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A B S T R A C T   

Machine Learning (ML) is a powerful tool for big data analysis that shows substantial potential in the field of 
healthcare. Individual patient data can be inundative, but its value can be extracted by ML’s predictive power 
and ability to find trends. A great area of interest is early diagnosis and disease management strategies for 
cardiovascular disease (CVD), the leading cause of death in the world. Treatment is often inhibited by analysis 
delays, but rapid testing and determination can help improve frequency for real time monitoring. In this 
research, an ML algorithm was developed in conjunction with a flexible BNP sensor to create a quick diagnostic 
tool. The sensor was fabricated as an ion-selective field effect transistor (ISFET) in order to be able to quickly 
gather large amounts of electrical data from a sample. Artifical samples were tested to characterize the sensors 
using linear sweep voltammetry, and the resulting data was utilized as the initial training set for the ML algo
rithm, an implementation of quadratic discriminant analysis (QDA) written in MATLAB. Human blood serum 
samples from 30 University of Pittsburgh Medical Center (UPMC) patients were tested to evaluate the effective 
sorting power of the algorithm, yielding 95% power in addition to ultra fast data collection and determination.   

1. Introduction 

Recently there has been rapid progress in the biosensor field. This is 
due to the adaptation of existing nanofabrication techniques and infra
structure used for modern day electronics to help develop new bio
sensors with higher precision and more capabilities, including 
specificity and portability. Additionally, new methods for measuring 
analytes are being formed using novel materials and technologies like 
new conducting polymers and electrical sensing methodologies (Kim 
et al., 2006). Biosensors range in size from microscale to nanoscale and 
implement many different mechanisms in order to sense and transduce a 
measurable signal. These include mechanical cantilevers, chemical 
detection in food and air, and optical identification. Notably, particular 
advancements have been made into electrical sensing methodologies. 

Electrical-based biosensors are able to analyze biomarkers indirectly 

by measuring different electrical properties. Amperometry takes current 
time (chronoamperometry) or voltage (voltammetry), and potentiom
etry measures potential and conductivity changes (Chouteau et al., 
2004; Jaffrezic-Renault et al., 2008; Hnaien et al., 2009). Due to this 
flexibility, electrically operated sensors enjoy the most attention today 
for their wide array of sensing options. When coupled with small size, 
nano-scale electronic biosensors offer superior advantages, such as high 
sensitivity to targets, strong resolution for localized detection, compat
ibility with standard large-scale semiconductor processing (Qian et al., 
2010), and real-time and label-free detection in a nondestructive 
manner (Luo et al., 2013). Devices with platinum nanoparticles on 
graphene reduced oxide (Lei et al., 2017) or platinum nanowires (Tong 
et al., 2010) have been developed to analyze complex matrices like 
blood. This is some of the most recent progress that uses new nano
materials in order to demonstrate a novel improvement to electrical 
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biosensing methodology by utilizing the unique chemistry and geome
tries of nanoparticles to enhance sensing capabilities. Additionally, the 
new conductive polymer polyaniline has been synthesized as nanowires 
to sense many analytes in ultra-high resolution on the femtogram regime 
(Lee et al., 2012), which demonstrates another new nanomaterial being 
integrated as the primary biosensing element and surpassing the previ
ous resolution limit. Older materials are also being adapted for bio
sensors - carbon nanotubes have been utilized for their high surface area 
and functionalization capabilities to reliably detect different molecules 
at high resolutions (Star et al., 2003; So et al., 2005), which represents a 
much more general and broad improvement and raises the standards for 
biosensors as a whole. These three works do an excellent job in char
acterizing the use of nanomaterials in biosensors by showing strong 
specificity, high precision, and ability for continuous monitoring. Such 
advancements have opened the door to substantial improvement in 
clinical practices With better base characteristics and higher standards 
for biosensors, new facets of biosensors are being explored that can in
crease utility, such as use of new data assessment methods for charac
terization and use of flexible substrates for wearable sensors. This is 
another advantage that electrical sensors hold over other types. They 
can be used in dynamic working environment because they depend 
primarily on conductivity of electrodes, while methods like optical are 
extremely susceptible to external noise. Standard fabrication techniques 
can also be used to make biosensors on flexible substrates instead of 
harder substrates like silicon. In conjunction, these sensors are able to 
maintain much of the same capabilities of normal sensors but are much 
more suited to being used in dynamic environments due to their ability 
to stretch and bend while retaining function. 

