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In general, light propagating an inhomogeneous liquid crystal (LC) cell can be modeled as ‘bundle rays’ because the
LC cell consists of many birefringence layers. In order to calculate the optical path of the propagating light in the
inhomogeneous LC cell, we multidimensionally calculated the wavevector, k, and the Poynting vector, S, of an ordinary
and an extraordinary ray at LC grid interfaces, which are isotropic to a uniaxial medium and a uniaxial-to-uniaxial
medium, by using the phase matching method. Furthermore, we also investigated the transmission coefficients and
transmittance of the ordinary and the extraordinary rays as a function of difference of the optical axes of the facing
birefringence medium at the interface to obtain the significant rays in the LC cell. Finally, we could calculate the exact
path of the significant rays in the inhomogeneous LC cell, and compared the ray path in an electrically controlled
birefringence (ECB) mode and a twisted nematic (TN) LC mode.
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1. Introduction

Liquid crystals (LCs) have been used in many optical
applications such as polarizers, optical filters, and espe-
cially display devices [1–4]. The development of optical
technologies using LCs has so far focused on calculating
the phase and transmittance of the light in the
birefringence layer and at the interface of each material.
However, current studies on LCs require ray tracing in
each LC layer and at the interface of the LC cell because
the latter is currently being developed for use as a ray
path-controlling device, such as a tunable lens. There-
fore, exact calculation of ray path, in addition to the
calculation of the transmission coefficients of the ordin-
ary and the extraordinary waves of the light passing
through the LC cell, has become more important.

In order to calculate the ray path of the light in the
LC cell, we first need to check the characteristics of the
inhomogeneously aligned LC cell. In general, we can
model the LC cell, which consists of many birefringence
layers whose orientations of directors are changed
continuously between neighboring directors in polar and
azimuth directions, as being between two isotropic sub-
strates. Therefore, the exact ray position of the light after
passing through the LC cell can be obtained after several
important calculations, i.e. refraction and reflection at the
interface between isotropic and uniaxial birefringence

layers, and between inhomogeneous uniaxial-to-uniaxial
layers. Moreover, in the case of the LC cell, the ray
tracing may be more complicated because the ordinary
and extraordinary rays are liable to become bundle rays
during passage through the multidimensional structure of
the multiple birefringence layers in the cell. Therefore,
the calculation of the refraction property as a function of
the difference of the director orientation between the
neighboring LC molecules is important for simple and
exact calculation.

Ray tracing at interfaces between isotropic and
uniaxial layers has been studied previously by using
several methods, such as Maxwell’s equation [5–7],
Huygen’s principle [8–10], and the phase matching con-
dition [1,11]. The ray path at a uniaxial–uniaxial mate-
rial interface has also been studied previously [12,13].
However, the methods used gave the solution for the
extraordinary ray at only a single interface without
change of azimuth orientation of the optical axis. A
recent study tried to solve the ray tracing in an arbitrary
orientational interface by using Huygen’s principle [10].
However, this study also handled only a single interface
in the z-direction and it did not calculate the transmis-
sion coefficient, so we need to consider the significant
rays among the bundle rays in the LC cell for simple
and exact calculation.
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In this paper, we have calculated the path and
transmission coefficient of the light passing through a
multidimensional inhomogeneous LC cell by using phase
matching methods. We assumed that the LC cell
comprises multiple stacked birefringence layers between
two glass substrates. The phase matching in birefringence-
to-birefringence interfaces was completed at the z-axis
and y-axis in each grid in the LC cell. After calculation of
the Poynting vectors of the ordinary and extraordinary
rays on the z-axis interface, we checked if the rays in
the grid meet the y-axis interface on the grid. In the
case where the ray met the y-axis interface, we could
deduce the Poynting vectors of two rays by using the
dielectric tensor rotation method. We also calculated
the transmission coefficients of the light as a function of
the difference angles of the orientation director at each
interface so that we could obtain significant rays in the LC
cell. The LC cell of today has become an important optical
device. Therefore, a study regarding this precise calcula-
tion for the ray path and the transmission coefficient could
make the LC cell become a more-important optical
component.

