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field switching (FFS) mode that uses liquid crystals (LCs) with negative dielectric
anisotropy is used in high-resolution FFS liquid crystal display owing to its higher transmittance over pos-
itive LC, although its response time becomes slow and operating voltage (Vop) becomes high. In the de-
vice, reduction of the cell gap is required to achieve fast response time, which results in increase in Vop
in general. In this paper, we propose the FFS mode with electrode width 1 μm and distance between
the electrodes 1.5 μm. In such an electrode structure, Vop decreases with decreasing cell gap to 2 μm
so that a proper Vop, high LC’s light efficiency of 90%, a high color temperature, and a fast response time
less than 10ms, can be achieved, which maximizes electro-optic performance of the FFS mode.
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1 Introduction

Nowadays, the fringe-field switching (FFS) mode1–13 is being
widely used in liquid crystal displays (LCDs) for high perfor-
mance, owing to its unique characteristics such as wide viewing
angle, high transmittance, low operating voltage, and suitability
to touch screen display. In the FFS mode, a LC with positive
dielectric anisotropy (+LC) has been mainly used for a long
time since 2000. Recently, the resolution of LCDs becomes
higher and higher reaching over 400ppi in mobiles, and then,
a LC with negative dielectric anisotropy (�LC) showing higher
light efficiency than that of +LC becomes attractive for low
power consumption LCDs and then commercialized.14–17

A �LC has a polar head perpendicular to the long axis of an
LC molecule to induce a large perpendicular component of a
dielectric constant. As a result, it has a limitation in increasing
magnitude of dielectric anisotropy (Δε), and at the same time,
the hindrance of rotation in �LC molecule results in a higher
rotational viscosity (γ) generally larger than 100mPas while γ of
+LC is less than that, in general. In addition, LCmolecules rotate
mainly in plane in the FFS device with�LC, and thus, threshold
voltage (Vth) is inversely proportional to a cell gap (d) and so does
an operating voltage (Vop).

8,18 Consequently, the use of �LC in
the FFS mode results in relatively higher Vop because Vop~1/d
(K22/Δε)1/2 where K22 is twist elastic constant of LC and also
slower response time than those of the FFS mode with +LC
because it is mainly proportional to γd2/K22. Therefore, lowering
a d less than 3μm is required to obtain a faster response time;
however, such an approach results in a decrease in a transmit-
tance (LC’s light efficiency) as well as an increase in Vop.
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In this paper, we propose a solution that maximizes trans-
mittance and makes the response time fast in the FFS mode
with �LC, while keeping a proper Vop. We find that when
an electrode is finely patterned such that electrode width is
1μm and distance between the electrodes is about 1.5μm,
the Vop decreases with decreasing d, contradicting a conven-
tional concept of Vop~1/d, so that electro-optics of the FFS
mode with �LC is improved while keeping a proper Vop.
2 Switching principle of FFS mode and
simulation conditions

In the FFS mode using �LC, the LCs are homogeneously
aligned with an optic axis coincident with one of the crossed
polarizers so that the cell appears to be black in an absence
of an electric field. With bias voltage above Frederick’s transi-
tion, the normalized transmittance starts to appear, approxi-
mately following an equation given in the succeeding text:7
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where ψeff is an effective voltage-dependent angle between
one of the transmittance axes of the crossed polarizers and the
LC director, Δneff is the voltage-dependent effective birefrin-
gence of the LC medium, and λ is the wavelength of an incident
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light. The first and the second terms in Eqn. (1) are associated
with light modulation of phase retardation and polarization rota-
tion, respectively, and A and B are constants associated with
weighting factor of transmittance ratio.

Considering the conventional electrode structure, a com-
mon electrode in a plane sheet is located below the slit-shaped
pixel electrodes and a passivation layer exists in between the
pixel and common electrodes, as shown in Fig. 1. Here, each
pixel electrode has a width (w), and it is separated by distance
(l). With a bias voltage, a fringe-electric field with both horizon-
tal (Ey) and vertical (Ez) components is generated. In the FFS
mode, the intensity of Ey is oscillating periodically such that it is
the highest between edges of pixel and common electrode and
zero at the center of pixel electrode and the center of inter-
pixel electrodes, resulting in different levels of rotating angle
of LC director at different electrode positions because of dif-
ferent dielectric torques (~ΔεEy

2). The LCs in the region
where Ey is zero and only Ez exists above the center of pixel
electrodes and in the middle between patterned slit-shaped
electrodes are rotated by elastic torques between neighboring
molecules such that the smaller the patterned electrode width,
the region becomes smaller, resulting in a higher transmittance.

