Chapter 5 Impedance Matching

Prof. Jeong, Yongchae

Learning Objectives

- Understanding an overview of quarter-wave transformer
- Learn how to match impedance by using quarter-wave transformer.
- Practice impedance matching by quarter-wave transformer

Learning contents

- Introduction about Quarter-wave Transformer
- Impedance Matching using Quarter-wave Transformer
- Quarter-wave Transformer Examples

1 Introduction about Quarter-wave Transformer

- The quarter-wave impedance transformer having a transmission line segment with a length equal to one-quarter of the wavelength ($\lambda/4$) at the operating frequency can transform impedances in a predictable manner.
 - By carefully choosing the characteristic impedance of the quarter-wave section, it is possible to match the load impedance (R_L) to desirable impedance (Z_0) . \rightarrow *Only real-to-real impedance matching*
 - Quarter-wave transformers target a particular frequency, and the length of the transformer is equal to $\lambda_0/4$ only at designed frequency (f_0) . \rightarrow *Limited frequency band characteristics*
 - Single-section $\lambda/4$ transformer: narrow band application Multi-section $\lambda/4$ transformer: broad band application

1 Introduction about Quarter-wave Transformer

- Quarter-wave transformer is used for impedance matchings
 - between a resistive load and transmission line
 - between resistive source and load.
 - between two different characteristic impedance transmission lines
- Advantages of quarter-wave transformer
 - Simple, easy implementation
 - No additional component (or circuit)
 - Low cost
- Disadvantages
 - Frequency sensitivity
 - Much space requirement especially for low frequencies
 - Low ratio of impedance transformer

2 Impedance Matching using Quarter-wave Transformer

Characteristic impedance of matching section

$$Z_1 = \sqrt{Z_0 R_L}$$
 or $Z_1^2 = Z_0 R_L$

where $l = \lambda_0/4$: electrical length at operating frequency, f_0 .

Impedance Matching using Quarter-wave Transformer

- Input impedance seen looking into matching section:

$$Z_{\rm in} = Z_1 \frac{R_L + jZ_1 t}{Z_1 + jR_L t}$$

where $t = \tan \beta l = \tan \theta$ and $\beta l = \theta = \pi / 2$

- Reflection coefficient

$$\Gamma = \frac{Z_{\text{in}} - Z_0}{Z_{\text{in}} + Z_0} = \frac{Z_1 \frac{R_L + jZ_1 t}{Z_1 + jR_L t} - Z_0}{Z_1 \frac{R_L + jZ_1 t}{Z_1 + jR_L t} + Z_0}$$

$$= \frac{Z_{1}(R_{L} + jZ_{1}t) - Z_{0}(Z_{1} + jR_{L}t)}{Z_{1}(R_{L} + jZ_{1}t) + Z_{0}(Z_{1} + jR_{L}t)} = \frac{Z_{1}(R_{L} - Z_{0}) + jt(Z_{1}^{2} - Z_{0}R_{L})}{Z_{1}(R_{L} + Z_{0}) + jt(Z_{1}^{2} + Z_{0}R_{L})} \leftarrow Z_{1}^{2} = Z_{0}R_{L}$$

$$= \frac{Z_{1}(R_{L} - Z_{0})}{Z_{1}(R_{L} + Z_{0}) + j2tZ_{0}R_{L}} = \frac{R_{L} - Z_{0}}{R_{L} + Z_{0} + j2t\sqrt{Z_{0}R_{L}}}$$

Impedance Matching using Quarter-wave Transformer

- Reflection coefficient magnitude:

