Chapter 7 Power Divider and Directional Coupler

Prof. Jeong, Yongchae

Learning Objectives

- Know about Wilkinson power divider
- Analyze the Wilkinson power divider

Learning contents

- Wilkinson power divider
- Analysis of Wilkinson power divider

1 Wilkinson Power Divider

- What is Wilkinson power divider?
 - Named after its inventor, Ernest J. Wilkinson
 - In-phase power splitter widely used in radio frequency (RF) and microwave circuits and applications.
 - Splitting an input signal into two equal-phased and equal/unequal-amplitude output signals while maintaining impedance matching and high isolation between output ports.
 - Realizable with several kinds of transmission line

1 Wilkinson Power Divider

- Important properties of Wilkinson power divider
 - *High isolation*: providing excellent isolation between output ports than other kinds of power divider
 - Matched output ports: both matched output ports to port impedance in case of equal power division
 - Low insertion loss: very little signal power loss in power splitting
 - *Phase coherence*: in-phase output port transmitted signals
 - Broadband operation: versatile for various applications due to broadband characteristics.
 - High power handling: suitable for high-power RF applications.

1 Wilkinson Power Divider

- Input signal splitting
 - The input signal at port 1 is split up equally into two output signals by the two transmission lines.
 - These transmission lines are typically quarter-wavelength ($\lambda/4$) at the operating center frequency.
- Resistor for isolation
 - A resistor (referred to as an isolation resistor) is connected between the two output ports (ports 2 and 3).
 - This resistor provides the high isolation between the output ports. If signals with equal amplitude and
 - out-of-phase enter both output ports, they will be cancelled out each other across the resistor and prevent signal transfer between them.
 - Power handling capability of power divider depends on power capability of isolation resistor.

Analysis of Wilkinson Power Divider

Equal power division Wilkinson power divider

- Even though an arbitrary power division is possible, consider the **equal-split** (3 dB) for convenient explanation.
- "Even/odd-mode analysis" technique is useful to analyze Wilkinson power divider as well as other networks to be considered in later sections.

Even-odd mode analysis:

- Normalize all impedances to the characteristic impedance Z_0 .
- Symmetric across the mid-plane
- Wilkinson power divider can be normalized and expressed symmetrically.

Analysis of Wilkinson Power Divider

Even mode analysis

$$V_{g2} = V_{g3} = 2V$$

$$-V_2^e = V_3^e$$

- \rightarrow No current flow through the r/2 resistor
- → Bisect the equivalent network with open circuits
- Impedance looking into port 2:

$$Z_{\rm in}^e = \frac{Z^2}{2} \leftarrow \frac{\lambda}{4}$$
 impedance transformer

- If $Z = \sqrt{2}$, port 2 will be matched for even mode excitation.

$$\rightarrow V_2^e = V \ (\because Z_{in}^e = 1 \text{ and } V_{g2} = 2V)$$

- If set x = 0 at port 1 and $x = -\lambda/4$ at port 2, the voltage on the transmission line section can be written as

$$V(x) = V^{+}(e^{-j\beta x} + \Gamma e^{j\beta x})$$

- Then,

$$V_{2}^{e} = V(-\lambda/4) = V^{+}(e^{j\frac{2\pi\lambda}{\lambda}} + \Gamma e^{-j\frac{2\pi\lambda}{\lambda}}) = jV^{+}(1-\Gamma) = V$$

$$\Rightarrow V^{+} = j\frac{V}{\Gamma-1}$$

$$V_{1}^{e} = V(0) = V^{+}(1+\Gamma) = jV\frac{\Gamma+1}{\Gamma-1}$$

• Reflection coefficient (Γ) seen at port 1, looking toward termination resistor of normalized value 2:

$$\Gamma = \frac{2 - \sqrt{2}}{2 + \sqrt{2}}$$

$$V_1^e = jV \frac{\frac{2 - \sqrt{2}}{2 + \sqrt{2}} + 1}{\frac{2 - \sqrt{2}}{2 + \sqrt{2}} - 1} = jV \frac{4}{-2\sqrt{2}} = -j\sqrt{2}V$$

Analysis of Wilkinson Power Divider

Odd mode analysis:

$$-V_{g2} = -V_{g3} = 2V$$

$$-V_2^o = -V_3^o$$

- Bisect the network with short circuit.
- Impedance seen from port 2 to port 1 is like an open circuit.
- For port 2 matching in condition of odd mode excitation,

$$r = 2 \rightarrow V_2^o = V$$

 $V_1^o = 0$

- Input impedance at port 1 of the Wilkinson divider in case ports 2 and 3 are terminated in matched loads.

$$Z_{\text{in}} = \left\{ \frac{(\sqrt{2})^2}{1} \right\} / \left\{ \frac{(\sqrt{2})^2}{1} \right\} = \frac{1}{2} (\sqrt{2})^2 = 1$$

• *S*-parameters characteristics:

$$S_{11} = 0$$
 ($Z_{in} = 1$ at port 1)
 $S_{22} = S_{33} = 0$ (Ports 2 and 3 are matched for even and odd modes)

$$S_{12} = S_{21} = \frac{V_1^e + V_1^o}{V_2^e + V_2^o} = \frac{-jV\sqrt{2} + 0}{V+V} = \frac{-j}{\sqrt{2}}$$

: phase delayed & equal power division

$$S_{13} = S_{31} = \frac{-j}{\sqrt{2}}$$
 (Symmetry between ports 2 and 3)

$$S_{23} = S_{32} = 0$$
 (Due to short or open at bisection)

Example: Design an equal-split Wilkinson power divider for a 50 Ω system impedance at frequency $f_0 = 2$ GHz, and plot the return loss (S_{11}) , insertion loss $(S_{21} = S_{31})$, and isolation $(S_{23} = S_{32})$ according to frequency range from 0 GHz to 4 GHz.

Solution:

- Characteristic impedance of $\lambda/4$ transmission lines:

$$Z = \sqrt{2}Z_0 = 70.7[\Omega]$$

- Isolation resistance:

$$R = 2Z_0 = 100$$

Analysis of Wilkinson Power Divider

Unequal power division Wilkinson power divider

- Unequal power split
- Power division ratio between ports 2 and 3: $K^2 = P_3 / P_2$,

$$Z_{03} = Z_0 \sqrt{\frac{1+K^2}{K^3}}$$

$$Z_{02} = K^2 Z_{03} = Z_0 \sqrt{K(1+K^2)}$$

$$R = Z_0 \left(K + \frac{1}{K}\right)$$

- The termination impedances of $R_2 = Z_0 K$ and $R_3 = Z_0 / K$ at ports 2 and 3 must be matched with Z_0 for proper circuit operation.

• N-Way Wilkinson Divider:

- The Wilkinson divider can also be generalized to an N-way divider or combiner.
- This circuit can be matched at all ports with isolation between all ports.
- A disadvantage, however, is the fact that the divider requires crossovers for the resistors for $N \ge 3$, which makes fabrication difficult in planar form.
- The Wilkinson divider can also be made with stepped multiple sections for increasing bandwidth.

Realizations of *N*-way Wilkinson divider:

3 Review

- Wilkinson power divider
- Even- and odd-mode analysis
- Equal and unequal power division ratios

