보조 증폭기의 Ballast 저항 제어를 이용한 HBT 도허티 증폭기 설계

김수태 ${ }^{\circ}$ ，유남식，최홍재，정융채，$*$ 김영 전북대학교 정보통신공학과 및 IDEC WG，＊금오공과대학교 전화：（063）270－2458，팩스：（063）270－2461

HBT Doherty amplifier using Ballast Resistor Control of Peaking amplifier

Su－Tae Kim ${ }^{\circ}$ ，Nam－Sik Ryu，Heung－Jae Choi，Yong－Chae Jeong，＊Young Kim Dept．of Information \＆Communication Engineering，IDEC WG，Chonbuk National Univ．，
＊Kumoh National Institute of Technology．
E－mail：kst1057＠chonbuk．ac．kr

Abstract

A HBT Doherty amplifier is designed with arbitrary characteristic impedance matching method and increase the gain of peaking amplifier．By using the lumped－elements and arbitrary characteristic impedance matching method，circuit size of Doherty amplifier has been reduced considerably，and we compensated the gain of peaking amplifier which uses the technique of controlling the ballast resistors and bias of peaking amplifier．By tuning the ballast resistors and bias of peaking amplifier we improved gain characteristic of Doherty amplifier with preserving PAE characteristic fine． The Doherty amplifier is designed at center frequency 1.9 GHz with Knowledge－on HBT technology．The output power is 29 dBm and 14.4 dB power gain．Power added efficiency（PAE）was 64% at the maximum output power at 3.3 V supply voltage．

I．서 론

무선 퉁신 시스템의 중요한 부분을 차지하고 있는 전 력 중폭기의 성능 향상에 대한 연구가 꿓임없이 진행되

고 있다．이러한 연구는 주로 전력 중폭기의 성능을 나 타내는 출력 전력，선형성，전력부가효율（Power Added Efficiency：PAE）등을 향상시키는데 집중되고 있으며，이를 위해 다양한 방법이 시도되고 있다．도허 티 증폭기는 이러한 일련의 시도들 가운데 전련 증폭기 의 PAE 성능을 향상시키기 위한 대표적인 것으로 부 하 변조를 이용하는 방법이다．전력 증폭기가 임의의 출력 레땔에서 공급전압만큼 최대로 동작을 할 수 있다 면 효율을 높을 수 있을 것이다．그러나 이것을 실현하 기 위한 부하를 구현하는 것은 어렵고，가능하다고 해 도 비선형적으로 동작하는 문제점이 있다．이를 해결하 기 위하여 기존 논문에서는 전력레삘에 따라 바이어스 를 조정하는 방법 등이 제안 되었으나 이를 구현하기 위해서는 회로가 커지는 문제점이 있다．
본 논문에서는 이를 해결하기 위해 주（carrier）중폭 기와 보조（peaking）중폭기의 ballast 저항을 제어하여 정합점을 조절하였고，또한 임의의 전력분배를 봉하여 최적의 쵸율을 갖도록 하였다．또한 임의의 중단 임패 던스를 가진 전력분배기를 사용하여 매칭에 필요한 소 자를 줄여 회로의 크기를 감소시켰다．

II．도허티 증폭기

도허티 중폭기는 그림 1 과 같이 주 중폭기와 보조 중폭기가 $N / 4$ 의 임퍼던스 변환기를 몽해 출력이 결합되는 구조이다．기존의 논문에서는 90 도 위상 차를 갖는 전력 분배기를 많이 사용하였으나 본 논문에서는 월킨슨 전력 분배기를 사용하였다．이률 퉁해 소자의 수를 현저히 감소시켰으며 녋은 주파수 대역에서 원하는 크기의 전력을 분배할 수 있었다．또한 하이브리드 전력 분배기에 비해 월킨슨 전력 분배기는 입력 전력 변화에 따른 보조 증폭기 입력 임패던스 변화에 대해서도 비교적 동일한 븍성을 유지한다． 도허티 증폭기의 주 증폭기는 A 급 또는 AB 급에서 보조 증폭기는 C 급 바이어스에서 동작한다．낮은 입력에서는 주 증폭기만 동작하고 보조 증폭기는 동작하지 않는다．이 영역에서 주 중폭기의 쵸율은 선형적으로 중가하여 최대가 되고 최대 출력보다 낮은 지점에서 보조 증폭기가 동작하기 시작하며 주 증폭기의 로드를 변화시킨다．이와 같은 부하 변조에 의해 주 증폭기는 최대 효율을 계속 유지하며 보조 증폭기는 선헝적으로 증가한다．그림 2 의 두 개의直율의 최대치 사이에 처진 부분（A）이 보이는 것은 보조 증족기가 동작을 하는 시점에서 낮은 효율을 보이기 때문이다．일반적으로 C 급 증폭기는 A 급이나 AB 급 증폭기에 비해 이득이 적게 나타나는데 이는 전체 도허티 이득 믁성을 나쁘게 만들며 원하는 최대 츨력과 이득을 감소 시킬 수 있다．또한 선형성에도 많은 영향을 줄 수 있다．도혀티 증폭기 특성을 최적화하기 위해서는 C 급인 보조 증폭기의 최대 출력에서의 이득 증가와 낮은 입력에서는 동작하지 않도록 최적화 하는 과정이 펼수 요소이다．이에 본 논문에서는 서로 다른 크기의 신호를 인가하여 최대 출력에서 두 중폭기가 같은 전력을 출력하는 방법과 보조 중폭기의 매칭 포인트，즉 바이어스 및 보조 증폭기 내부의 Ballast 저항의 변화률 이용한 방법을 비교해 보았다．

