# Chapter 7 Power Dividers and Couplers

## Prof. Jeong, Yongchae



#### **Learning Objectives**

- Learn how to design and simulate coupled line coupler.
- Learn how to enhance bandwidth coupled line coupler with multi-section design.
- Learn how to design and obtain frequency response of multi-section coupled line coupler.

#### **Learning contents**

- Design Example of Single Section Coupled Line Coupler
- Multi-Section Coupled Line Coupler
- Design Example of Multi-Section Coupled Line Coupler

#### Design Example of Single-Section Coupled Line Coupler

- Design Example: 20 dB coupler
  - Design a 20 dB single-section coupled line coupler with characteristic impedance of 50  $\Omega$  using PCB with a dielectric constant of 2.2 and thickness of 0.787 mm and a center frequency  $f_0 = 3$  GHz.
  - Plot coupling and directivity from 1 to 5 GHz

#### **Solution**

- Voltage coupling factor C (dB) = 20 dB

$$C_{\rm dB} = -20\log_{10}(C)$$

$$\log_{10}(C) = -\frac{C_{\text{dB}}}{20}$$

$$C = 10^{\left(\frac{-C_{\text{dB}}}{20}\right)} = 10^{\left(\frac{-20}{20}\right)} = 0.1$$

- Even and odd-mode characteristic impedances

$$Z_{0e} = Z_0 \sqrt{\frac{1+C}{1-C}} = 50 \sqrt{\frac{1+0.1}{1-0.1}} = 50 \sqrt{\frac{1.1}{0.9}} = 55.28 \ \Omega$$

$$Z_{0o} = Z_0 \sqrt{\frac{1-C}{1+C}} = 50 \sqrt{\frac{1-0.1}{1+0.1}} = 50 \sqrt{\frac{0.9}{1.1}} = 45.23 \ \Omega$$

#### Design Example of Single-Section Coupled Line Coupler

Simulation results with microwave circuit simulator: Ideal coupled line



#### Design Example of Single-Section Coupled Line Coupler

- Substrate dielectric constant  $\varepsilon_r = 2.20$ , thickness h = 0.787 mm, and  $f_0 = 3$  GHz
- Using microwave circuit simulator, W = 2.34 mm, S = 1.03 mm, and L = 18.35 mm



#### **Design Example of Single-Section Coupled Line Coupler**

- ADS layout and Simulation results



#### Design Example of Single-Section Coupled Line Coupler

- Single section coupled line coupler
  - Narrow frequency bandwidth characteristics
  - Coupling of single-section coupled line coupler is limited in bandwidth due to  $\lambda/4$  length characteristics.
  - As like matching transformers and waveguide couplers, bandwidth can be increased by using multiple sections.
  - There is close relationship between multi-section coupled line couplers and multi-section quarterwavelength transformers.
  - Multi-section coupled line coupler
    - Consists of multi-section of single-coupled line coupler
    - Multi-section coupled line couplers can achieve broader bandwidth as compared to single section.
    - For multi-section coupler design, the coupling coefficient is weak ( $C \ge 10 \text{ dB}$ )

#### **Multi-Section Coupled Line Coupler**

- Multi-section coupled line coupler
  - Because the phase characteristics are usually better, multi-section coupled line couplers are generally made with **odd number of sections**.
  - Coupling is week ( $C \ge 10 \text{ dB}$ )
  - Each section is  $\lambda/4$  long ( $\theta = \pi/2$ ) at the center frequency.



- For a single-section coupled line

$$\frac{V_3}{V_1} = \frac{jC \tan \theta}{\sqrt{1 - C^2} + j \tan \theta}$$

$$\frac{V_2}{V_1} = \frac{\sqrt{1 - C^2}}{\sqrt{1 - C^2} \cos \theta + j \sin \theta}$$

- If C << 1, then design-equations of single-section coupled line can be simplified as

$$\frac{V_3}{V_1} = \frac{jC \tan \theta}{\sqrt{1 - C^2} + j \tan \theta} \approx \frac{jC \tan \theta}{1 + j \tan \theta} = \frac{jC \sin \theta}{\cos \theta + j \sin \theta} = jC \sin \theta e^{-j\theta} \quad (1)$$

$$\frac{V_2}{V_1} = \frac{\sqrt{1 - C^2}}{\sqrt{1 - C^2}\cos\theta + j\sin\theta} \approx \frac{1}{\cos\theta + j\sin\theta} = e^{-j\theta}$$
 (2)