In order to test what we expect, three sets of (w, l) in μm
(3, 4.5), (2, 3), and (1, 1.5) have been evaluated, and passiv-
FIGURE 1 — Cross-sectional view of the FFS ce
transmittance, and LC director profile in the volta

FIGURE 2 — Cell gap-dependent transmittance along
and l = 4.5 μm and (b) w = 1 μm and l = 1.5 μm.
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ation layer thickness is chosen to be 0.29μm. The �LC with
physical properties (Δε=�4.1, K11=14.5 pN, K22=7.25 pN,
K33=15.1 pN, γ=100mPa s) has been used, and the strong
anchoring of the LC to the surface has been set as a boundary
condition for the simulation. The surface pretilt angle at both
surfaces is 1°, and the initial LC director is aligned to 10° with
respect to Ey. The birefringence of the LC is tuned to yield a
cell retardation value of 0.36 at 550 nm because it gives rise to
maximal light efficiency while the d is varied from 4 to 2μm.
To investigate the electro-optic characteristics of the device,
we performed a simulation using a “LCD Master” (Shintech,
Japan) where the motion of the LC director is calculated
based on the Eriksen–Leslie theory19 and 2×2 Jones matrix
is applied for an optical transmittance calculation.20
3 Results and discussion

Figure 2 shows transmittance profile along electrode positions.
In this case, the ratio l/w is kept to be 1.5. As indicated, when
w=3μm, the transmittance above the center of pixel and
counter electrodes and also at both edges of pixel electrodes
decreases rapidly as the d is reduced from 4 to 2μm, resulting
ll with electrode structures, field direction,
ge-on state at w = 1 μm and l = 1.5 μm.

electrode positions in the FFS cells: (a)w = 3 μm



FIGURE 4 — Field distribution of the horizontal field intensity along the
horizontal axis at z/d = 0.1 and 0.5 when w = 1.0 μm and l = 1.5 μm at dif-
ferent cell gaps: (a) d = 2 μm, (b) d = 3 μm, and (c) d = 4 μm.
in overall light efficiency of LC of about 0.74 at d=2μm
(more than 16% drop of transmittance compared with the cell
of d=4μm). Consequently, advantage of high transmittance of
the FFS mode with �LC disappears, as shown in Fig. 3. In
addition, the Vop increases from 4.8 to 5.5V. However, when
the w reduces to 1μm, the light efficiency of �LC keeps high
value of 0.90 (which is almost equal to the value of maximal
light efficiency that any LC device can perform) although the
d is reduced from 4 to 2μm. Interestingly, the Vop also de-
creases from 7.0 to 6.5 V when the d decreases from 4 to
2μm, indicating an abnormal relationship of Vop~d, contradic-
ting a conventional concept of Vop~1/d (Fig. 2). Nevertheless,
Vth increases from 1.9 to 2.1V when the d decreases from 4
to 2μm (not shown in Fig. 2), following a conventional concept
of Vth~1/d. In general, the reduction of the cell gap requires
higher electrical energy to rotate the LC director because
more LC is influenced by surface anchoring than LC–LC in-
teraction, resulting in the increase in Vth.

The origin of the decrease in the Vop when decreasing the d
in FFS mode with w=1μm and �LC is investigated. In order
to understand this, the Ey is calculated along the electrodes at
two vertical positions z/d=0.1 and 0.5 when 6.5V is applied to
all cases. We expect that, when w=1 μm, the field intensity is
more localized near bottom electrode surface than that with
w=3μm. As indicated in Fig. 4, when d is 4μm, a strong Ey

exists near the bottom substrate (z/d=0.1), but it decreases
rapidly to almost zero at z/d=0.5. However, when d=2μm,
the Ey still exists even at z/d=0.5 with intensity of 0.67V/μm,
and also, the intensity 5.6 V/μm of Ey at z/d=0.1 is much
stronger than that 2.8V/μm with d=4μm. Therefore, the in-
crease of Ey at z/d=0.1 compensates increases in elastic
energy of the LC cell with reduction of d, and the existence
of Ey at z/d=0.5 in d=2μm contributes to rotate the LC di-
rector in the middle layer, resulting in lower Vop in d=2μm
than that in d=4μm.

In the FFS mode,10 it was reported that the light modula-
tion is mainly dependent on polarization rotation in fine-
patterned FFS electrodes with w=1μm when using a +LC
with d=4μm. However, when the cell gap becomes very thin
like 2μm, the light modulation may not be associated with
polarization rotation only because most of LCs are strongly
anchored by both surfaces with homogenous alignment. In
order to understand the light modulation in a fine-patterned
FIGURE 3 — Average transmittance (light efficiency) and operating voltage as a function of cell gaps
in the FFS cells: (a) w = 3.0 μm and l = 4.5 μm and (b) w = 1.0 μm and l = 1.5 μm.
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FFS cell with �LC, twist angles of �LC in the white state are
calculated at two electrode positions: center and edge of a pixel
electrode, as shown in Fig. 5. When d=2μm, the maximal
twisted angle from the initial position is strongly dependent on
electrode position such that it is about 63° at z/d=0.2 for the
edge of the electrode and about 51° at z/d=0.3 for the center
of the electrode. In addition, the twisted angle from maximum
value in both positions is not decreasing linearly as it approaches
top substrate. From these director profiles, we can assume that
light modulation might be associated with polarization rotation
effect at the edge electrode position and phase retardation effect
at the center electrode position. When d is 4μm, a maximal
twisted angle of 67° occurs at z/d=0.1 at the edge electrode
position, and it is about 60° at z/d=0.2 even at center electrode
position. Unlike those with d=2 μm, the twisted angle reduces
FIGURE 5 — Director profiles of twist angle in the FF
(b) edge of electrode positions.