When fabricated on a flexible substrate, electrical sensors become 
even more versatile as they have the advantage of being comparatively 
light while maintaining mechanical strength. Additionally, they can be 
very thin, which when paired with flexibility, makes flexible substrates 
very robust and non-brittle. Economically, polymers and plastics are 
much more affordable but can also have a wide range of physical ca
pabilities. Flexible substrates’ potential to be useful in low-cost, dynamic 
environments make them standout options for a myriad of niche appli
cations such as shear-normal hybrid stress sensors (Hwang et al., 2007), 
conductive skins for tactile robotics applications, and even liquid filled 
membranes for microfluidic-based sensing. Flexibles have an especially 
strong future in medical context for both in-situ and in-vivo applications. 
Recently, transparent polymers like polyethylene terephthalate (PET) 
have been growing in use for biosensors as a substrate for patterning 
electrodes and growing cells for biosensors. These devices allow for a 
real time monitoring, can provide instant feedback, and have predictive 
warning capabilities. They offer strong resolution and reliability for 
their price along with accessibility in daily life. A unique aspect of 
wearable biosensors is that they are most often noninvasive, gathering 
different solutions from less commonly analyzed but ubiquitous bio
liquids like sweat and saliva (Melzer et al., 2014; Rim et al., 2016). Aside 
from physical benefits, wearables can often have mental effects as well. 
Having easily accessible information can help an individual make more 
informed lifestyle choices and serve as steadfast reminders throughout 
the day, encouraging user engagement (Ha et al., 2018). Many different 
types of wearable sensors have been developed for a wide array of 
purposes. Some take the form of patches, and most recent commercial 
options involve wrist watches. Other nontraditional forms of wearables 
are being explored, such as contact lens glucose sensors and tattoo-like 
perspiration monitors. Regardless of form, wearable sensors have been 
successfully developed for many purposes ranging from blood glucose 
(Kudo et al., 2006) for glycemia monitoring to perspiration (Gao et al., 
2016) for metabolic analysis and have demonstrated feasibility in many 
of use cases including cardiovascular context. Wearable sensors for heart 
disease are gaining traction because they allow for more regular moni
toring of heart disease, which is usually diagnosed too late after a major 
event such as myocardial infarction or the development of heart failure 
(HF). Applying the diagnostic capabilities of wearable sensors to an area 

like heart disease presents many exciting opportunities to improve 
current testing methods. 

Cardiovascular disease (CVD) is the leading cause of death in the 
world and prevalence is increasing, particularly for heart failure (Virani 
et al., 2020). HF has an incredibly high prevalence and incidence, 
afflicting ~26 million adults per year globally. Mortality rates remain 
high but rapid detection and close monitoring would be beneficial to 
improve outcomes. B-type natriuretic peptide (BNP) is a protein released 
by the heart when the ventricles undergo strain in order to decrease 
blood pressure, and it has been found to be an excellent biomarker for 
CVDs that can be monitored (Kara et al., 2016; Wolsk et al., 2017). 
However, expensive testing assays, specialized equipment, and inter
mediary infrastructure can be limiting factors. The development of mass 
producible, wearable sensors can help abate these problems by enabling 
regular testing of BNP. Live-monitoring sensors have the ability to 
decrease overall risk of chronic cardiovascular as well as warn of 
impending acute myocardial infarction by detecting large changes in 
BNP concentration (Nalbantić et al., 2012; Suprun et al., 2012; Gra
bowska et al., 2018). Whereas results from normal testing may take 
several hours or more to receive, BNP monitored by a wearable sensor 
can provide instantaneous feedback in a noninvasive manner. Though 
there can be significant noise in a single test, multiple readings can be 
taken at once and filter with high power statistical analysis to denoise 
data and improve accuracy of determination. 