2. Calculation of the path and the transmission
coefficient of the light at multidimensional interfaces
in LC molecules

In general, the LC cell has two multidimensional
interfaces, which are an isotropic–uniaxial (I-U) medium,
corresponding to glass substrate to LC molecules, and a
uniaxial–uniaxial (U-U) medium, corresponding to LC
molecules to LC molecules. Figure 1 shows the relation
of the incident and output wavevectors, k, at two inter-
faces at the z-axis interface, which are an I-U medium
and a U-U medium. In order to obtain the ray path in
the medium, we first need to calculate the Poynting
vectors of eigenrays in the media.

In anisotropic media such as LC layers, the electric
field, E, is not parallel to the dielectric displacement
vector, D, caused by the dielectric tensor, ε. So, the
relation between D and E can be expressed as D = εE,
and the dielectric tensor, ε, in anisotropic media can be
represented in an xyz-coordinate system as:

ee ¼ Rðh;/ÞeRðh;/Þ�1 ¼
exx exy exz
eyx eyy eyz
ezx ezy ezz

0
@

1
A (1)

Rðh;/Þ ¼
cos/ cos h sin/ sin h sin/
� sin/ cos h cos/ sin h cos/

0 � sin h cos h

0
@

1
A

where R(θ, ϕ) is a rotational matrix and the polar angle,
θ, and azimuth angle, ϕ, define the direction of the
optical axis of the LC directors. We use the coordinate

rotation matrix at the y–z plane to solve the tensor ε
because we assume inhomogeneous alignment of the LC
layer along the y–z plane on each layer.

In general, the incident light is divided into
extraordinary (e) and ordinary (o) waves by birefringence
characteristics in the LC cell. The ray path of an o-wave
can be easily calculated using Snell’s law, as in an
isotropic medium. In the case of an e-wave, however, it
does not obey Snell’s law, so we need to solve the wave
equation for calculating the wavevector, k, at each
interface. Then ray path vector, which means the
Poynting vector, S, can be obtained as [1]:

S ¼ ðsin heŷþ cos heẑÞ sinðcþ aÞ
sinðcÞ � ðsin h cos/ŷþ cos hẑÞ

(2)

where θe is the angle between the vector ke and the
z-direction, and the γ is the angle between the optical

Figure 1. Illustration of directions of the incident and output
wavevectors, k, at the z-axis interface: (a) an isotropic–uniaxial
medium and (b) a uniaxial–uniaxial medium.
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axis of the LC cell and ke. The value of γ can be calcu-
lated using the equation cos−1(sin θ cos ϕ sin θe + cos θ
cos θe). After finding the angle θe, therefore, the vector S
can be obtained by calculating the angle γ and a
dispersion angle α, which is a difference angle between
the e-wave vector ke and vector S, and θe.

In this paper, we used the phase matching method
for calculating the angle θe at two interfaces between I-U
birefringence medium and inhomogeneous U-U medium,
respectively, as shown in Figure 1(a) and 1(b).

At an I-U interface, the angle θe is easily found from
the relation between ky and kez as

he ¼ tan�1 ky
kez

� �
(3)

As shown in Figure 1(a), the vector ky is simply calcu-
lated at an I-U interface using the equation n(sin θi),
which is the relationship between the refractive index (n)
in isotropic media and an incident angle (θi) of the
incident light. The vector kez is calculated by using the
wave equation that is induced by Maxwell’s equation.
The wave equation can be simply expressed as two
quadratic equations:

ðk2z � eo þ k2y ÞðAk2z þ 2Bkz þ CÞ ¼ 0 (4)

where A = εzz, B = kyεyz, and C = εyyky
2 − εoεe, with

εyy, εyz, and εzz given by Equation (1), and εo and εe are
squares of the extraordinary (ne) and ordinary refractive
index (no), respectively. The four nontrivial solutions of
the vector kz correspond to transmitted and reflected
propagating extraordinary and ordinary waves in the LC
cell. Here, two calculated value of the propagating vec-
tor kz can be defined as koz = (εo − ky

2)1/2 for the
ordinary waves and kez = [−B + (B2 − AC)1/2]/A for
the e-waves.