#### **Multi-Section Coupled Line Coupler**

- For 
$$\theta = \pi/2$$

$$\frac{V_3}{V_1} = jC \sin\left(\frac{\pi}{2}\right) e^{-j\left(\frac{\pi}{2}\right)} = jC \times (-j)$$
$$= -j^2 C = C$$

$$\frac{V_2}{V_1} = e^{-j\left(\frac{\pi}{2}\right)} = \cos\left(\frac{\pi}{2}\right) - j\sin\left(\frac{\pi}{2}\right) = -j$$

$$\rightarrow \frac{V_2}{V_1} = -j$$



- No power is lost on the through path from one section to the next.
- It is a good assumption for small C, even though power conservation law is violated.

#### **Multi-Section Coupled Line Coupler**

- Total voltage at coupled port (port 3) of cascaded coupler

$$V_{3} = \begin{cases} \left( jC_{1}\sin\theta e^{-j\theta} \right) V_{1} + \left( jC_{2}\sin\theta e^{-j\theta} \right) V_{1}e^{-j2\theta} \\ + \dots + \left( jC_{N}\sin\theta e^{-j\theta} \right) V_{1}e^{-j2(N-1)\theta} \end{cases}$$
(3)

where  $C_n$ : voltage coupling coefficient of  $n^{th}$  section

- If we assume that the coupler is symmetric,

$$C_1 = C_N, C_2 = C_{N-1}, \cdots$$



$$V_{3} = jV_{1}\sin\theta e^{-j\theta} \left\{ C_{1} \left( 1 + e^{-j2(N-1)\theta} \right) + C_{2} \left( e^{-j2\theta} + e^{-j2(N-2)\theta} \right) + \dots + C_{M} e^{-j(N-1)\theta} \right\}$$

$$= 2jV_{1}\sin\theta e^{-jN\theta} \left\{ C_{1} \left( e^{j(N-1)\theta} + e^{-j(N-1)\theta} \right) / 2 + C_{2} \left( e^{j(N-3)\theta} + e^{-j(N-3)\theta} \right) / 2 + \dots + C_{M} / 2 \right\}$$

$$= 2jV_{1}\sin\theta e^{-jN\theta} \left\{ C_{1}\cos(N-1)\theta + C_{2}\cos(N-3)\theta + \dots + C_{M} / 2 \right\}$$

$$= 2jV_{1}\sin\theta e^{-jN\theta} \left\{ C_{1}\cos(N-1)\theta + C_{2}\cos(N-3)\theta + \dots + C_{M} / 2 \right\}$$

$$\text{where } M = (N+1)/2$$



#### **Multi-Section Coupled Line Coupler**

- Coupling factor  $(C_0)$  at center frequency

$$C_0 = \left| \frac{V_3}{V_1} \right|_{\theta = \pi/2} \tag{5}$$

- Wideband desired coupling characteristic can be obtained by choosing the coupling coefficients,  $C_n$ .
- Equation (4) is in form of a Fourier series of coupling as frequency function.
- Multi-section couplers of this form can achieve decade bandwidths, but coupling levels must be low.
- Because of the longer electrical length, it is more critical to have equal even- and odd-mode phase velocities than the single-section coupler.
- Stripline is the preferred medium for good coupler directivity.

#### Design Example of Multi-Section Coupled Line Coupler

• Design three-section 20 dB coupler with Butterworth response for system impedance of 50  $\Omega$  and center frequency of 3 GHz.

