

Chapter 7 Power Dividers and Couplers

Prof. Jeong, Yongchae

Learning Objectives

- Understanding what is coupled transmission line.
- Learn about coupled line theory
- Learn what are different configurations of coupled transmission lines.

Learning contents

- Single and Coupled Transmission Lines
- § Coupled line theory
- Different Configurations of Coupled Transmission Lines

1 Single and Coupled Transmission Lines

- Single transmission lines
	- Consists of a pair of conductor (single signal conductor and ground conductor) separated by dielectric layer

1 Single and Coupled Transmission Lines

- § Coupled transmission lines
	- Two or more signal lines are placed closely together so that they interact with each other.
	- Power can be coupled between the lines due to the interaction of the electromagnetic fields of each line.
	- TEM mode operation: strip-coupled line \leftarrow homogeneous structure
	- Quasi-TEM mode operation: microstrip coupled lines \leftarrow inhomogeneous structure

- Introduction of coupled line theory
	- TEM propagation: The electrical characteristics of the coupled lines can be completely determined from the effective capacitances between the lines and the velocity of propagation on the line.
	- $-C_{12}$: capacitance between two strip conductors in absence of ground conductor
	- *C*¹¹ and *C*22: capacitances between one strip conductor and ground in absence of another strip conductor

- Coupled line theory
	- If two transmission lines are identical, symmetric plane of circuit exists.
	- Even and odd-mode analysis can be used to find even- and odd-mode characteristic impedances of coupled line. $(1V)$ $(1V)$

- Even-mode characteristic impedance
	- If two incident waves along two transmission lines are equal (*i.e.* equal in magnitude and phase), then virtual open plane is created at symmetric center plane of circuit.
	- Under even-mode, $2C_{12}$ capacitors are "*disconnected*".
	- Even-mode capacitance per unit length of each transmission line is given as

Characteristic impedance for even mode

$$
Z_{0e} = \sqrt{\frac{L}{C_e}} = \frac{\sqrt{LC_e}}{C_e} = \frac{1}{vC_e} \quad (2) \leftarrow v = \frac{1}{\sqrt{LC}}
$$
 v: velocity of propagation

 1 and 1 a *LC* ... velocity of propagation on transmission line

7

- Odd-mode characteristic impedance
	- If two incident waves along two transmission lines are opposite (*i.e.* equal in magnitude, but out-of phased $(180°)$), then virtual ground plane is created at symmetric center plane of circuit.
	- Under odd-mode, a voltage null exists between the two strip conductors

- § Even- and odd-mode characteristic impedances of coupled line for given dielectric substrate
	- For quasi-TEM lines, characteristic impedances can be calculated numerically or by appropriate quasi-static technique
	- For symmetric coupled line, figure can be used to determine necessary strip line widths and scaping for
given set of characteristics impedances \rightarrow Educational given set of characteristics impedances \rightarrow Educational purpose

** Modern microwave circuits or EM simulators contain physical structure evaluation programs.*

- Example: Even- and odd-mode characteristic impedances of coupled line for given dielectric substrate
	- Assuming *W* >> *S* and *W* >> *b for coupled strip line* so that fringing fields can be ignored and determine the even- and odd-mode characteristic impedances.

Solution

- Since line is symmetric, $C_{11} = C_{22}$
- Capacitance of a parallel plate capacitor with plate area, *S*, and plate separation *d*

$$
C = \frac{\varepsilon S}{d}, \varepsilon
$$
: permittivity of material between plates

- Capacitance per unit length (\rightarrow *S* = *W* \times *L* = *W*)

Supled Line Theory
\nsample: Even- and odd-mode characteristic impedances of coupled line for given dielectric
\nstarting
$$
W >> S
$$
 and $W >> b$ for coupled strip line so that fringing fields can be ignored and determine
\ne even- and odd-mode characteristic impedances.
\n**ution**
\nSince line is symmetric, $C_{11} = C_{22}$
\nCapacitance of a parallel plate capacitor with plate area, S, and
\ndate separation d
\n
$$
C = \frac{\varepsilon S}{d}, \quad \varepsilon
$$
: permittivity of material between plates
\nCapacitance per unit length ($\rightarrow S = W \times L = W$)
\n
$$
C_{11} = \frac{\varepsilon_r \varepsilon_o W}{(b-S)/2} + \frac{\varepsilon_r \varepsilon_o W}{b-(b-S)/2} + \frac{\varepsilon_r \varepsilon_o W}{(b+S)/2} + \frac{\varepsilon_r \varepsilon_o W}{b^2-S^2}
$$
[F/m]
\nAssumption: t (thickness of metal line) $\rightarrow 0$

Assumption: t (thickness of metal line) \rightarrow 0 $\rightarrow 0$

- Capacitance between coupled lines per unit length

- Even-mode capacitance per unit length

$$
C_e = C_{11} = \frac{4b\varepsilon_r \varepsilon_0 W}{b^2 - S^2} \text{[F/m]}
$$
 $\sqrt{\varepsilon_0 4bW} \sqrt{\varepsilon_r}$

