \text{for } 7^{++} \text{ sign} \\ -1.07 & \text{for } 7^{++} \text{ sign} \end{cases}
$$
\n
$$
- B = \frac{R_L^2 t - (Z_0 - X_L t)(X_L + Z_0 t)}{Z_0 [R_L^2 + (X_L + Z_0 t)^2]} = \begin{cases} 0.033 & \text{for } t = 7.74 \\ -0.033 & \text{for } t = -1.07 \end{cases}
$$
\n
$$
- d = \begin{cases} \frac{1}{2\pi} \tan^{-1}(t) \left| \lambda = \frac{1}{2\pi} \tan^{-1}(7.74) \lambda = 0.23\lambda = 82.8^{\circ} \\ \frac{1}{2\pi} [\pi + \tan^{-1}(t)] \lambda = \frac{1}{2\pi} [\pi + \tan^{-1}(-1.07)] \lambda = 0.37\lambda = 133.2^{\circ} \text{ @ } t = -1.07 \end{cases}
$$
\nFor short-circuited stub: $I_s = \frac{1}{2\pi} \tan^{-1} \left(\frac{Y_0}{B}\right) \lambda = \begin{cases} 0.0867\lambda = 31.21^{\circ} \text{ @ } B = 0.033 \\ -0.0867\lambda \text{ @ } B = -0.033 \text{ (negative, by adding } \lambda/2 \\ \frac{1}{\lambda} = 0.413\lambda = 148.68^{\circ} \end{cases}$

2) Smith chart solutions

- $-Z_{\textit{I}} = 80 + j100$
- $-$ Normalized impedance: $z_L = Z_L/Z_0 = 1.6 + j2$
- Mark z_L and draw a reflection coefficient circle
- Convert to *z^L* to load admittance, *y^L*
- $-|\Gamma|$ circle intersects the $1 \pm ib$ circle at two points denoted as y_1 and $y_2 \rightarrow d_1$ or d_2

$$
d_1 = [(0.5 - 0.45) + 0.18]\lambda = 0.23\lambda \rightarrow 0.23 \times 360^\circ = 82.8^\circ
$$

$$
d_2 = [(0.5 - 0.45) + 0.32]\lambda = 0.37\lambda \rightarrow 0.37 \times 360^\circ = 133.2^\circ
$$

- At two intersections point,

- By moving from $y = \infty$ (short-circuited) toward generator,

 $l_1 = (0.3367 - 0.25)\lambda = 0.0867\lambda \rightarrow 31.21^{\circ}, \quad l_2 = [(0.5 - 0.25) + 0.163]\lambda = 0.413\lambda \rightarrow 148.68^{\circ}$

è *The matching stub is kept as short as possible to improve the matching bandwidth and reduce losses caused by two lossy transmission lines.*

- Solution #01

13

■ Ex. 2] Series single stub matching example

Design a single series open-circuited stub network to match a load impedance $Z_L = 75 + j100$ [Ω] to 50 [Ω] line at a frequency of 3 GHz. Plot the return loss in dB from 2 to 4 GHz for each solution.

1) Theoretical solutions

- Load admittance

Impedance Matching Example using Calculation and Smith Chart
Ex. 2] Series single stub matching example
Design a single series open-circuited stub network to match a load impedance
$$
Z_L = 75 + j100
$$
 [Ω] to 50 [Ω] line
at a frequency of 3 GHz. Plot the return loss in dB from 2 to 4 GHz for each solution.
1) Theoretical solutions
- Load admittance

$$
Y_L = G_L + jB_L = \frac{1}{Z_L} = \frac{1}{75 + j100} = 0.0048 - j0.0064
$$

$$
-Y_0 = \frac{1}{Z_0} = 0.02
$$

$$
-t = \frac{B_L \pm \sqrt{G_L[(Y_0 - G_L)^2 + B_L^2]/Y_0}}{G_L - Y_0} = \frac{-0.0064 \pm \sqrt{0.0048[(0.02 - 0.0048)^2 + (-0.0064)^2]/0.02}}{0.0048 - 0.02} = \frac{-0.111 \text{ for } {}^{n+1} \text{ sign}}{0.953 \text{ for } {}^{n-1} \text{ sign}}
$$

$$
-X = \frac{G_L^2 t - (Y_0 - B_L t)(B_L + Y_0 t)}{Y_0 [G_L^2 + (B_L + Y_0 t)^2]} = \begin{cases} -84.10 & \text{ @ } t = -0.111 \\ -84.10 & \text{ @ } t = 0.953 \end{cases}
$$

- Length from load to stub:

Impedance Matching Example using Calculation and Smith Chart
\nlength from load to stub:
\n
$$
d = \begin{cases}\n\frac{1}{2\pi} [\pi + \tan^{-1}(t)]\lambda = \frac{1}{2\pi} [\pi + \tan^{-1}(-0.111)]\lambda = 0.482\lambda = 173.52^\circ \quad \textcircled{u} \ t = -0.111 \\
[\frac{1}{2\pi} \tan^{-1}(t)]\lambda = \frac{1}{2\pi} \tan^{-1}(0.953)\lambda = 0.121\lambda = 43.56^\circ \quad \textcircled{u} \ t = 0.935\n\end{cases}
$$
\nor short-circuited stub
\n
$$
l_s = \frac{1}{2\pi} \tan^{-1} \left(\frac{V_0}{B}\right) \lambda = \begin{cases}\n0.085\lambda \to 30.6^\circ \quad \textcircled{u} \ X = 84.10 \\
-0.085\lambda \quad \textcircled{u} \ X = -84.10 \text{ (negative, by adding } \lambda/2 \to l_s = 0.415\lambda \to 149.4^\circ)\n\end{cases}
$$
\ntherefore,
\n $d_1 = 0.121\lambda \to 43.56^\circ$, $l_{s1} = 0.415\lambda \to 149.4^\circ$
\n $d_2 = 0.482\lambda \to 173.52^\circ$, $l_{s2} = 0.085\lambda \to 30.6^\circ$

- For short-circuited stub

Impedance Matching Example using Calculation and Smith Chart
\nlength from load to stub:
\n
$$
d = \begin{cases}\n\frac{1}{2\pi} [\pi + \tan^{-1}(t)]\lambda = \frac{1}{2\pi} [\pi + \tan^{-1}(-0.111)]\lambda = 0.482\lambda = 173.52^\circ \quad \textcircled{a } t = -0.111 \\
[\frac{1}{2\pi} \tan^{-1}(t)]\lambda = \frac{1}{2\pi} \tan^{-1}(0.953)\lambda = 0.121\lambda = 43.56^\circ \quad \textcircled{a } t = 0.935\n\end{cases}
$$
\nor short-circuited stub
\n
$$
l_s = \frac{1}{2\pi} \tan^{-1} \left(\frac{Y_0}{B}\right) \lambda = \begin{cases}\n0.085\lambda \rightarrow 30.6^\circ \quad \textcircled{a } X = 84.10 \\
-0.085\lambda \quad \textcircled{a } X = -84.10 \text{ (negative, by adding } \lambda/2 \rightarrow l_s = 0.415\lambda \rightarrow 149.4^\circ\n\end{cases}
$$
\ntherefore,
\n $d_1 = 0.121\lambda \rightarrow 43.56^\circ, l_{s1} = 0.415\lambda \rightarrow 149.4^\circ$
\n $d_2 = 0.482\lambda \rightarrow 173.52^\circ, l_{s2} = 0.085\lambda \rightarrow 30.6^\circ$

- Therefore,

 $1 - 0.713N$ /177.7 0 1 - 0.415.2 \ 1.40.40 $d_2 = 0.482\lambda \rightarrow 173.52^\circ, l_{s2} = 0.085\lambda \rightarrow 30.6^\circ$ o $l_1 = 0.121\lambda \rightarrow 43.56^\circ, l_{s1} = 0.415\lambda \rightarrow 149.4^\circ$ 4°

2) Smith chart solutions

- $-Z_I = 75 + j100$
- $-$ Normalized impedance: $z_L = Z_L/Z_0 = 1.5 + j2$
- Mark z_L and draw a reflection coefficient circle
- $|\Gamma|$ circle intersects the $1 + jx$ circle at two points denoted as z_1 and $z_2 \rightarrow d_1$ or d_2

$$
d_1 = (0.319 - 0.198)\lambda = 0.121\lambda \rightarrow 43.56^{\circ}
$$

$$
d_2 = [(0.5 - 0.198) + 0.18)]\lambda = 0.482\lambda \rightarrow 173.52^{\circ}
$$

- At the two intersections point,

- By moving from $z = \infty$ (open-circuited) toward generator

$$
l_1 = [(0.5 - 0.25)] + 0.165\lambda = 0.415\lambda \rightarrow 149.4^{\circ}
$$

$$
l_2 = (0.335 - 0.25)\lambda = 0.085\lambda \rightarrow 30.6^{\circ}
$$

- Solution #01

Review

- § Single stub: single open- or short-circuited length of transmission line (a 'stub'), connected either in parallel or in series with the transmission line at a certain distance from the load.
- Shunt stub is easier to realization than series stub and open stub is easier to fabrication than short stub.

Admittance (or Impedance) Smith Chart