FIGURE 6 — Transmittance change at the center and
tation angles of the FFS cell in the white state under t
and (c) d = 4 μm. Here, the ratio of l/w is fixed to be 1
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linearly from the maximal value to the initial 10° as it approaches
top substrate. These larger twist angles and linear change in
twisted angles at all electrode positions in the cell with d=4μm
compared with the cell with d=2μm imply that the light
modulation in both electrode positions is mainly associated with
polarization rotation.

To confirm which effect plays a role in light modulation
along d in the proposed device, the transmittance is calculated
at 550nm, and once a maximal transmittance (white state) is
achieved, the FFS cell is rotated counterclockwise under the
crossed polarizers and the transmittance change at two
electrode positions (center and edge) is observed, as shown
in Fig. 6. The transmittance changes at both positions of pixel
electrodes show a repeating pattern of maximal and minimal
transmittance at every 45°. When d is 2μm, the minimal
S cells as a function of cell gaps at (a) center and

edge of pixel electrode as a function of the ro-
he crossed polarizers; (a) d = 2 μm, (b) d = 3 μm,
.5.



FIGURE 8 — Response times of the FFS cells with �LC as a function of
cell gaps when w = 1 μm and l = 1.5 μm.
transmittance at edge position is much higher than that at
center position in which the transmittance is almost extinct.
This means that the light modulation at the edge position is
close to polarization rotation effect whereas it is closer to
phase retardation effect at the center. When d is increased
to 3 and 4μm, the transmittance difference between mini-
mum and maximum in both positions is reduced. Especially,
when d is 4μm, the minimal transmittance still shows about
0.4 such that the extinction condition does not exist. There-
fore, we conclude that the light modulations in all positions
are close to polarization rotation at high d. However, the
average transmittances are almost unaffected by d when using
fine-patterned electrode structure because the transmittance
is already maximized to 0.90.

The color temperature of LCDs is also an important
parameter because it determines color coordinates of a white
state. In LC television, a color temperature over 10,000K
(bluish white) is required. Therefore, if LC mode itself shows
a high color temperature, it is advantageous.21 The color
temperature of the proposed device with different electrode
structures and cell gaps was calculated for 11 gray levels, as
shown in Fig. 7. Here, D65 is used as a light source. As clearly
indicated, the finer the electrode width, the color temperature
is slightly higher for all grays. In LC device, a device which
modulates a light with polarization rotation yields a less wave-
length dispersion of the transmittance than that modulating
with phase retardation. In the FFS mode, the optimal
retardation which gives rise to maximal transmittance is about
0.36μm for �LC, which is slightly higher than half-
wavelength plate. Therefore, if the light modulation of the
FFS cell is operated by phase retardation only, a yellowish
white state will be generated, yielding a low color temperature
below or close to 6500K. The finer the patterned electrode
width, the light modulation is associated with the polarization
rotation, and the results clearly indicate that the FFS cell with
finer electrode shows higher color temperature, and especially,
the color temperature becomes much higher over 7000K in all
grays when the d increases from 2 to 4μm, because the light
FIGURE 7 — Correlated color temperature in gray levels depending on
electrode structures and cell gaps. Here, the ratio of l/w is fixed to be 1.5.
modulation of the FFS cell with w=1μm and d=4 μm is
mainly associated with the polarization rotation.

Figure 8 shows calculated response times as a function
of d. Here, the response times for both 80 and 90% trans-
mittance change are considered, and back flow effect asso-
ciated with reorientation of LC director in tilt angles was
not taken into account. In case of 80% variation of the
transmittance, when the d is 4μm, the rising and decaying
times are 21 and 30ms, respectively. However, with low d
of 2μm, the rising time is decreased by about 76%, that
is, from 21 to 5ms and the decaying time is also decreased
by about 73%, that is, from 30 to 8ms, which is associated
with an increase in the electric field near the electrode sur-
face for rise time and reduced cell gap effect for decay time
when the d is reduced. (Here, back flow effect on operating
times was ignored).
4 Summary

We investigated FFS mode using �LC with finer electrode
pattern to achieve maximized transmittance. Our study can
contribute to development of high-performance and high-
resolution FFS LCD with negative LC, having maximized
LC’s light efficiency of 0.90, a high color temperature, and a
very fast either rise or decay response time of less than
10ms. The work will accelerate necessity of the fine pattern-
ing of electrodes in the FFS mode.
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