Chapter 7 Power Divider and Directional Coupler

Prof. Jeong, Yongchae

Learning Objectives

- Understanding why microwave power divider is required?
- Know about T-junction power divider
- Understanding T-junction power divider design examples

Learning contents

- Why Microwave Power Divider is Required?
- T-junction Power Divider
- Design Examples of T-junction Power Divider

1 Why Microwave Power Divider is Required?

• Near-far problem (path loss): propagation power loss due to distance (*d*) between mobile communication base-station and mobile unit

receiving power =
$$f(1/d^2)$$
 @ ideal case
= $f(1/d^4)$ @ real case

- Propagation of signals in mobile communication environment is quite complex: fadings due to direct,
 indirect, and reflective paths
- Multiple access: how to minimize the interferers?

Why Microwave Power Divider is Required?

- Multiple access
 - Suppose the desired signal power received at a point is much lower than that of an unwanted transmitter due to relatively long distance
 - Even after despreading, the strong interferer greatly raises the noise floor, degrading the reception of the desired signal.
 - For multiple users, one higher power transmitter can virtually halt communications among others, especially relative to CDMA communications.
 - When many CDMA transmitters communicate with a receiver, each transmitter must adjust its radiated RF output power such that the receiver senses roughly equal signal levels.

Ex.] If $\alpha = 0.01$, $P_2 = 0.01P_{in}$ (monitoring power) and $P_2 = 99 \times P_3$ (real radiated power)

Desired Signal

- The T-junction power divider is a simple 3-port network and can be implemented in any kinds of transmission medium such as microstrip, stripline, coplanar waveguide, and others.
- Even though the T-junction power divider is lossless and reciprocal, it cannot be perfectly matched at all ports.
- The T-junction power divider can be modeled as a junction of three transmission arms or transmission lines as shown in below figures.

T-junction Power Divider

Lossless Divider

- The lossless T-junctions can be simply modeled as a junction of three transmission lines.
- Fringing fields and higher order modes associated with the discontinuity at such a junction leading to **stored** energy. \rightarrow lumped susceptance, B.
- In order for matched divider at input line of characteristic impedance Z_0 ,

$$Y_{\text{in}} = jB + \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$

- Assuming B = 0 for simplicity,

$$\frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{Z_0}$$

- In practice, jB can't be negligible. \rightarrow *Need reactive tuning element!*

- Advantages
- **Simplicity:** making it easy to construct and integrate into circuits.
- Cost-effective: due to its straightforward design, it is cost-effective and suitable for low-budget applications.
- **Broadband operation:** operate over wide range of frequencies, providing versatility for various applications.
- Limitations
- Poor isolation: has poor isolation between output ports → Signals can leak from one output port to the other.
- *High insertion loss:* higher than more advanced power dividers like Wilkinson power divider.
- Impedance matching difficulty: difficult to get perfect impedance matching → Potential signal degradation due to high reflections.

- **Example 1:** A lossless T-junction power divider with source impedance of 50 $[\Omega]$.
 - a) Find the output characteristic impedances Z_1 and Z_2 so that the output powers are 4:1 ratio division.
 - b) Compute reflection coefficients seen looking into output ports.

Solution:

- a) Find Z_1 and Z_2
 - Input power for the matched divider: $P_{\text{in}} = \frac{1}{2} \frac{V_0^2}{Z}$
 - Output powers:

$$\begin{cases} P_1 = \frac{1}{2} \frac{V_0^2}{Z_1} = \frac{1}{5} P_{\text{in}} = \frac{1}{5} \times \frac{V_0^2}{2Z_0} = \frac{V_0^2}{10Z_0} \\ P_2 = \frac{1}{2} \frac{V_0^2}{Z_2} = \frac{4}{5} P_{\text{in}} = \frac{4}{5} \times \frac{V_0^2}{2Z_0} = \frac{2V_0^2}{5Z_0} \end{cases}$$

$$2Z_1 = 10Z_0 \implies Z_1 = 5Z_0 = 5(50) = 250 [\Omega]$$

$$2Z_1 = 10Z_0 \implies Z_1 = 5Z_0 = 5(50) = 250 [\Omega]$$

 $2Z_2 = \frac{(5Z_0)}{2} \implies Z_2 = \frac{5Z_0}{4} = \frac{5}{4}(50) = 62.5 [\Omega]$

T-junction Power Divider

- b) Reflection coefficient
 - Input impedance to junction:

$$Z_{in} = 250/62.5 = 50 [\Omega] \leftarrow Matched!$$

- Load impedance looking into output transmission line of $Z_1 = 250 [\Omega]$:

$$Z_{L1} = 50 // 75 = 27.78 \Omega$$

- Load impedance looking output transmission line of $Z_2 = 62.5 [\Omega]$:

$$Z_{L2} = 50 // 250 = 41.67 \Omega$$

- Reflection coefficient looking into the output ports:

$$\Gamma_1 = \frac{Z_{L1} - Z_1}{Z_{L1} + Z_1} = \frac{27.78 - 250}{27.78 + 250} = -0.8 \leftarrow Z_{L1} = Z_0 / / Z_2 = 50 / / 62.5 = 27.78$$

$$\Gamma_2 = \frac{Z_{L2} - Z_2}{Z_{L2} + Z_2} = \frac{41.67 - 62.5}{41.67 + 62.5} = -0.2 \leftarrow Z_{L2} = \frac{Z_0}{Z_1} = \frac{50}{250} = 41.67$$

