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Fringe-field switching (FFS) liquid crystal (LC) mode is mainly used for high-end LC displays. At present, an
LC with positive dielectric anisotropy is utilised, although light efficiency of the device in a white state is not
maximised due to generation of tilt angle near the edge of electrodes along the field direction. In order to overcome
the demerit, an LC with negative dielectric anisotropy has been challenged. In this article, FFS mode, which shows
a high light efficiency and a low operating voltage, is investigated with the utilisation of fringe in-plane electric
field. The optimised device shows improved electro-optic characteristics in comparison with not only conventional
LC modes, but also previously proposed FFS device using a positive type of LC.

PACS number: 42.30.R, 42.40.Ht, 42.30.Kq
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1. Introduction

In last 20 years, liquid crystal displays (LCDs) have
been so much successful in display market, being
widely used for all kinds of displays from small to
large-sized displays. One of successful reasons is its
improvement in image quality such that high image
quality is kept in all viewing directions owing to devel-
opment of many new liquid crystal (LC) modes such
as wide view-twisted nematic (WV-TN) [1,2], multi-
domain type of vertical alignment (MVA) [3–6], in-
plane switching (IPS) [7–10] and fringe-field switching
(FFS) [11–14]. At present, IPS and MVA modes are
mainly used in LC-television larger than 40 inches,
WV-TN in monitor, and FFS in tablet personal com-
puters and mobiles, respectively.

Recently, LCDs are challenging to evolve further
in performance and cost. In viewpoints of perfor-
mances, LCDs are making efforts to increase resolu-
tion for higher image quality, improve light efficiency
and reduce an operating voltage for lower power con-
sumption. On the other hands, FFS mode is becoming
a main trend being applied to all high resolution and
high performance mobile, tablet, notebook, monitor
and partly LCD televisions [15]. Many electro-optic
studies on the FFS mode using an LC with posi-
tive dielectric anisotropy (+LC) have been reported
[16–27] and at present, a LC with +LC is commer-
cialised in the FFS-LCDs. However, the transmittance
of the display is not satisfied enough as the resolution
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becomes higher than 300 pixel per inch (ppi), and
thus an LC with negative dielectric anisotropy (–LC)
is challenged because the FFS mode with –LC shows
higher transmittance than that with +LC [10,28].
In general, the magnitude of dielectric anisotropy for
a commercialised is much smaller compared to that
with +LC so that an operating voltage becomes higher
when –LC is used.

In this article, we investigate the FFS mode with
–LC which can exhibit low-operating voltage while
keeping a high transmittance. The electrode struc-
ture that generates in-plane switching and fringe-field
switching in voltage-on state while the LC director
rotates mainly in-plane (we call the device fringe in-
plane switching (FIS)) [29] is optimised to maximise
electro-optic performances.

2. Cell structure and switching principle of the FIS
device

Figure 1 shows comparison of electrode structures and
polarity of each electrode in IPS, FFS, and FIS devices
with schematic drawing of electric field lines. In the
IPS device, the pixel and the common electrodes exist
on the same substrate with its distance between elec-
trodes (l) greater than its width (w) and cell gap (see
Figure 1(a)), so that the in-plane electric field (Ey)
is generated between the electrodes whereas no field
component of Ey exists above the centre of electrodes.

© 2013 Taylor & Francis
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Figure 1. Cross-sectional view of electrode structures of (a) IPS, (b) FFS and (c) FIS devices with electric field lines.

In the FFS device, the slit-shaped pixel electrode with
a distance (l′) between electrodes and the plane-shaped
common electrodes exist on the same substrate but at
different layers with passivation layer between them
(see Figure 1(b)). In general, the thickness of passiva-
tion layer is much lesser than the l in the IPS device,
so that strong Ey near electrode surface is induced in
between pixel and common electrodes when the same
voltage as that in the IPS device is applied whereas
fringe electric field having both Ey and Ez between
edge and centre of the pixel electrode exists and no
field component of Ey exists above centre of the pixel
and the common electrodes. In the FIS device, the
cross-sectional view of the electrode structure is the
same as in the FFS device except that the nearby pixel
electrodes are supposed to have different levels of volt-
ages, whereas the common electrode kept a certain DC
level. In other words, the alternative pixels in the FIS
device are driven by a couple of distinct oscillating
signals, one in out of phase with the other and the
common electrode is biased at certain fixed DC level
[29]. In this way, fringe electric field exists between
pixel and common electrodes and, at the same time,
Ey exists even in between pixel electrodes. In the FFS
device, there are two electrode positions, centre of pixel
electrode and centre of between pixel electrodes with-
out a field component Ey, however, there is only one
electrode position, centre of pixel electrode in the FIS
device.