- Odd-mode capacitance per unit length

$$
C_0 = C_{11} + 2C_{12}
$$

= $2\varepsilon_r \varepsilon_0 W \left(\frac{2b}{b^2 - S^2} + \frac{1}{S} \right) \left[F/m \right]$
$$
Z_{0o} = \frac{1}{vC_o} = \frac{1}{2}
$$

= $\frac{\mu_0}{\mu_0}$

- Phase velocity on coupled lines

$$
v = 1 / \sqrt{\varepsilon_r \varepsilon_0 \mu_0}
$$

- Even-mode characteristic impedance

Complete Line Theory

\nacitance between coupled lines per length

\n
$$
C_{12} = \frac{\varepsilon_r \varepsilon_o W}{S} [F/m]
$$
\nen-mode capacitance per unit length

\n
$$
C_e = C_{11} = \frac{4b\varepsilon_r \varepsilon_0 W}{b^2 - S^2} [F/m]
$$
\nden-mode capacitance per unit length

\n
$$
C_e = C_{11} = \frac{4b\varepsilon_r \varepsilon_0 W}{b^2 - S^2} [F/m]
$$
\nand-mode capacitance per unit length

\n
$$
C_1 = C_2 + 2C
$$
\nand the characteristic impedance

\n
$$
C_2 = C_1 + 2C
$$
\nand the characteristic impedance

\n
$$
C_1 = C_2
$$
\n
$$
C_2 = C_1 + 2C
$$
\nand the characteristic impedance

\n
$$
C_1 = C_2
$$
\n
$$
C_2 = C_1 + 2C
$$
\nand the characteristic impedance

\n
$$
C_1 = C_2
$$
\n
$$
C_2 = C_1 + 2C
$$
\nand the characteristic impedance

\n
$$
C_1 = C_2
$$
\n
$$
C_2 = C_1 + 2C
$$
\nand the characteristic impedance

\n
$$
C_1 = C_2
$$
\n
$$
C_2 = C_1 + 2C
$$
\nand the characteristic impedance

\n
$$
C_1 = C_2
$$
\n
$$
C_2 = C_1 + 2C_2
$$
\nand the characteristic magnitude

\n
$$
C_2 = C_1 + 2C_2
$$
\nand the characteristic magnitude

\n
$$
C_1 = C_2
$$
\n
$$
C_2 = C_1 + 2C_2
$$
\nand the characteristic magnitude

\n
$$
C_1 = C_2
$$
\nand the derivative of the electric field

\n
$$
C_2 = C_1 + 2C_2
$$
\nand the derivative of the electric field

\n
$$
C_2 = C_1 + 2C_2
$$
\nand the derivative of the electric field

\n
$$
C_1 = C_2
$$
\nand the derivative of the electric field

\n

C12

2 **Complete Line Theory**
\n- Capacitance between coupled lines per
\nunit length
\n
$$
C_{12} = \frac{\varepsilon_r \varepsilon_o W}{S} [F/m]
$$

\n- Even-mode capacitance per unit length
\n $C_e = C_{11} = \frac{4b\varepsilon_r \varepsilon_o W}{b^2 - S^2} [F/m]$
\n- Odd-mode capacitance per unit length
\n $C_e = C_{11} = \frac{4b\varepsilon_r \varepsilon_o W}{b^2 - S^2} [F/m]$
\n- Odd-mode capacitance per unit length
\n $C_0 = C_{11} + 2C_{12}$
\n $= 2\varepsilon_r \varepsilon_o W \left(\frac{2b}{b^2 - S^2} + \frac{1}{S} \right) [F/m]$
\n- Phase velocity on coupled lines
\n $v = 1/\sqrt{\varepsilon_r \varepsilon_o \mu_0}$
\n- $v =$

§ Even- and odd-mode characteristic impedances calculation of microstrip coupled lines by using microwave circuit simulator

4-port coupled lines impedance matrix (Z-parameters) \blacksquare

$$
\begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} & Z_{13} & Z_{14} \\ Z_{21} & Z_{22} & Z_{23} & Z_{24} \\ Z_{31} & Z_{32} & Z_{33} & Z_{34} \\ Z_{41} & Z_{42} & Z_{43} & Z_{44} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix}, \quad (5)
$$

where

$$
Z_{11} = Z_{22} = Z_{33} = Z_{44} = -j \frac{Z_{0e} + Z_{0o}}{2} \cot \theta
$$

\n
$$
Z_{12} = Z_{21} = Z_{34} = Z_{43} = -j \frac{Z_{0e} - Z_{0o}}{2} \cot \theta
$$

\n
$$
Z_{13} = Z_{31} = Z_{24} = Z_{42} = -j \frac{Z_{0e} - Z_{0o}}{2} \csc \theta
$$