Today, there are many different options for data processing, such as 
analysis of variance (ANOVA) which determines difference between 
groups due to inter-relational variance, and mechanistic analysis which 
breaks data sets into input-output relationships. However, these are all 
causal analyses that only help to explain data. One of the major chal
lenges in current biosensor research is the reproducible data. While most 
researches have demonstrated excellent sensing performance, there is a 
general lack of data stability and reproducibility due to large variability 
in individual devices. Regular monitoring for early diagnosing requires 
the incorporation of a method like Machine Learning, which has strong 
causal power as well as a strong predictive power, in order to improve 
data stability, testing repeatability, and results classification accuracy. 
Machine Learning (ML) is a type of artificial intelligence which can be 
used to increase confidence of results. It is a type of statistical modelling 
that can learn without explicit instructions by using an adaptive classi
fication algorithm to sort sample readings and can be much more ac
curate than traditional methods. Currently ML is being implemented in 
many different fields and research due to its high analytic capability – it 
has proven to be especially useful in image classification, navigation, 
and big data visualization. Due to its predictive power and diagnostic 
capabilities, ML may also play a key role in the biosensors scene, because 
biosensor results are analyzed over long periods of time. Lab results only 
give insight into one specific instant in the patient’s life, but biosensors 
are powerful because they can monitor and analyze samples much more 
often and quickly. ML is necessary in order to take advantage of this time 
frame to identify both current status as well as future trends in the pa
tient’s health (Ouchi et al., 2018), greatly increasing predictive power. 
Previous work has been done to implement ML algorithms into bio
sensors, including a wrist sensor for seizure detection (Poh et al., 2012) 
and glucose-oxidase sensor for predictive monitoring (Gonzalez-Na
varro et al., 2016). For cardiovascular biosensors, BNP concentration in 
the blood can translate directly to an individual’s risk of developing HF. 
Using ML to find patterns in daily readings can allow for predictions of 
future health status, especially in cardiovascular context (Green et al., 
2018; Rong et al., 2018). This greatly increases a biosensor’s use for 
early diagnostics and helps realize the concept of lab-on-a-chip (LOC). 

In this research, a biosensor was developed using modern nano
fabrication techniques to allow for higher specificity, portability, and 
reproducibility. PET, a low-cost and flexible polymer material, was used 
as the substrate so that the sensors were light and robust for dynamic 
environments like being worn by a patient. In order to help with diag
nosis of HF, the biosensor was modified for the detection of BNP using 
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monoclonal antibodies on a PANI growth template. Finally, a machine 
learning classification algorithm was developed to classify the 
immunoassay-based patient readings into two categories, healthy or at- 
risk. This system is the prototype for making a lab-on-a-chip wearable 
sensor to allow for regular BNP testing. Important design considerations 
for creating a viable on-site diagnosis option included size, reproduc
ibility, and cost. Devices were fabricated and characterized in collabo
ration with the Signal Processing and Statistical Learning Group and the 
Cardiovascular Institute of the University of Pittsburgh Medical Center. 

2. Material and methods 

2.1. Chemicals and reagents for substrate preparation and modification 

Acetone, IPA, DI water, N2 gas, LOR-b, SC1827, Chromium, Gold, 
351 and AZK developer were all used from clean room facility’s stock. 
Aniline [C6H5NH2], Ammonium persulfate [(NH4)2 S2O8], Perchloric 
acid [HCLO4], EDC [C8H17N3], NHS [C4H5NO3], and bovine serum al
bumin (BSA) were purchased from Sigma Aldrich. Mouse anti-BNP and 
recombinant Human BNP were purchased from Novus Biologicals. All 
dilutions were made with 0.01× PBS. 