Now, let us consider light modulation associated
with the proposed device. When a LC is homoge-
neously aligned between two crossed polarisers and
light modulation of the device is mainly dependent
on phase retardation method, the normalised optical
transmittance of the device is given as

T/T0 = sin2 2�(V ) sin2
πd�neff(V )/λ (1)

where �(V ) is voltage-dependent angle between the
LC optic axis and the transmission axis of the
polariser, d is a cell gap and �neff is effective birefrin-
gence of the LC at a given voltage V and wavelength

λ. In both FFS and FIS devices, the LC directors are
homogenously aligned with � = 0o at V = 0 and thus
the cell appears dark. As the voltage exceeds a thresh-
old, the field rotates LC directors to generate � and
�neff so that the incident light transmits through the
crossed analyser. According to Equation (1), in order
to maximise the transmittance, � should be 45◦, that
is, LC director should rotate by 45◦. Since the field
component to rotate LC director is mainly Ey so that
the LC director may not rotate enough at electrode
positions where Ey does not exist such as above cen-
tre of electrodes in IPS device, above centre of pixel
electrodes and centre of between pixel electrodes in
FFS device and above centre of pixel electrodes in
FIS device, resulting in relatively low transmittance
compared to other electrode positions.

3. Results and discussion

Optimisation of the cell and electrode structure in
the FIS device has been performed based on simu-
lation. For calculation purposes, we used the com-
mercially available ‘LCD master’ (Shintech, Japan)
software, where the motion of LC directors is calcu-
lated by the Eriksen–Leslie theory and 2 × 2 extended
Jones Matrix method [30] is applied for optical
transmittance calculation.

In order to compare electro-optic performances
between FFS and FIS modes, conventional electrode
structure with (w) = 3.0 µm and l′ = 4.5 µm is chosen.
The LC physical properties such as birefringence (�n)
is 0.08 at 589.3 nm, dielectric anisotropy (�ε) = –4.0,
elastic constants, namely splay K11 = 13.5 pN, twist
K22 = 6.5 pN, bend K33 = 15.1 pN and rotational
viscosity (γ 1) = 104 mPa·s, have been used for sim-
ulation. The surface pre-tilt angle for both substrates
has been chosen to be 2◦ and the LC director main-
tains 10◦ with respect to Ey. The cell gap is 4.0 µm.
Figure 2 shows voltage-dependent transmittance (V-T)
curves and transmittance profile along electrode posi-
tion. As clearly indicated in Figure 2(a), the operating
voltage is only 2.7 V, whereas in the FFS it is 4.7 V,
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Figure 2. (a) Comparison of voltage-dependent
transmittance curves and (b) transmittance profile along
electrode positions in FFS and FIS devices. Here “Pix”
indicates a pixel electrode.

indicating a strong advantage of the FIS mode over
the FFS mode in the driving voltage. And the nor-
malised transmittance also increases from 0.869 to
0.884, respectively, so high enough to show about
95% of TN mode. To confirm the transmittance dif-
ference between two modes, the transmittance has
been calculated along the y direction, as shown in
Figure 2(b). The oscillation level of transmittance is
slightly reduced in the FIS mode compared to that
in the FFS mode because Ey exists even in the centre
between pixel electrodes; however, the transmittance is
slightly lowered above pixel electrodes in the FIS mode
because there is no Ey, as explained in the switching
principle part.

In order to optimise retardation value of the LC
layer, the electro-optic characteristics of the proposed
device has been simulated with fixed thickness but
varying birefringence value of LC, which leads to the
variation of LC’s retardation from 320 to 350 nm in
steps of 10 nm at previously mentioned cell conditions.
The simulation results exhibit maximum transmittance
for the device at retardation value of 340 nm; how-
ever, the operating voltage remains invariant with the
variation of cell retardation as depicted in Figure 3.

Now, optimisation of the distance l′ between pixel
electrodes is performed. In the FFS mode, an opti-
mal ratio of l′/w, which shows high transmittance and
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Figure 3. Operating voltage and maximum transmittance
curves of the FIS device as a function of cell retardations.

proper operating voltage, is in the range of 1.5–2.5.
According to our previous report, if the ratio becomes
larger, the non-uniformity in transmittance difference
in grey scale from position to position is reduced,
although there is mispatterning of electrodes [31].
Therefore, larger l′ is favoured in terms of fabrication
viewpoints.

The variation of device transmittance and oper-
ating voltage as a function of intra pixel separation
l′ of proposed FIS device at fixed w with 3 µm has
been depicted in Figure 4. Here, the phase retardation
of the FIS device is chosen to be 340 nm. The l′ has
been varied from conventional 4.5 to 9.0 µm in steps
of 1.5 µm. As a result, the operating voltage shows
an increasing trend with widening the l′ because the
intensity of Ey between two pixel electrodes decreases
with increasing l′. Interestingly, the transmittance also
increases with increasing l′ up to 6.0 µm, but fur-
ther increment is found to reduce transmission. The
electro-optic performance of the proposed device with
optimal conditions for l′ = 6.0 µm and w = 3 µm is
excellent such that the transmittance reaches 0.90 and
the operating voltage is only 3.1 V.
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Figure 4. Operating voltage and maximum transmittance
curves of the FIS device according to l′ at w = 3.0 µm.
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Figure 5. Comparison of electrode-position-dependent
transmittance between FFS and an optimised FIS device.