\n
$$
Z_{14} = Z_{41} = Z_{23} = Z_{32} = -j \frac{Z_{0e} + Z_{0o}}{2} \csc \theta
$$

- Z_{0e} : even-mode characteristic impedance
- Z_{00} : odd-mode characteristic impedance
- θ : electrical length of coupled line

- 2-port open-circuited coupled lines \blacksquare
	- Terminating ports 2 and 3 with open of 4-port coupled transmission line
	- Setting $I_2 = I_3 = 0$ in (5), Z-parameters of two p

For example, the following matrices are given by the following matrices:

\n
$$
\begin{bmatrix}\nZ_{11} & Z_{12} \\
Z_{21} & Z_{22}\n\end{bmatrix}\n=\n\begin{bmatrix}\nZ_{11} & Z_{24} \\
Z_{22} & Z_{23}\n\end{bmatrix}\n=\n\begin{bmatrix}\nZ_{11} & Z_{24} \\
Z_{22} & Z_{23}\n\end{bmatrix}\n\begin{bmatrix}\nZ_{12} & Z_{24} \\
Z_{23} & Z_{24}\n\end{bmatrix}
$$
\nFor the following matrices:

\n
$$
\begin{bmatrix}\nZ_{0e} + Z_{0e} & Z_{0e} - Z_{0e} & Z_{0e} \\
Z_{0e} - Z_{0e} & Z_{0e} + Z_{0e} & Z_{0e}\n\end{bmatrix}\n=\n\begin{bmatrix}\n1 & 0 \\
0 & 1\n\end{bmatrix}\n+\n\begin{bmatrix}\nZ_{0e} - Z_{0e} & -\cot\theta & -\csc\theta \\
Z_{0e} - \cot\theta & -\cot\theta\n\end{bmatrix}
$$
\nFor the following matrices:

\n
$$
\begin{bmatrix}\nZ_{0e} - Z_{0e} & Z_{0e} + Z_{0e} & Z_{0e} \\
Z_{0e} - Z_{0e} & Z_{0e} + Z_{0e} & Z_{0e}\n\end{bmatrix}\n=\n\begin{bmatrix}\n1 & 0 \\
0 & 1\n\end{bmatrix}\n+\n\begin{bmatrix}\nZ_{0e} - Z_{0e} & -\cot\theta & -\cot\theta \\
Z_{0e} - \cot\theta & Z_{0e} + Z_{0e} & Z_{0e}\n\end{bmatrix}
$$

 Z_0

 $Z_{0e}Z_{0o}$

- Equivalent two open stubs with Z_{0a} are connected series with ports 1 and 4, and coupled *transmission line* $(Z_{0e}-Z_{0e})/2$ *with electrical length* θ *is between open stubs.*

4-port coupled lines admittance matrix (Y-parameters)

$$
\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} & Y_{14} \\ Y_{21} & Y_{22} & Y_{23} & Y_{24} \\ Y_{31} & Y_{32} & Y_{33} & Y_{34} \\ Y_{41} & Y_{42} & Y_{43} & Y_{44} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix}, \quad (6)
$$

where

$$
Y_{11} = Y_{22} = Y_{33} = Y_{44} = -j \frac{Y_{0e} + Y_{0o}}{2} \cot \theta
$$

\n
$$
Y_{12} = Y_{21} = Y_{34} = Y_{43} = -j \frac{Y_{0o} - Y_{0e}}{2} \cot \theta
$$

\n
$$
Y_{13} = Y_{31} = Y_{24} = Y_{42} = -j \frac{Y_{0o} - Y_{0e}}{2} \csc \theta
$$

\n
$$
Y_{14} = Y_{41} = Y_{23} = Y_{32} = -j \frac{Y_{0e} + Y_{0o}}{2} \csc \theta
$$

- $Y_{0e} = 1 / Z_{0e}$: even-mode characteristic admittance - $Y_{0o} = 1 / Z_{0o}$: odd-mode characteristic admittance
- θ : electrical length of coupled line

- § 2-port short-circuited coupled lines
	- Terminating ports 2 and 3 with short of 4-port coupled transmission line
	- Setting $V_2 = V_3 = 0$ in (6), *Y*-parameters of twoport coupled line can be found as

 $\rm V_g$

- *Equivalent two short stubs with characteristic admittance of Y***0***^e are connected in* parallel with ports 1 and 4, and that transmission line $(Y_{0\rho} - Y_{0\rho})/2$ with electrical *length of* $(\theta + \pi)$ *is between short stubs.*

 $+V_1$ $+V_2 = 0$

 $I_3=0$ $Z_{0e}Z_{0o}$ I_4

 I_1 I_2

 $Z_0 \geq Z_{0e} Z_{0o}$

1

4

4

Review 4

■ Single transmission line and coupled lines

-
- Coupled line theory
- Even- and odd-mode characteristic impedances