2.2. Device fabrication 

A sheet of PET was cut into the shape of 4” wafer and cleaned with 
acetone for 5 min followed by a bath in isopropyl alcohol for 3 min to 
remove the acetone. Excess isopropyl alcohol was evaporated with inert 
nitrogen gas. This cleaning process and all subsequent work took place 
in a clean room fume hood to decrease risk of contamination. After 
cleaning, the PET wafer was wet mounted to a silicon wafer by pipetting 
several drops of DI (deionized) water onto the silicon wafer before 
gently putting the PET wafer on top. The wet mount provided enough 
adhesion and a rigid body that would enable the PET wafer to be spin- 
coated with Laurell spinners. First, a layer of LOR-b (lift off resist-b), a 
photoresist optimized for metal ion developers, was spin coated on at 
3000 rpm for 45 s, then baked at 115 ◦C for 2 min. After the first minute, 
a preheated silicon wafer was placed directly on top of the PET wafer to 
complete baking. Second, photoresist SC1827, a positive resist opti
mized for g-line exposure, was spin-coated on at 4500 rpm for 45 s to 
adjust for viscosity. The PET was hard baked following the same baking 
procedure, but the preheated silicon wafer was held steady to hover 
above the PET wafer without making contact to avoid any undesired 
sticking between the two. 

The MLA100 from Heidelberg Instruments, a liquid crystal maskless 
laser aligner, was used to expose an electrode pattern designed in 
AutoCAD, at a dose of 240 mW/cm2, found in previous dosage tests. The 
wafer was then developed in a 1:4 solution of AZK400, a developer 
complimentary to the LOR-b resist used earlier. The wafer was observed 
under an infrared microscope to check for proper exposure. Next, 80 nm 
of gold and 5 nm of platinum were deposited on via electron deposition 
by a Plassys machine. Gold was chosen for its high conductivity and 
resistance to oxidation, and the small amount a platinum was added to 
increase elasticity without greatly affecting conductivity. Lift off was 
performed with 1165 remover to dissolve the remaining resist and any 
metal not directly deposited onto the PET wafer due to the bilayer 
photoresist. With the electrodes deposited, the wafer was ready for PANI 
growth to bridge the electrodes. 

2.3. PANI growth 

The same lithography process was used to create an exposed area 
bridging the electrodes onto which polyaniline (PANI) was chemically 
synthesized. PANI is an intrinsically conductive organic polymer that is 
known for its low ionization potential and high electron affinity. PANI 
was used here as a p-type semiconductor that was capable of entrapping 
other biological molecules. The PET wafer with gold-platinum 

electrodes was submerged in a beaker of 200 mL deionized water (set in 
an ice bath to maintain a consistent low temperature environment). The 
water was protonated with 6 mL of perchloric to control the pH of the 
solution and avoid unwanted products. 911 μg of aniline was slowly 
mixed in, followed by 700 mg of aqueous ammonium per sulfate (APS), 
which acted as the oxidant. The solution was mixed by stir bar at 300 
rpm to encourage polymerization of aniline monomers nucleated onto 
the surface of the wafer for 90 min before the reaction was halted. After 
growth, any PANI not chemically adhered to the exposed electrodes or 
PET was washed off in an acetone bath for 5 min before being rinsed 
with water. 

2.4. Surface modification 

Because PANI and BNP-monoclonal antibodies (mAb) cannot 
directly bind, surface modification was achieved by using 1-ethyl-3-(3- 
dimethylaminoprppyl) carbodiimide (EDC) as a crosslinker to bind 
PANI on one terminal and the antibodies on the other terminal. N- 
Hydroxysuccinimide (NHS) was added to accelerate the crosslinking 
process. A uniform solution of antibody, EDC, and NHS was prepared in 
a 2:49:49 ratio, and the 2.5 μL of this solution was pipetted onto each 
device and left to adhere to the PANI for 12 h. Another 2.5 μL of 20 ng/mL 
reconstituted lyophilized bovine serum albumin (BSA) powder was 
pipetted onto each device 30 min prior to testing in order to prevent 
non-specific binding during testing. 

The resulting device is shown in Fig. 1. The primary substrate is a 
sheet of PET that is translucent and able to flex. On top are conductive 
gold electrodes deposited with a small amount of platinum for added 
structural support. A thin sheet of PANI bridges the two electrodes and 
serves as the binding site for the mAb. A droplet of serum is then 
deposited onto the device, and any sample BNP binds to the receptor 
side of the mAb, inducing a change in gate voltage. 

