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A light scatter-free, transparent, thermally stable, optically isotropic liquid crystal mixture was achieved
among three different mixtures of liquid crystal E7: Norland Optical Adhesive 65 with concentrations
30:70, 40:60, and 50:50 wt%. The 50:50 wt% mixture exhibited the best performed optically isotropic
state when exposed to ultraviolet light of intensity 150 mW/cm? for droplet formation. The high
intensity ultraviolet light curing process induces nano-sized liquid crystal droplets in the polymer matrix
of average droplet size 218 nm, characterized by scanning electron microscope. The analyzed result
shows an excellent contrast ratio (CR) equal to 1574 at the normal direction and a high CR at a wide
viewing angle. The magnitude of Kerr constant in these nano-sized PDLC was ~7.36 x 10”1 mV—2
which was more than ~330 times that of a conventional Kerr material such as nitrobenzene.
Unprecedented fast rising and falling times of approximately 385 us and 1.1 ms, respectively, were
achieved for the device. This high-performance material also eliminated the long-term hurdle of

Keywords:
Liquid crystal
Kerr effect

hysteresis to make it a promising candidate for next-generation display and photonic technologies.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last 20 years, liquid crystal displays (LCDs) have been
very successful in flat panel display markets due to phenomenal
improvements in electro-optic (E-O) performance and reduction in
production costs. In addition, the size of LCDs range from small
mobile displays to large televisions helps to dominate it in the
display market [1]. Requirement of an alignment layer increases
the product cost and slows the response time of these displays.
Fast response time is essential for three-dimensional LCD applica-
tions and field sequential color displays using red (R), green (G),
and blue (B) light emitting diodes (LEDs) without noticeable color
breakup [2]. Sequential RGB colors would eliminate the commonly
used spatial color filters which in turn enhances light efficiency
and resolution density by ~3 x. Recent advancement of next-
generation LCDs with a fast response time [3]| and wide viewing
angle without an alignment layer have been reported based on an
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optically isotropic LC (OILC) mixture, especially the blue phase
liquid crystal (BPLC), which is optically isotropic in nature and
have sub-millisecond order grey-grey response time. However,
thermally stable polymer-stabilized blue phase (PSBP) suffers from
high operating voltage and hysteresis [4-5]. Another novel, paral-
lel approach for improving the response time without an align-
ment layer is to design nanostructured OILCs with polymer/LC
blends. Haseba et al. produced an OILC via in situ photo polymer-
ization by cross-linking monomers in the isotropic phase of a
chiral nematic LC [6]. Recently, nano-sized, polymer-dispersed LC
(PDLC) materials have been reported [7-8]. An ultraviolet (UV)-
curable monomer was mixed with a nematic liquid crystal and
cured under an appropriate intensity and wavelength of UV light.
Droplet size can be controlled by the polymerization kinetics i.e.
faster curing rate smaller liquid crystalline domains and vice versa
[9-10]. The droplet size also depends on the polymer content,
wherein increasing the polymer content domain size reduces
beyond the limit of Rayleigh optical scattering so that the
composites become optically isotropic [11]. The intent of this
report is to investigate nanostructured PDLC, which is completely
optically isotropic, scattering free and its E-O characteristics, such
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as voltage-dependent transmittance (V-T), hysteresis in V-T,
response time, and viewing angle, under a two-domain in-plane
switching (IPS) electrode [12-13].

2. Experimental

The precursors used for PDLC formation were a commercially-
available eutectic nematic liquid crystal mixture E7 (Merck), UV
light curable photopolymer (Norland Optical Adhesive 65, NOA-
65), and photo initiator (Irgacure-651). The phase sequence of the
E7 mixture was Crystalline —10 °C Nematic + 61 °C Isotropic. E7
has a birefringence (An)=0.217 and dielectric anisotropy (Ae)=
+14.4. Although three different mixtures with different concen-
trations of LC: NOA-65 were prepared, 30:70, 40:60, and 50: 50 wt
%, the 50:50 wt% mixture exhibited the best optically isotropic
state. The mixture was heated to approximately 70 °C, which was
sufficiently greater than the clearing temperature of E7, and then
injected into a sandwich-type, two-domain IPS glass cell with a
2.7 pm gap. The electrode width (w) and electrode distance
(1) were 3 pm and 7 pm, respectively. The cells were irradiated
with a 365-nm UV light source for 1 min. The UV light intensity
was optimized to produce the optimal OILC film. When the cell
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Fig. 1. Macroscopic images of the OILC cells under UV exposure. (a) High intensity
(150 mW/cm?) and (b) low intensity (100 mW/cm?). The cell exposed weaker UV
light shows noticeable light scattering such that the dark background looks sky-
blue. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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was exposed to an intensity of 150 mW/cm? for polymerization, it
exhibited a more transparent state compared to the cell exposed
to an intensity of 100 mW/cm?2.