In the case of the U-U interface in Figure 1(b), the
refractive index at the interface is changed depending on
the incident angle. Therefore, the effective refractive
index (neff) in uniaxial medium 2 of Figure 1(b) can be
defined as a function of incident angle for calculating of
the vector ky. The neff in uniaxial medium 2 can be
calculated using the following equation [11]:

neff ðh;/Þ
¼ nenoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2o � ðn2o þ n2eÞðsin h cos/ sin he þ cos h cos heÞ2
q ;

ky ¼ neff ðh;/Þ sin he ð5Þ
Finally, we can obtain the angles θee and θoe in
Figure 1(b) as

hee ¼ tan�1 ky
keez

� �
; hoe ¼ tan�1 ky

koez

� �
(6)

Using the calculated θe, the dispersion angle α in the
incident plane, which is correlated by vector ke and the
optical axis in the LC cell, can finally be found using

a ¼ tan�1 ðee � eoÞ tan c
ee þ eo tan2 c

� �
(7)

From the calculated value of the angle α and the angle γ,
we can calculate the Poynting vector S of an e-wave in
anisotropic media.

The Poynting vector, S, of an e-wave at the y-axis
interface can be simply obtained by the dielectric tensor
rotation method. Figure 2 shows the relation of the
incident and output wavevectors, k, at two interfaces at
the y-axis interface. In Figure 2, kee′ and koe′ represent,
respectively, the 90° rotated wavevectors from the vector
kee and the vector koe at the y-axis interface. Also, θee′
and θoe′ in Figure 2 represent the angles between the
vector kee′ and the z-direction, and the vector koe′ and
the z-direction. Therefore, the angles θee′ and θoe′ can be
obtained by using 90°-rotation values of the dielectric
tensor as

ee ¼ RðhrÞRðh;/ÞeRðh;/Þ�1RðhrÞ�1 (8)

where R(θr) represents the electric tensor rotation matrix
and rotation angle θr is defined as 90° due to orthogonal-
ity between the y-axis and z-axis. After finding the
angles θee′ and θoe′, we can simply calculate the angles
θee and θoe at the y-axis interface by rotating 90°.

In this method, Equation (6) for the z-axis interface
can also be used at the y-axis interface without any
change of equations because the only optical axes in
anisotropic media are rotated, so that simple and exact
calculation of the Poynting vector is possible. The
dielectric tensor rotation method can be applied for

Figure 2. Illustration of rotated direction of incident and
output wavevectors, k, at the y-axis interface for dielectric
tensor rotation.
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multidimensional ray tracing in anisotropic media and,
thus, we can perform the ray tracing in all LC cells as
multiple stacked birefringence layers by applying this
method.

Transmittance of the ray at each interface can be also
obtained by calculating transmission coefficients of the
wavevectors ko and ke. In order to calculate the
transmission coefficients of non-polarized light, we
divided the incident light into an s-wave and p-wave,
respectively. Figure 3 shows general ray paths of the
s-wave and p-wave passing through two layers with the
difference angle (ϕ1) of the orientation director with
polar angle 45° in anisotropic media at normal incidence.
The transmission coefficient of the rays at a uniaxial–
uniaxial interface can be obtained by solving the wave
equation, so the transmission coefficient of the rays in
Figure 3 can be described as

te e ¼ Epe1 � Epe2
2neff e cos he

neff e cos he þ neff ee cos hee
(9)

te o ¼ Epe1 � Epo2
2neff e cos he

neff e cos he þ neo cos heo
(10)

to e ¼ Eso1 � Ese2
2no cos ho

no cos hoe þ neff oe cos ho
(11)

to o ¼ Eso1 � Eso2
2no cos ho

no cos hoo þ noo cos ho
(12)

where Epe1 and Eso1 represent the electric field € of
e-wave and of o-wave in the first uniaxial layer, and

Epe2, Epo2, Ese2, and Eso2 represent the E field of
ee-wave, eo-wave, oe-wave, and oo-wave in the second
uniaxial layer.

Figure 4 shows the calculated transmission coeffi-
cients and transmittance of the propagated rays kee, keo,
koe, and koo as a function of the optical angle difference
between two birefringence layers. In Figure 4(a), the
e-wave ke in the first layer is divided into two
eigenwaves, keo and kee, in the second layer. However,
the very small optical angle between the two birefrin-
gence layers can allow the keo to be ignored Therefore,
in the case of a continuous change of the optical axis for
many birefringence layers, such as in the LC cell, its
removal from the calculation can make sense. The
o-wave ko in the first layer also is divided into two
eigenwaves, koo and koe, in the second layer. koe can be
also ignored if the optical angle between two
birefringence layers is very small. Figure 4(b) shows the
calculated transmittance, t, which is (s2 + p2)1/2 from
Figure 4(a).

Figure 3. General ray paths of the s-wave and the p-wave
passing through two layers with difference angle (ϕ1) of the
orientation director with polar angle 45° in anisotropic media at
normal incidence.

