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Adsorption and desorption of ions at interface between liquid crystal and alignment layer in liquid crystal displays
play a crucial role in residual direct current voltage associated with image sticking. In this article, the dependency
of such adsorption and desorption of ions on resistivity of alignment layer and sign of liquid crystal dielectric
anisotropy in the fringe-field liquid crystal cell has been investigated. Our studies show that the time constant of
ions during adsorption and desorption depends upon resistivity and dielectric constant of liquid crystal and
alignment layer, and most strongly influenced by the resistivity of alignment layer such that the one with lower
resistivity in two orders shows much faster adsorption and desorption at the interface than that of the one with
higher resistivity.
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1. Introduction

Nowadays, liquid crystal displays (LCDs) are domi-
nating flat panel display market owing to its great
improvements in image quality and product cost
although the standing level of LCDs is challenged
by organic light emitting diodes.[1] Many new liquid
crystal (LC) modes such as multidomain vertical
alignment (MVA),[2,3] in-plane switching (IPS),[4,5]
and fringe-field switching (FFS)[6–14] contribute to
the development of high image quality in LCDs. In
general, LCDs use a LC with its resistivity higher
than 1013 Ω cm for a high voltage holding ratio
because a signal voltage is given only for a time
period of 1/f where f is driving frequency of LCDs,
and it is sandwiched between alignment layers with
electrodes. Though the LC’s resistivity is still quite
high, the amount of ions is large enough to generate
noticeable residual direct current (DC) voltage if the
DC is applied to LC cell. In real thin-film transistor
(TFT)-LCD driving, a pure alternating current (AC)
cannot be applied at all grey scales. In the driving,
whenever a signal voltage is applied to a pixel via
TFT, there is a voltage drop in the pixel named
feedthrough voltage and is expressed as
ΔVp = CgsΔVg/[Cgs + Cs + Clc(V)], where Cgs is the
gate-data parasitic capacitance of a TFT, Cs and Clc

represent the storage and LC capacitance, respec-
tively; and Vg denotes the gate voltage.[15] Clc is
voltage-dependent so that ΔVp is not a constant

value during displaying different grey scales.
Consequently the driving method in TFT-LCDs ren-
ders common voltage (Vcom) difference depending on
grey scales and a single set of Vcom value impossible,
resulting in a net DC voltage applied to LC layer. As
a result, applied DC voltage will attract ions and the
accumulated ions at an interface between LC and
alignment layer form residual DC voltage, which
affects signal voltage applied to the LC layer, as
shown in Figure 1.[16–19]

In this work, the dependence of adsorption and
desorption of ions on the resistivity of alignment layer
and dielectric anisotropy of LC in FFS cell under DC
electric field have been investigated.

2. Ion absorption in the FFS mode

In the FFS mode, the pixel and common electrode
exist with passivation layer with a thickness about
0.4 μm between them.[20] With such an electrode
structure, fringe-electric fields are generated, in
which the non-uniform electric field will influence on
the adsorption process of ions.[21] In the FFS mode,
when a 0.2 V DC is applied to the device, the field
intensity that LC layer near electrode surface at the
edge of pixel electrode experiences can be high as
0.5 V/μm (0.2 V/0.4 μm); whereas it is only
0.05 V/μm for a vertical field-driven twisted nematic
(TN) cell with a cell gap of 4 μm. Therefore, whenever
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DC voltage exists during driving, a probability for
ions to be accumulated at the interface between LC
and alignment layer in the FFS device is much higher
than that in a TN mode although the adsorption level
of ions is expected to be electrode position-dependent
due to fringe-electric field.

In the FFS cell, the electric field lines developed
across the alignment and LC layers so that they
would work as a load resistance between electrodes.
Typically the voltage drop across any load depends
upon the resistivity of the material. The voltage devel-
oped across the alignment layer causes the accumula-
tion of ions on the surface of the electrode and gives
rise to an unwanted residual DC voltage on surface of
alignment layer. In view of this we investigated
adsorbing and desorbing of ions depending on the
resistivity (ρAL) of an alignment layer and sign of
dielectric anisotropy in the FFS cell.

3. Experimental

In order to understand movement of ions in the LC
cell and quantify residual DC voltage formed by ions,
the following experiments are performed. Two differ-
ent types of LC with positive (+LC) and negative
(−LC) dielectric anisotropy has been tested. The

+LC has Δε = 8.9, whereas −LC has Δε = −4.1. The
specific resistivity (ρLC) of +LC and −LC were
1.9 × 1014 and 1.3 × 1013 Ω cm, respectively. For
alignment layers, two different polyimides (PIs) with
resistivity of 1013 and 1015 Ω cm were employed. The
thickness of both PIs was 1000 Å. Since residual DC
voltage usually causes observable transmittance dif-
ference between positive and negative frames (known
as flicker effect), the flicker is observed and minimized
through changing the Vcom offset. Finally, the ampli-
tude of Vcom shift is defined as the residual DC
formed by ions.[22,23]

4. Results and discussion

In order to observe accumulation of ions, DC vol-
tages with three different amplitudes, 0.1, 1.0 and
1.6 V are applied to the FFS cells. In the FFS cell,
because of its unique electrode structure, the fringe
electric field that has both horizontal and vertical
field components is generated with bias voltage, and
its field intensity is strongly electrode position-
dependent. The horizontal field intensity that is
responsible for lateral movement of ions is maximal
near edge of signal electrodes and minimal at
the centre of signal and common electrodes.