2.5. Electrical measurement 

Fig. 2A is an image showing the measurement and characterization 
set up for the biosensors fabricated in this research. The biosensors are 
on clear, flexible substrate, sitting on a controllable stage. Devices were 
vacuum mounted onto on a 3 axis stage (x, y, ϴ). Fig. 2B is a close-up 
showing how the probe contacts the device during testing. The 2 μL 
droplets of control serum can be seen on the PANI sheet bridging the 
electrodes, like Fig. 1. After surface modification and BSA blocking, a 
motorized 6 channel copper probe was lowered onto the gold contacts 
for electrical connection, and optimized gate voltage of − 0.4 V was 
applied with an external power source from Rigol Technologies. Devices 
were then tested with linear sweep voltammetry using a potentiostat 
from CH Instruments. The sweep was run from [0–0.4] V, measurements 

Fig. 1. CAD rendering of ISFET biosensor, labelled with red are: PET substrate, 
PANI sheet bridge, gold-chromium electrodes, reference electrode, functional
ized antibodies, blood sample, and BNP molecules. Each PET wafer holds a 5 ×
5 array of cells, each containing 6 devices (150 ISFETs total). Cell size is 1 cm 
by 1 cm. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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were taken every 5 ms, and sensitivity was set to nanoampere scale. The 
current response and reference charge were locally recorded using the 
same instrument. 

2.6. Machine learning algorithm and PCA 

A single layer neural network was coded in python to separate 
sample trials into 2 categories, healthy or unhealthy. Healthy samples 
served as the control, while unhealthy was defined according to the 
outside edge of the gray area, that is any concentration [C] > 1000 pg/ 
mL, and unhealthy is labelled as anything below. The neural network 
first used linear discriminant analysis (LDA) to classify samples. LDA is a 
statistical method key for preprocessing data for pattern-classification 
by reducing degrees of freedom. Doing so helps avoid overfitting, 
which happens when the ML algorithm incorporates noise determinis
tically into the model. With 30 training samples for each, healthy and 
unhealthy, the dependent variable of a rough formula for BNP concen
tration was made in terms of the statistical mean and variation of the 
electrical measurements – that is to say that BNP concentration was 
expressed as two linear combinations of other independent features. 
Within and between class scatter matrices, SW and SB respectively, were 
calculated according to standard Fisher LDA algorithms to characterize 
the variance of the training data. Features were then extracted from the 
resultant covariance matrix though eigen decomposition and separated 
according to minimal error function by minimization of SW and maxi
mization of SB: 

SW =Σclasses
[
Σclass(Aclass − μclass)(Aclass − μclass)

T]

SB =Σclass(μclass − μ)(μclass − μ)T  

ΣWB =S− 1
W SB , (pseudoinverse)

When electrical measurements were taken from new samples, the 
data set’s statistical output was input into the ML predictive model to 
predict which group the data came from. Test data was sorted to 
whichever linear combination had a stronger correlation, hence classi
fying a sample test as either healthy or unhealthy. In order to extend the 
capability of the ML algorithm and create more robust results, a second 
assessment method was conducted through quadratic discriminant 
analysis. QDA is a more robust variation of LDA. It assumes that the 
covariance matrices are not identical between each variable. This is 
accomplished by computing quadratic terms in addition to linear terms, 
leading to a more thorough set of measurement vectors before deter
mining linear combinations to fit the data into. Doing so gives one extra 
degree of freedom for the model and with it higher statistical power. A 

secondary analysis of the results was performed using principal 
component analysis (PCA) for a reference to compare results using 
similar methods. Methods followed are widely available in existing 
literature (Richman, 1986; Sneyers et al., 1989; Jollife, 1990; Stewart 
et al., 2014). The code was programmed in MATLAB 2015b for both 
feature extraction of the IV curves and PCA analysis. No constraints were 
applied and only the first 3 components were taken. All samples were 
plotted against 3 three statistical properties of the sample readings 
themselves. As results were confirmed or corrected, the sorted data was 
added to the ML algorithm so that it could become more robust for 
future predictions. 