#### **Solution**

- For Butterworth response of a three section (N = 3) coupler

$$\left. \frac{d^n}{d\theta^n} C(\theta) \right|_{\theta = \frac{\pi}{2}} = 0 \quad \text{for } n = 1, 2$$

- From (4), we can write for N = 3

$$\leftarrow V_3 = 2jV_1\sin\theta e^{-jN\theta} \left\{ C_1\cos(N-1)\theta + C_2\cos(N-3)\theta + \dots + C_M \right/ 2$$

$$C = \left| \frac{V_3}{V_1} \right| = 2\sin\theta \left\{ C_1 \cos 2\theta + \frac{C_2}{2} \right\} = 2C_1 \sin\theta \cos 2\theta + C_2 \sin\theta$$
$$= C_1 \left( \sin 3\theta - \sin\theta \right) + C_2 \sin\theta = C_1 \sin 3\theta + \left( C_2 - C_1 \right) \sin\theta$$

#### Design Example of Multi-Section Coupled Line Coupler

- First derivative

$$\frac{dC}{d\theta} = \frac{d}{d\theta} \left\{ C_1 \sin 3\theta + \left( C_2 - C_1 \right) \sin \theta \right\} \Big|_{\theta = \frac{\pi}{2}} = 3C_1 \cos 3\theta + \left( C_2 - C_1 \right) \cos \theta \Big|_{\theta = \frac{\pi}{2}} = 0$$

- Second derivative

$$\frac{d^{2}C}{d\theta^{2}} = \frac{d}{d\theta} \left\{ 3C_{1}\cos 3\theta + \left(C_{2} - C_{1}\right)\cos \theta \right\} \Big|_{\theta = \frac{\pi}{2}} = -9C_{1}\sin 3\theta - \left(C_{2} - C_{1}\right)\sin \theta \Big|_{\theta = \frac{\pi}{2}} = 10C_{1} - C_{2} = 0$$

- At midband,  $\theta = \pi/2$ ,  $C_0 = 20$  dB

$$C = 10^{\left(\frac{-C_0}{20}\right)} = 10^{\left(\frac{-20}{20}\right)} = 0.1$$

$$C_1 \sin 3\theta + (C_2 - C_1) \sin \theta \Big|_{\theta = \frac{\pi}{2}} = 0.1 \leftarrow \text{Total coupling for } N = 3$$

$$C_2 - 2C_1 = 0.1$$

$$C_2 - 2C_1 = 0.1$$
 (6)  

$$\frac{d^2C}{d\theta^2} = 0 \to 10C_1 - C_2 = 0$$
 (7)

$$C_1 = C_3 = 0.0125$$

$$C_1 = C_3 = 0.0125$$
  
 $C_2 = 0.1 + 2C_1 = 0.1 + 2 \times 0.0125 = 0.125$ 

#### Design Example of Multi-Section Coupled Line Coupler

- Even and odd-mode impedances of each section

$$Z_{0e}^{1} = Z_{0e}^{3} = Z_{0}\sqrt{\frac{1+C_{1}}{1-C_{1}}} = 50\sqrt{\frac{1+0.0125}{1-0.0125}} = 50.63$$

$$Z_{0o}^{1} = Z_{0o}^{3} = Z_{0}\sqrt{\frac{1 - C_{1}}{1 + C_{1}}} = 50\sqrt{\frac{1 - 0.0125}{1 + 0.0125}} = 49.38$$

$$Z_{0e}^2 = Z_0 \sqrt{\frac{1 + C_2}{1 - C_2}} = 50 \sqrt{\frac{1 + 0.125}{1 - 0.125}} = 56.69$$

$$Z_{0o}^2 = Z_0 \sqrt{\frac{1 - C_2}{1 + C_2}} = 50 \sqrt{\frac{1 - 0.125}{1 + 0.125}} = 44.10$$



#### Design Example of Multi-Section Coupled Line Coupler

- Microwave simulator simulation results of 20-dB coupler with 3-sections
- Broader frequency characteristics than single section coupler



# 4 Review

- Single-Section: coupled line directional coupler
  - Narrow band performances
  - Reflection, coupling, directivity, and isolation
- Design equations of coupled line coupler
  - Matched condition
  - Even- and odd-mode excitations



# 4 Review

- Multi-section coupled line coupler
  - Consists of several single section coupleds
  - For multi-section coupler design, loose coupling ( $C \ge 10 \text{ dB}$ ) is assumed.
  - Multi-section couplers of this form can achieve decade bandwidths, but coupling levels must be low.
  - Because of longer electrical length, it is more critical to have equal even- and odd-mode phase velocities than single-section coupler.