$$\begin{split} \left|\Gamma\right| &= \frac{\left|R_{L} - Z_{0}\right|}{\left[\left(R_{L} + Z_{0}\right)^{2} + 4t^{2}Z_{0}R_{L}\right]^{1/2}} \\ &= \frac{1}{\left\{\left[\left(R_{L} + Z_{0}\right) / \left(R_{L} - Z_{0}\right)\right]^{2} + 4t^{2}Z_{0}R_{L} / \left(R_{L} - Z_{0}\right)^{2}\right]\right\}^{1/2}} \\ &= \frac{1}{\left\{1 + \left[4Z_{0}R_{L} / \left(R_{L} - Z_{0}\right)\right]^{2} + 4t^{2}Z_{0}R_{L} / \left(R_{L} - Z_{0}\right)^{2}\right]\right\}^{1/2}} \\ &= \frac{1}{\left\{1 + \left[4Z_{0}R_{L} / \left(R_{L} - Z_{0}\right)\right]^{2}\left(1 + t^{2}\right)\right\}^{1/2}} \\ &= \frac{1}{\left\{1 + \left[4Z_{0}R_{L} / \left(R_{L} - Z_{0}\right)\right]^{2}\sec^{2}\theta\right\}^{1/2}} \\ &\leftarrow 1 + t^{2} = 1 + \tan^{2}\theta = \sec^{2}\theta \\ \frac{1}{\left|\Gamma\right|^{2}} &= \left\{1 + \left[4Z_{0}R_{L} / \left(R_{L} - Z_{0}\right)\right]^{2}\sec^{2}\theta\right\}^{1/2} \\ \frac{1}{\left|\Gamma\right|^{2}} &= 1 + \left[4Z_{0}R_{L} / \left(R_{L} - Z_{0}\right)\right]^{2}\sec^{2}\theta \end{split}$$

Impedance Matching using Quarter-wave Transformer

- If the frequency is near the design frequency (f_0) , then $l \approx \lambda_0/4$ and $\theta \approx \pi/2$.
- Since $\sec^2\theta \gg 1$ (@ $\theta \approx \pi/2$),

$$\left|\Gamma\right| = \frac{\left|R_L - Z_0\right|}{2\sqrt{Z_0 R_L}} \left|\cos\theta\right| \quad \text{for } \theta \text{ near } \pi/2$$

- If the maximum value (Γ_m) of the tolerable reflection coefficient magnitude is given, then the bandwidth of the matching transformer can be defined as

$$\Delta\theta = 2\left(\frac{\pi}{2} - \theta_m\right)$$

$$\frac{1}{\Gamma_m^2} = 1 + \left(\frac{2\sqrt{Z_0 R_L}}{R_L - Z_0} \sec \theta_m\right)^2, \ \frac{1}{\Gamma_m^2} - 1 = \frac{1 - \Gamma_m^2}{\Gamma_m^2} = \left(\frac{2\sqrt{Z_0 R_L}}{R_L - Z_0} - \frac{1}{\cos \theta_m}\right)^2$$

$$\cos \theta_m = \frac{\Gamma_m}{\sqrt{1 - \Gamma_m^2}} \frac{2\sqrt{Z_0 R_L}}{|R_L - Z_0|} \Rightarrow \theta_m = \cos^{-1} \left(\frac{\Gamma_m}{\sqrt{1 - \Gamma_m^2}} \frac{2\sqrt{Z_0 R_L}}{|R_L - Z_0|} \right)$$

Approximate behavior of the reflection coefficient magnitude for a single-section quarter-wave transformer

Impedance Matching using Quarter-wave Transformer

- For TEM transmission lines,

$$\theta = \beta l = \frac{2\pi f}{v_p} \frac{v_p}{4f_0} = \frac{\pi f}{2f_0}$$

$$f_m = \frac{2\theta_m f_0}{\pi} \quad \text{(a) } \theta = \theta_m$$

- Fractional bandwidth:

$$\frac{\Delta f}{f_0} = \frac{2(f_0 - f_m)}{f_0} = 2 - \frac{2f_m}{f_0}$$

$$= 2 - \frac{2}{f_0} \left(\frac{2\theta_m f_0}{\pi} \right) = 2 - \frac{4\theta_m}{\pi}$$

$$= 2 - \frac{4}{\pi} \cos^{-1} \left[\frac{\Gamma_m}{\sqrt{1 - \Gamma_m^2}} \frac{2\sqrt{Z_0 Z_L}}{|Z_L - Z_0|} \right]$$

Reflection coefficient magnitude versus frequency for a single-section quarter-wave matching transformer with various load mismatches.

$$\theta_{m} = \cos^{-1}\left(\frac{\Gamma_{m}}{\sqrt{1-\Gamma_{m}^{2}}} \frac{2\sqrt{Z_{0}R_{L}}}{\left|R_{L}-Z_{0}\right|}\right)$$

Impedance Matching using Quarter-wave Transformer

- Fractional bandwidth is usually expressed as a percentage as like $100 \left(\frac{\Delta f}{f_0} \right) \%$
- Impedance transforming frequency bandwidth is increased as Z_L is closer to Z_0 (or $Z_L/Z_0 \rightarrow 1$).