Figure 4. (a) The calculated transmission coefficients at
interface between first uniaxial and second uniaxial medium,
and (b) the calculated transmittance of the propagated rays kee,
keo, koe, and koo as a function of the optical angle difference
between two birefringence layers.

260 S.-H. Youn et al.

D
ow

nl
oa

de
d 

by
 [

D
on

g-
A

 U
ni

ve
rs

ity
] 

at
 2

2:
35

 2
6 

Fe
br

ua
ry

 2
01

4 



3. Calculation of the ray path in a LC cell

As we predicted in the ray tracing calculation, the output
ray may become a bundle ray after passing through the
LC cell. Therefore, we meet a very complex situation for
complete calculation of all rays. However, the LC cell
can be considered as an optical stack consisting of many
birefringence layers and has continuous change of the
optical axis between neighboring molecules. For exam-
ple, a 10 µm cell gap of a twisted nematic (TN) LC cell
may contain several thousands of birefringence layers
because the LC molecular dimension, normally, is not
more than 100 nm. Therefore, we can assume that the
difference between the optical axes of the LC molecules
never exceeds 0.1°. In this calculation, we can obviously
ignore the koe and keo in the next layer, so that
calculation of the wavevectors kee and koo is sufficient
for calculation of the significant rays in the LC cell.

From the above approach, we calculated the ray
paths of the LC (Merck, MAT-10-566, Δn = 0.2276,
no = 1.5219, ne = 1.7495, Δε = 6.6) cell in an electrically
controlled birefringence (ECB) mode (ϕ = 0°) and a TN
LC mode (ϕ = 90°). Figure 5(a) shows the LC cell

structure. The width between electrodes on the bottom
substrate is 60 µm and the electrode width is 20 µm. The
thickness of the LC layer is 30 µm. Figure 5(b)–(c)
shows the calculated LC director profile of the ECB and
TN modes at 8 V. By calculating the director profiles in
each gird, we can also calculate the ray path in each
grid.

Figure 6(a)–(b) shows the calculated ray path in the
ECB mode and the TN mode. In Figure 6(a), the solid
lines, which represent the extraordinary rays, are
gathering by propagating in the LC layers because of the
symmetrical alignment of the LC director along the
y-axis. It can be observed that the ray path in the ECB
mode always stays on the y-axis because the azimuth
angle ϕ is 0°. The ordinary ray will propagate straightly
in the cell because of the isotropic properties of the
ordinary medium, and the dotted lines in Figure 6(a)
represent the ordinary ray in the LC cell. In contrast, the
TN LC cell has an azimuth change of the optical axis
along the z-axis so we can predict that incident rays do
not stay on the y-axis when propagating in the LC cell.

Figure 5. (a) The schematic cross section of the LC cell
structure for calculation of ray path, and the simulated director
profile at the y–z plane (b) in the ECB mode and (c) in TN LC
mode.

Figure 6. Ray path of the extraordinary and the ordinary
waves at normal incidence: (a) in the ECB mode and (b) in TN
LC mode.

Journal of Modern Optics 261

D
ow

nl
oa

de
d 

by
 [

D
on

g-
A

 U
ni

ve
rs

ity
] 

at
 2

2:
35

 2
6 

Fe
br

ua
ry

 2
01

4 



Figure 6(b) shows the ray path in the TN LC cell. Solid
lines represent the ray paths of the extraordinary rays
and it can be observed that the rays move not only to
the y-axis, but also to the x-axis because of the azimuth
angle ϕ when propagating in the TN LC cell. Dotted
lines in Figure 6(b) also represent the ordinary rays in
the TN LC cell.

4. Conclusion

In this paper, we have calculated the optical path of
propagating light in an inhomogeneously aligned LC
cell. In order to calculate the inhomogeneous LC layer,
we solved the k vector and the Poynting vectors S of an
ordinary and an extraordinary ray at the multidimen-
sional interface of birefringence layers with arbitrary
aligned optical axes by using the phase matching
method. We also investigated the transmission coeffi-
cients of the propagating rays in the cell in order to
confirm the significant rays in the LC cell. As a result,
we could confirm the significant rays in each birefrin-
gence layer and could calculate the exact path of the
significant rays in the inhomogeneous LC cell. Calcu-
lated results were discussed by comparing the ray paths
in an ECB LC mode and in a TN LC cell.
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