Resistive Divider

- Contains lossy components
- Matched at all ports
- Non-isolated two output ports
- An equal-split (-3 dB) divider and unequal power division ratios
- Equal-split 3-port resistive power divider $(P_2 = P_3)$

T-junction Power Divider

Assuming that all ports are terminated with Z_0 , the impedance Z, seen looking into the $Z_0/3$ resistor followed by the output transmission line can be determined as:

$$Z = \frac{Z_0}{3} + Z_0 = \frac{4Z_0}{3}$$

• Input impedance of divider:

$$Z_{\rm in} = \frac{Z_0}{3} + \left(\frac{4Z_0}{3} / \frac{4Z_0}{3}\right) = Z_0$$

- Since $Z_{in} = Z_0$, the input port is matched.
- Since the network is symmetric from all three ports, the output ports are also matched.

$$\rightarrow S_{11} = S_{22} = S_{33} = 0$$

• If the voltage at port 1 is V_1 , the voltage V at the center of the junction is:

$$V = V_1 \frac{Z//Z}{Z_0/3 + (Z//Z)} = V_1 \frac{2Z_0/3}{Z_0/3 + 2Z_0/3} = \frac{2}{3}V_1$$

T-junction Power Divider

Output powers:

$$V_2 = V_3 = V \frac{Z_0}{Z_0 / 3 + Z_0} = \frac{3}{4}V = \frac{3}{4}\frac{2}{3}V_1 = \frac{1}{2}V_1$$

- Scattering matrix: symmetric network: $[S] = \frac{1}{2} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
- Power delivered to input of divider:

$$P_{\rm in} = \frac{1}{2} \frac{V_1^2}{Z_{\rm in}} = \frac{1}{2} \frac{V_1^2}{Z_0}$$

• Output powers: $P_2 = P_3 = \frac{1}{2} \frac{V_2^2}{Z_0} = \frac{1}{2} \frac{(V_1/2)^2}{Z_0} = \frac{1}{8} \frac{V_1^2}{Z_0} = \frac{1}{4} P_{\text{in}}$ $P_L = P_2 + P_3 = \frac{1}{2} P_{\text{in}}$

- \rightarrow The half of the supplied power is dissipated at the resistors $(P_{in}/2)$.
- → The output powers are 6 dB below the input power level.

Design Examples of T-junction Power Divider

Lossless T-junction power divider

- Set the $Z_0 = 50 [\Omega]$ and power division ratio of 1:1.
- Center frequency: 2.5 GHz.
- Electrical length of transmission lines: 90° (or $\lambda/4$)
- Input power:

$$P_{\rm in} = \frac{1}{2} \frac{V_0^2}{Z_0}$$

- Output power at ports 2 and 3:

$$2Z_1 = 4Z_0 \implies Z_1 = 2Z_0 = 2(50) = 100 [\Omega]$$

$$2Z_2 = 4Z_0 \implies Z_2 = 2Z_0 = 2(50) = 100 [\Omega]$$

Design Examples of T-junction Power Divider

Lossless T-junction power divider

- Ideal simulation results using ADS software
- S-parameters presented in [dB] scale
- According to S_{22} and S_{33} , ports 2 and 3 are not matched.
- The output powers are around -3 dB.

Design Examples of T-junction Power Divider

- Resistive power divider: 2-way splitter
 - Selection of $Z_0 = 50 \Omega \rightarrow R = 50/3 = 16.66 \Omega$.
 - Based on S_{11} , S_{22} , and S_{33} , all ports are perfectly matched.
 - Isolation between ports 2 and 3 (S_{23}): poor
 - The output powers are 6 dB less than input power level.

Design Examples of T-junction Power Divider

Resistive power divider: 3-way splitter

- Connection resistance: $R = Z_0 \times (n-1)/(n+1)$

$$\rightarrow R = 50 \times (3-1)/(3+1) = 25 [\Omega]$$

- Based on S_{11} , S_{22} , S_{33} , and S_{44} , all ports are perfectly matched.
- The output powers are 9.54 dB less than input power level.

Design Examples of T-junction Power Divider

Resistive power divider:

- The resistive power divider generally have the **widest frequency bandwidth** because there is no frequency dependent components in the network.
- The handling power capability of the network is mainly depended on the rated power capacity of resistor.
- The major disadvantage is the **power loss via the series resistors** between the input and output ports.
- Most applications for this divider use relatively low power.

4 Review

- T-junction power divider
- Resistive T-junction power dividers