Ion

Alignment layer

Passivation layer

Common electrode

Pixel electrode

(a)

(b)

Figure 1. (colour online) (a) Cross-sectional view of FFS cell with ions in LC layer and (b) accumulated ions at an interface
between LC and an alignment layer. The ions form electric field (red arrow) themselves opposite to the applied DC field (black
arrow).
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Consequently the accumulated ions should also be
electrode position-dependent. We have applied a DC
voltage of 1.0 V for 40 min to the cell and observed
changes in transmittance as a function of time using
polarized optical microscopy (POM). As clearly
shown in Figure 2(a), the light leakage in a dark
state is generated due to the accumulation of ions,
and the level of the light leakage depends on electrode
position such that the light leakage near edge of pixel
electrode is the highest, indicating the level of ion
accumulation is proportional to the horizontal field
intensity. In addition, the light leakage increases with
increasing time, indicating that the amount of accu-
mulated ions increases as time evolves.

The amount of accumulated ions as a function of
times is quantified as a residual DC by applying three
different DC voltages to each cell. As shown in
Figure 3(a), when a DC voltage of 0.1 V is applied,
the cell with PI resistivity of 1013 Ω cm (low PI)
exhibits residual DC of 0.1 V after 90 min for both
LCs with positive and negative dielectric anisotropy.
Interestingly, when resistivity of PI is 1015 Ω cm (high
PI), residual DC voltage of 0.1 V is observed after
260 min, indicating clearly that the adsorbing time of
ions at the interface is strongly dependent on the
resistivity of PIs. Nevertheless, the maximum ampli-
tude of residual DC is 0.1 V when the applied DC is
0.1 V. Now when the applied DC is 1.0 V, the
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Figure 2. (colour online) (a) POM image in a dark state after DC of 1.0 V stressing for 40 min and (b) light leakages in a dark
state as a function of times after applying DC of 1.0 V.
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Figure 3. (colour online) Measured residual DC voltage as a function of time by applying DC voltage (a) 0.1 V, (b) 1.0 V and
(c) 1.6 V. The solid lines are fitting lines with Equation (3).
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maximal residual DC voltage measured was 1.0 V as
shown in Figure 3(b). The adsorbing behaviour of the
ions was the same in both the cases of applied DC
voltages. However, the adsorbing time to reach 1.0 V
takes 300 min for low PI and 1000 min for high PI.
Even when a DC 1.6 V is applied, the adsorbing
behaviour of ions shows similar behaviour as shown
in Figure 3(c) and the only difference observed in all
the three cases of applied voltages is that the adsorb-
ing time taken by the ions to be charged to the same
level of applied DC increases with increase in the
applied voltage.

In order to understand the adsorbing behaviour of
ions, a qualitative modelling to calculate time con-
stant is performed. According to Mizusaki et al., the
desorbing (or relaxation) process of adsorbed ions (or
ion density nd) within the open circuit after applying
DC voltage for a certain period time is given as
follows.[22]

nd tð Þ ¼ nd 0ð Þ exp � t

τd

� �
(1)

where nd(0) is the density of the adsorbed ions at an
initial state and τd is a time constant associated with
desorbing process. From Equation (1), one can expect
adsorbing process of ions (or adsorbed ion density na)
in LC layer is given by

na tð Þ ¼ nsat 1� exp � t

τa

� �� �
(2)

where nsat is the saturated ion density of the adsorbed
ions at an infinite time and τa is a time constant
associated with adsorbing process. Since ion density
is linearly proportional to residual DC voltage, ion
density can be replaced by residual DC voltage and
Equation (2) can be expressed as follows:

Vr tð Þ ¼ Vr1 1� exp � t

τa

� �� �
(3)

where Vr1 is a saturated residual DC voltage after an
infinite time. Through fitting the experimental data
using Equation (3), τa can be calculated in each case.
When the DC 0.1 V is applied, the calculated τas are
31.8, 18.4 and 86.6 min in +LC (low PI), −LC (low
PI) and −LC (high PI), respectively. In the FFS cell,
the electric field developed across the alignment and
LC layers so that the τa is associated with ρALεAL and
ρLCεLC. In first two cases, the same PI is used and the
only difference is ρLCεLC. Since the ρLCεLC of +LC
is larger than that of −LC, larger τa in the +LC than
in −LC can be explained. In the latter two cases, only

the ρAL of the alignment layer is different with two
orders of magnitude and thus more than about four
times of τa in the cell with high PI than that with low
PI is observed. When the DC 1.0 V is applied, the
calculated τas are 90.5, 84.6 and 306.4 min in +LC
(low PI), −LC (low PI) and −LC (high PI), respec-
tively. With further higher DC 1.6 V, the calculated
τas are 155.6, 110.9 and 734.8 min in +LC (low PI),
−LC (low PI) and −LC (high PI), respectively. The
results indicate that τa takes longer with higher applied
DC voltage, and one order higher ρε in the +LC than
that in the −LC causes τa to be longer but less than
twice and higher ρε in two order in the high PI than
that in the low PI results in τa to be longer by
about four times or more depending on applied DC
voltage.