We also investigated transmittance of the device
along electrode positions for l′ = 6.0 µm and w = 3 µm
and compared with that in FFS mode, as shown
in Figure 5. The transmittance is found to oscillate
according to electrode positions; however, the dif-
ference of transmittance at FIS mode is much less
than that in FFS mode. In FFS mode, transmittance
decreases quite much at between two pixel electrodes
in which the LC reorients by elastic torque between
neighbouring LC molecules. Therefore, increasing l′
in FFS mode to improve process margin is disadvan-
tageous in achieving high transmittance. The simu-
lation result shows evenly distributed transmittance
over the whole positions such that the difference of
transmittance in accordance with electrode positions
is almost negligible.

The performance of FIS device using –LC have
been further analysed by simulating LC director con-
figuration in accordance with electrode position at
operating voltage as shown in Figure 6. Twist and
tilt angles at five different positions are calculated
since the transmittance oscillates with a repeated unit
with an electrode distance from A to E. The maxi-
mal twisted angle from the initial position is strongly
dependent on electrode position such that it is about
57◦ at z/d = 0.28 for position C and 45◦ at z/d = 0.40,
49◦ at z/d = 0.38, 54◦ at z/d = 0.43 and 50◦ at
z/d = 0.50 for position A, B, D and E, respectively.
It seems that the light modulation follows polarisa-
tion rotation at C and phase retardation at A, B, D
and E in the FIS mode [29]. In addition, � is over
45◦ with suppressed tilt angles less than 12◦ at all
electrode positions, indicating that the transmittance
is maximised over whole position and the LC direc-
tor rotates mainly in plane. As a result, the FIS
device also exhibits wide viewing angle like in the FFS
device.

Finally, voltage-dependent transmittance curves
between IPS, FIS and FFS devices are compared, as
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Figure 6. LC director profiles of the FIS device at five dif-
ferent positions A, B, C, D and E: (a) twist and (b) tilt angles
in a white state.

shown in Figure 7, where w is 3.0 µm and the distance
between electrodes is 6.0 µm with retardation values
0.32, 0.34 and 0.36 µm, respectively. The cell gap and
physical properties of LC is the same as those men-
tioned above. In the FIS device, transmittance is higher
and operating voltage is lower than FFS and IPS
devices. The maximum transmittances of FIS, FFS
and IPS devices are 0.90, 0.88 and 0.83, and driving
voltages are 3.1, 4.5 and 5.7 V, respectively, indicating
high transmittance as well as low operating voltage,
can be achieved in the FIS device.
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Figure 7. Comparison of voltage-dependent transmittance
curves in FIS, FFS and IPS devices.
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Figure 8. Transmittance and operation voltage as a function
of cell gap in (a) FFS and (b) FIS devices.

On the other hand, the transmittance and operat-
ing voltage of the FFS device generally decrease and
increase as the cell gap decreases. Figure 8 shows max-
imum transmittance and operating voltage as a func-
tion of cell gap in the FFS and FIS mode. In the FFS
mode, as the cell gap decreases from 4 to 3 µm and
to 2 µm, the operating voltage increases from 4.6 to
4.8 V and to 5.9 V, and the transmittance decreases
from 0.86 to 0.80 and to 0.67, respectively. However,
in the FIS device, the operating voltage also increases
from 3.1 to 5.3 V and the normalised transmittance
decreases from 0.90 to 0.77 with decreasing the cell
gap from 4 to 2 µm, but the dropping ratio of
transmittance is much lower in the FIS than in the FFS
device. Consequently, the FIS device has advantages in
electro-optic performances over the FFS mode even in
low cell gap cell for achieving fast response times.

One disadvantage of the FIS device is that it might
need two transistors to apply different level of sig-
nals to each pixel electrode, which results in reduction
of an aperture ratio. The advantages of the device in
improved transmittance and reduced operating volt-
age need to be compared with disadvantage in real
fabrication.

4. Summary

We have studied electro-optic performances of the
device, which utilises fringe and in-plane field using

a –LC and compared with conventional IPS and FFS
devices. Electrode structure and cell retardation that
exhibit maximal transmittance and optimal operating
voltage have been achieved. The optimised device can
show higher transmittance and lower operating volt-
age than those of the FFS mode, which might open
low power consumption LC device while keeping wide
viewing angle.
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