Practical issues

- Non-TEM transmission lines (such as waveguides): nonlinear propagation constant on frequency
 - ⇒ Limited practice frequency bandwidth
 - ⇒ In practice, the bandwidth of the transformer is often small enough that these complications do not substantially affect the result.
- Reactance associated with discontinuities between transmission lines
 - \Rightarrow This problem often be compensated by making a small adjustment in the length of the matching section.

Impedance Matching using Quarter-wave Transformer

- $\lambda/4$ impedance transformer can be used for matching an arbitrary admittance $Y_L = G_L + jB_L$.
 - Firstly, parallelly connection of load with the short- (or open-circuit element having a susceptance of $B = -B_L$.
 - Transformed only G_L of load admittance can be easily matched by using $\lambda/4$ impedance transformer $\left(Z_1 = \sqrt{Z_0/G_L}\right)$.
- A long $\lambda/4$ impedance transformer can be minimized with a meander structure.

2 Impedance Matching using Quarter-wave Transformer

Quarter-wave Transformer Examples

Example 1] Matching real load impedance

Design a single-section $\lambda/4$ impedance transformer to match a load $Z_L = 20 \ [\Omega]$ to 50 $\ [\Omega]$ line at a frequency of 2 GHz. Determine the percent bandwidth for which the SWR ≤ 1.3 .

Solution:

- Matching section impedance: $Z_1 = \sqrt{Z_o Z_L} = \sqrt{50 \times 20} = 31.62 [\Omega]$
- Length of matching section: $\lambda_0/4$ @ 2 GHz.
- Reflection coefficient

$$\Gamma_m = \frac{\text{SWR} - 1}{\text{SWR} + 1} = \frac{1.3 - 1}{1.3 + 1} = 0.13$$

- Fractional bandwidth:

$$\frac{\Delta f}{f_0} = 2 - \frac{4}{\pi} \cos^{-1} \left[\frac{\Gamma_m}{\sqrt{1 - \Gamma_m^2}} \frac{2\sqrt{Z_0 Z_L}}{|Z_L - Z_0|} \right]$$

$$= 2 - \frac{4}{\pi} \cos^{-1} \left[\frac{0.13}{\sqrt{1 - (0.13)^2}} \frac{2\sqrt{(50)(20)}}{|20 - 50|} \right] = 0.3565 \text{ or } 35.65\%$$

Quarter-wave Transformer Examples

- Microwave circuit simulation results

SWR =
$$1.3 \Leftrightarrow \Gamma = 0.13 \Leftrightarrow RL = -20\log(\Gamma) = -17.72 dB$$

⇒Bandwidth at RL=-17.72 dB
$$\approx 0.72$$
GHz $\approx 100 \left(\frac{0.72}{2}\right)\% \approx 35.6\%$ \leftarrow

Using formula: $\Delta \theta = 35.65\%$ $\frac{RL-17.72 \, dB}{}$

Quarter-wave Transformer Examples

Example 2] Matching with complex load impedance

Design a circuit with a load Z_L =100 + j200 [Ω] is to be matched Z_0 = 50 [Ω] line at 3 GHz, using a $\lambda/4$ impedance transformer and lumped element and plot return loss from 2 GHz to 4 GHz.

Solution

- Admittance:

$$Y_L = \frac{1}{Z_L} = \frac{1}{100 + j200} = 0.002 - j0.004 [S]$$
 $(G_L = 0.002, B_L = -0.004)$

- Susceptance for lumped element: $B = -B_L = 0.004$ (to cancel imaginary part)
- Capacitance corresponding to B:

$$B = \omega C \Rightarrow C = \frac{B}{\omega} = \frac{0.004}{2 \times \pi \times 3 \times 10^9} = 0.212 \text{ pF}$$

- Quarter-wave impedance: (matching real part from 500 [Ω]-to-50 [Ω])

$$Z_1 = \sqrt{Z_0 / G_L} = \sqrt{50 / 0.002} = 158.11 [\Omega]$$

3 Quarter-wave Transformer Matching Examples

4 Review

- Impedance of matching section: $Z_1 = \sqrt{Z_0 R_L}$ or $Z_1^2 = Z_0 R_L$
- Reflection coefficient: $\Gamma = \frac{R_L Z_0}{R_L + Z_0 + j2t\sqrt{Z_0R_L}}$
- Bandwidth: $\Delta\theta = 2 \frac{4}{\pi} \cos^{-1} \left[\frac{\Gamma_m}{\sqrt{1 \Gamma_m^2}} \frac{2\sqrt{Z_0 Z_L}}{|Z_L Z_0|} \right]$