2.7. Human samples 

Deidentified samples from healthy controls and patients with CVD 
were obtained from an ongoing heart failure registry at the University of 
Pittsburgh. The protocol was approved by the Institutional Review 
Board. All subjects provided informed consent and chose to remain fully 
anonymous. Venous blood was collected using Vacutainer serum tube, 
Blood samples were kept at room temperature for 30 min and centri
fuged at 1500×g for 15 min in a table-top centrifuge. Doing so separated 
larger molecules from the sample such as hemoglobin and platelets to 
reduce contaminant noise and increase signal to noise ratio. Serum 
samples were collected and stored in multiple aliquots at − 80 C. Prior to 
testing with biosensors, each aliquot was tested and labelled for BNP 
concentration using validated commercial ELISA kits. When transferred 
for biosensor testing, individual aliquots were warmed in ambient to 
room temperature before being pipetted manually onto the sensors. 
Each aliquot was then immediately returned to the freezer, and freeze- 
thaw cycles were given special attention. 

3. Results and discussion 

3.1. Sensitivity 

8 artificially graded concentrations of BNP in healthy human serum 
were tested on the devices to explore the range of device response. 
Serum was derived from human plasma by spin separating the hemo
globin with a centrifuge at 2000 rpm for 2 min, and then separated into 7 
aliquots of differing BNP concentration. Trace amounts of hemoglobin 
have negligible effects on conductivity (Hirsch et al., 1950; Zhbanov 
et al., 2015) Up to 0.25 V, the current response was linear, as shown in 

Fig. 2. View of overall (A) measurement set up, annotated with: probe mech
anism, moving stage, motor driver, vacuum mount. Additionally, an up close 
view (B) of 6 channel probes lowered onto gold contacts. The left most is the 
reference electrode contact, the middle 6 are the counter electrodes for 6 in
dividual sensor devices, and the right most contact is for the universal working 
electrode. Probes are made from copper. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 3. Current response results from spike testing experiment for PBS, control 
sample, 200, 400, 800, 1000, 2000, and 3000 pg/mL. Linearly increasing current 
responses demonstrate proper function of the biosensor. Gate voltage is − 0.4 V 
due to p-type nature of PANI and prior testing. 
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Fig. 3, at which point separation began to become more significant. This 
serves as confirmation of the well-known fact that increased BNP con
centration corresponds directly with greater total accumulation of pro
tein charge, creating a higher gate voltage (Kim et al., 2006). By this 
point, all samples had differentiated according to their respective con
centrations in near logarithmic spacing. This demonstrated that the 
devices were able to successfully respond to samples according to their 
concentration and served as validation that the biosensors could support 
the required range of BNP containing the low/high threshold 
concentration. 

Samples with higher BNP concentrations were able to bond more 
fully with the anti-BNP adhered onto the PANI bridge. Doing so creates a 
buildup of negative charge onto functionalized the PANI substrate, 
which induces a slight positive alteration to the gate voltage, hence 
allowing more current to flow through the device. This experiment was 
conducted to confirm the average concentration of BNP in serum 
derived from a healthy patient’s blood. It had a slightly higher response 
that non-conductive 0.01X PBS, as there was little BNP contained in the 
sample. However, when spiked with increasingly higher concentrations 
of BNP, the current response increased immediately, confirming that the 
bonded BNP was altering the gate voltage to allow a greater current 
response. Broadly, this result gives strong indication that the biosensor 
framework can be expanded for further antigen-detection based risk 
assessment with the modification of different antibodies. 

3.2. Baseline testing 

As relatively little research has been conducted using human blood 
or serum, 10 aliquots of serum were drawn from each of 10 healthy 
subjects and tested to provide a reference current response and check for 
device testing repeatability. These aliquots were tested across 10 devices 
and superimposed onto a single graph to show a visual average current 
response. The current responses develop a heat map with the dark re
gions showing denser sampling responses shown in Fig. 4A. From the 
graph, the average current at 0.4 Vgate = 0.3 nA and a total range of 1 nA. 
Each voltage sweep resulted in a linear current response, which suggests 
that a chemical stability between PANI-receptors and BNP has been 
achieved. Across the 80 total tests, variance was less than 1 nA, with 
even tighter ranges within each device, shown in Fig. 4B. The max 
variance of measurements in each device was 0.8 nA, and the variance 
across all samples was 0.93 nA. These results suggest good repeatability 
within and across each device. These results were consistent with ex
pectations and showed that the devices were compatible with human 
serum samples. As expected, the healthy samples yielded a current 
response on the pico-amp regime, with some outliers breaching 1 nA by 
the end of the voltage sweep. 