3. Results and discussion

Fig. 1(a) shows the cell exposed to a UV light intensity of
150 mW/cm? for droplet formation. The cell was placed above the
“CBNU” phrase written on a dark paper. The cell showed a
relatively clear black background without light scattering com-
pared to the cell exposed to a UV light intensity of 100 mW/cm?
(Fig. 1(b)), which exhibits significant light scattering due to the
larger droplet, reducing the transparency of the cell. The Rayleigh-
Gans (RG) approximation for light scattering in PDLC system
assumes that light scattering is minimum if kD/2«1 for an incident
wavelength A, where k=2zn,/1 is the magnitude of the wave
vector of the incident radiation inside the polymer matrix, and D is
the diameter of the LC domain, [14]. Specifically, minimum
scattering can be achieved when D is much smaller than 4. This
model was appropriate for submicron-sized scattering particles
and accurately describes the scattering properties of very small
nematic droplets and small polymer crystallites. The average
scattering cross-section was also related to the droplet size within
the film via the following equation:.

DG

Gavg C 71 (1)

Our fabricated LC cell contains nano-sized droplets, so D is very
small and fourth power of D is very very small, for that reason light
scattering negligibly small. We have obtained excellent transparent
OILC film due to above mentioned reason and the picture is shown
in Fig. 1(a).

The textures of the cell were imaged using a polarizing optical
microscopy (POM) system fitted with a Nikon DXM1200 digital
camera. Temperature-dependent, electric field-induced optical
switching was observed under POM by placing the cell inside a
temperature controller (Linkam, TMS-94) and applying voltage
using a waveform generator (Tektronix, AFG3022) connected to an
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Fig. 2. Schematic diagram of the two-domain IPS cell. LCs are oriented randomly in nano-sized LC droplets in the “off” state (a), and LCs in the droplets reorient along the
field direction in the “on” state (b). Actual POM textures of the cells during the “off” and “on” states are shown in (c) and (d), respectively.
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Fig. 3. SEM image of the nano-sized polymer templates (a), histogram of droplet sizes (b), V-T graph (inset Any,y vs. E?) (c), and hysteresis graph (inset response time
graph) (d).
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Fig. 4. Iso-contrast ratio contour for different viewing angles of the nano-PDLC cell.

amplifier. The applied voltage was a square waveform with a
frequency of 1 kHz. As shown in Fig. 2(c), the POM image exhibited
a clear dark state as the cell was placed between crossed
polarizers. At a bias voltage of 100V, the cell exhibited an

excellent white state (as shown in Fig. 2(d)). Transmittance was
generated by induced birefringence associated with reorientation
of LC in the nanostructured polymer matrix, as schematically
explained in Fig. 2(a) and (b).
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After the polymer matrix was separated and dried, it was
sputtered with gold and observed under a scanning electron micro-
scope (SEM, JSM-6701F, JEOL, Japan). Fig. 3(a) shows the SEM image
of the droplets in a polymer matrix, and Fig. 3(b) shows the statistical
histogram of the size distribution. The average size, ~218 nm, was
extracted by fitting the distribution with a Gaussian function (blue
line). The result confirms nano-sized LC droplets much smaller than
that of the incident wavelength. The E-O characteristics of the cell
were also measured. Fig. 3(c) shows the V-T curve at room tempera-
ture, in which the transmittance increases with increasing amplitude
of the signal and tends to saturate at voltages greater than 80 V. The
quadratic E-O Kerr effect can be expressed by [15]:

Ajpg = AKE?, )

where An;,4 is the induced birefringence, 4 is the probe wavelength
(550 nm), and E is the electric field. The inset graph in Fig. 3(c) shows
the plot of An;,y with squared electric field (E?), and the magnitude of
K in these nano-sized PDLC was ~7.36 x 1071 mV~2, which was
more than ~330 times that of a conventional Kerr material such as
nitrobenzene, K=2.2 x 10~ 2 mV~2 [16]. Fig. 3(d) depicts a negligibly
small hysteresis, which may be due to a nano-sized nematic LC
droplet captured by the polymer matrix in droplets so that the LC
returned to their original position after the electric field was with-
drawn. In comparison to PSBP, which suffers from large hysteresis due
to electrostriction [17], this OILC system will be more advantageous
for a high-frame rate display device. The inset picture in Fig. 3
(d) shows the transmittance change with respect to time, from which
unprecedented fast rising and falling times of approximately 385 ps
and 1.1 ms, respectively, were extracted. Fig. 4 shows the viewing
angle characteristics of the nano-PDLC cell, and the viewing angle was
evaluated by plotting the iso-contrast contour at A=550 nm using
LCD-1000S (Otsuka electronics, Japan). The analyzed result shows an
excellent contrast ratio (CR) equal to 1574 at the normal direction and
a high CR at a wide viewing angle too. It is worthy to mention that CR
was greater than 10 even at 170° in the vertical and horizontal
directions. This excellent CR is due to the minimum dark level of
~0.00081, which is remarkable.

The switching temperature range was confirmed by observing the
textures under POM at 100 V. Fig. 5 indicates proper switching has
occurred even up to 54°C, a few degrees below the clearing
temperature. This robust thermal stability is highly desirable for
display and photonic applications which is a drawback for OILC like BP.
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Fig. 5. Temperature-dependent POM image of the OILC cell in the presence of an electric field.
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4. Conclusions

An LCD device with fast response time, high contrast ratio,
small hysteresis, wide viewing angle, and wide temperature range
was developed using nanostructured PDLCs. Electro-optics of
nano-sized PDLC in two domain IPS cell is unique concept with
respect to high CR and wide viewing angle display devices. Very
small hysteresis of the mixture is very interesting and can remove
motion blur for fast response display devices. The proposed OILC
mixture and device are expected to be applicable to light-
modulated display and photonic devices.
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