From the measured data and the calculated time
constants for adsorption of ions, we can conclude that
(i) the higher a DC is applied, the larger amount of
ions can be accumulated, (ii) the adsorbing time of
ions at an interface between LC and alignment layer
is strongly dependent on ρε of materials so that two-
order difference in ρAL makes adsorbing time con-
stant few times longer, (iii) the dependence of sign of
dielectric anisotropy of LC on adsorbing time exists
only if ρε of LCs are different from each other; how-
ever its dependency on LC is much smaller than that
of PI, and (iv) the amount of ions in LC layer is large
enough to generate residual DC of 1.6 V.

The fast adsorbing time of ions implies that the
image sticking can be easily observed even with small
amount of DC applied and in terms of this viewpoint,
a cell with use of high PI is favoured for slow appear-
ance of image sticking. Nevertheless, the stressing
time to TFT-LCD for image sticking test is quite
long, in some cases about 24 hours and an expected
DC voltage during driving assumes to be less than
0.5 V, then the resistivity difference in the alignment
layer makes little difference.

In the LC cell, fast desorbing of accumulated
ions into LC layer is also very important for fast
disappearance of image sticking associated with
accumulated ions. Figure 4 describes desorbing
behaviour of the accumulated ions depending on
materials when residual DC voltages associated
with accumulated ions are 0.1 and 0.5 V. As clearly
shown in all cases, the cell with low PI shows much
faster desorbing than that with high PI, and the
desorbing time takes longer when an amount of
residual DC is large. In addition, the accumulated
ions were not fully desorbed for the cell with −LC
and high PI, indicating −LC that has a dipole
moment at lateral parts has a disadvantage in des-
orption in this combination of the alignment layer
tested and −LC. Overall it suggests that a cell with
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low PI is favoured for fast disappearance of image
sticking.

In order to analyse the data, a desorbing time
constant τd is calculated using a modified Equation
(1) as follows:

Vr tð Þ ¼ Vr 0ð Þ exp � t

τd

� �
þ Vr1 (4)

where Vr 0ð Þ is a residual DC voltage before starting
desorption and the residual DC voltage after an infi-
nite time Vr∞ is added for −LC because it is not fully
desorbed after a long time. The calculated τds are
27.3, 21.4, and 28.6 min for DC 0.1 V and 44.5,
30.8, and 69.7 min for DC 0.5 V in +LC (low PI),
−LC (low PI), and −LC (high PI), respectively. When
a desorption starts from ions with the small DC 0.1 V,
τd seems to be slightly longer in a proportion to ρε of
LC or ρε of PI. Unexpectedly, τds between +LC (low
PI) and −LC (high PI) seem to be about the same,
indicating that τd is not representing desorption beha-
viour clearly when a residual DC is very small like
0.1 V. However, the calculated Vr∞s are 0 V, 3 mV,
and 17 mV in +LC (low PI), −LC (low PI) and −LC
(high PI), respectively, that is, when considering des-
orbing process, not only τd but also Vr∞ needs to take
into account for understanding the ion relaxation
process. When a desorption starts from highly accu-
mulated ions with the DC 0.5 V, the dependency of τd
on ρε of LC and PI seems to be more pronounced
such that and τd is longer more than two times in −LC
(high PI) than in −LC (low PI) and also longer by
about 1.5 times in +LC (low PI) than −LC (high PI).
In this case, the calculated Vr∞s are 4 mV, 36 mV, and
370 mV in +LC (low PI), −LC (low PI), and −LC
(high PI), respectively, indicating that −LC with high
PI is not a good combination at all for fast desorption
of adsorbed ions.

5. Conclusion

The article investigates on accumulation of ions at an
interface between LC and alignment layer, and
relaxation process of the accumulated ions into LC
layer. Our studies report that adsorbing and deso-
rbing process of ions strongly depends on the product
of resistivity and dielectric constant of LC layer and
alignment layer that the fringe-field crosses and elec-
trical resistivity of the alignment layer with difference
in two orders mainly contributes to the ion move-
ment, and the alignment layer with its resistivity in
order of 1015 Ω cm is not favoured at all for fast
desorption of ions that are accumulated between LC
and alignment layer. The results are important for
understanding image sticking associated with ions in
IPS/FFS mode.
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