3.3. A.I. Classification 

The machine learning algorithm was tested by providing a set of 42 
targets and 42 non targets after 2 generations of training. The samples 
came in 5 different concentrations of BNP defined in this study: healthy 
1 (control 1), healthy 2 (control 2), 600 pg/mL, 800 pg/mL, and 1800 
pg/mL. Primary testing divided the samples into two groups: not at-risk 
(healthy 1, heathy 2, and 600 pg/mL) and at-risk (800 pg/mL and 1800 
pg/mL). Fig. 5 below shows the input readings color coded according to 
concentration. Visually, the samples started to differentiate similarly to 
the spike test from Fig. 1. Strong separation was achieved, clearly dis
tinguishing each sample by 0.4 V. Variance between samples increased 
with higher concentrations as expected and resulted in overlap between 
several samples, especially with 800 pg/mL trials. This labelled char
acteristic was suited to be a primary feature for PCA. Additionally, the 
current magnitude seems to saturate with increased BNP, a character
istic that could be modulated with an increase of anti-BNP concentration 
during surface modification. In all cases, healthy samples displayed 
minimal response. 

Fig. 6 shows these results in a confusion matrix. Reading the matrix 
horizontally first tells the rate of actual success – the first row displays 
that 41 out of 42 unhealthy samples were correctly predicted and the 
second row shows that 39 out of 42 controls were correctly identified. 
Reading vertically analyzes the statistical power of the model – the first 
column tells the α (type 1) error and the second column gives β (type 2) 
error. Green highlighted squares indicate desired results, while red in
dicates misclassifications. After the second generation, the algorithm 
was able to achieve an overall accuracy of 95%, precision of 93%, and a 
recall of 98%. Therefore, the current algorithm with the given sample set 
has an F-score of 0.95 indicating high power. 

The PCA results are displayed in Fig. 7. The components were mean 
of the current response, variance of the current response, and mean of 
the reference charge respectively. As a result, there are two clear groups 
of clustering with small overlap. The blue grouping were points all 
classified as the control healthy serum samples, and the orange points 
were classified as high BNP concentration samples. The analysis was 
able to identify 28/30 targets 99/100 non targets correctly, which also 
gives an F-score of 0.95, indicating similar power. Therefore, the ML 
algorithm is comparable in statistical power to PCA, which is a bench
mark for separation classifiers. Another possible advantage of PCA is the 
low computing and power requirements, simplicity of calculation, and 
little set up required. The results are suitable for a rapid diagnosis sys
tem, whereas a higher power algorithm may exceed the needs of such a 

Fig. 4. Current responses for 100 baseline (healthy patient blood samples) tests 
across 10 samples. Each test has 80 points taken during a linear sweep from 0 to 
0.4 V (A) Results are plotted to form a heatmap – darker regions indicated 
higher density of results among multiple samples and lighter regions indicate 
more sparse measurements and variance plot (B) organized according to de
vices that each measurement was taken from. Results characterize range of 
current response according to a healthy level of BNP. 

S. So et al.                                                                                                                                                                                                                                        



Biosensors and Bioelectronics 175 (2021) 112903

6

device. However, simpler networks, such as the single layer imple
mented here, are demonstrated for feasibility and efficacy. 

4. Conclusions 

This research has demonstrated the fabrication and characterization 
of a new flexible PANI-based biosensor able to sense BNP on pg/mL and 
ng/mL regime for lab-on-a-chip applications. The sensor is immuno
assay based functions via voltammetry, making it both highly selective 
and nondestructive. Results suggest compatibility with human serum 

derived from blood, so protein competition is yet to be tested. Spike 
testing exhibited functionality and signal characterization; baseline 
testing showed biocompatibility with real human serum samples. Most 
importantly, results from blind testing demonstrate a ML algorithm 
comparable in power to a 3-dimensional PCA, achieving 95% power. 
This statistical method was able to be used for label prediction and 
enhance stability of data, indicating strong potential use in diagnostic 
applications, thereby showing feasibility of the new data assessment 
method. 
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