그림 1．도허티 전력 증폭기

그림 2．도허티 전럭 증폭기 효율 곡선

III．전송선로의 집중 소자 변환

도허티 전력 증폭기에서 사용되는 $N / 4$ 의 임피던스 변 환기와 월킨슨 분배기 회로를 집적회로로 구현하기 위 해서는 집중소자로 변환해야 한다．그림 3 은 전송 선로 의 π 형 집중회로 등가 모델을 보이고 있다．

그림 3．전송 선로의 π 형 집중혜로 등가 모델

IV．도허티 증폭기 설계

도허티 증폭기의 설계는 Knowledge－on사의 GaAs HBT의 VBIC 모델을 사용하였으며 주 중폭기와 보조 증폭기는 동일한 증폭기를 이용하였다．윌킨슨 전력 분 배기．$N / 4$ 의 임피던스 변환기 그리고 때칭 회로는 모두 기생 성분 값들이 고려된 인덕터 및 캐폐시터가 사용되 었으며 중심주파수는 1.9 GHz 이다．주 증폭기와 보조 증폭기가 출력에 최적화 되었을 때 두 증쪽기 모두 입 력 임피던스는 10.5Ω 을 나타내었다．입력 정합 소자의 수를 줄이기 위해 월킨슨 전력 분베기는 종단 임푀던스 가 10.5Ω 이 되도록 그림 4 와 같이 설계하였다．월킨슨 전력분배기는 하이브리드 전력 분배기에 비해 π 형 집 중회로로 변환 시 소자의 수가 현저히 작아 삽입 손실

및 회로의 크기를 줄일 수 폭기는 $\mathrm{P}_{1 d B}$ 인 26 dBm 출 $R_{\text {opt }}$ 은 16.8Ω 이다．따라서 $\lambda / 4$ 의 변환기의 특성 임파 다．

그림 4．임의의 종단 임 분배기

낮은 입력에서 보조 증폭 진 것처럼 보이게 하기 위 정 위상을 가지는 위상 보 또한 π 형 집중회로 등가 폭기 출력 단에 최대 효율 송선로를 두었으며 $\lambda / 4$ § π 헝 집중회로로 변환시켜 보조 중폭기의 앞 단에 에서 동위상으로 결합시챲 설계한 Doherty 증폭； 해 시뮬레이션 하였다．＝ 의해 동일한 크기의 신호 허티 증폭기의 쵸율 및

그림 5．도허티 증

일반적으로 도허티 증 기에 동일 진폭의 신호

2005年度 春季 마이크로波 및 電波傳播 學術大合 論文集 Vol． 28 No． 1 2005／5／21

및 최로의 크기를 줄일 수 있다．주 증폭기와 보조 중 폭기는 $\mathrm{P}_{1 \mathrm{AB}}$ 인 26 dBm 출럭에 최적화 되었을 때의 $R_{\text {opr는 }} 16.8 \Omega$ 이다．따라서 도허티 증폭기 이론에 따라 $\lambda / 4$ 의 변환기의 특성 임펴던스는 16.8Ω 으로 정하였 다．

그림 4．임의의 종단 임피던스를 가지는 월킨슨 전력 분배기

낮은 입력에서 보조 증폭기가 무한대의 임피던스를 가 진 것처럼 보이게 하기 위해 보조 증폭기 출력 단에 뜩 정 위상을 가지는 위상 보정 전송 선로를 두었으며 이 또한 π 형 집중회로 등가 회로로써 대체하였다．주 증 폭기 출력 단에 최대 쵸율 및 이득을 가능하게 하는 전 송선로률 두었으며 $\lambda / 4$ 의 임펴던스 변환기와 합하여 π 형 집중회로로 변환시켜 소자의 수를 줄였다．그리고 보조 증쪽기의 앞 단에 전송선로를 두어 최대 출력 점 에서 동위상으로 결합시켰다．
설계한 Doherty 증폭기는 Agilent사의 ADS 를 이용 해 시뮬레이션 하였다．그림 4 는 윌킨슨 전력 분배기에 의해 동일한 크기의 신호가 인가 되었을 때 나타난 도 허티 증폭기의 쵸율 및 이득 그래프이다．

그립 5．도허티 증폭기의 쵸율 및 이득 그래프

일반적으로 도허티 증폭기의 주 증폭기 및 보조 중쪽 기에 동일 진폭의 신호가 인가 되었을 때 도허티 증폭

기는 그림 5 에서 보듯 최대 효율을 나타내지만，최대 출럭에서 보조 증폭기의 이득이 낮아 전체 이득이 급격 히 감소하고 출력 파워 또한 낮아지는 단점을 가지게 된다．이의 해결을 위하여 기존의 논문에서는 보조 증 폭기의 동작점을 C 급 보다 높게 동작시컸다．

본 논문에서는 이를 극복하기 위하여 보조 중폭기의 정합점을 변화하여 효율은 최대한 유지시키며 이득 및 최대 출력 픅성을 개선시켰다．그리고 주 증폭기 및 보 조 증폭기의 동일 이득 특성을 위해 전력 분배기의 전 력 분배를 달리하는 방법과 비교해 보았다．그림 5 에서 보이는 3 dB 이득 륵성을 보상하기 위해 전력 분배를 달리하는，즉 주 증폭기와 보조 증폭기에 인가되는 신 호의 크기를 $1: 2$ 로 분배하였을 때 그래프 특성은 그림 6 에서 비교하겠다．이득 뜩성은 보상이 되었으나 이득 은 1.8 dB 그리고 24 dBm 의 출력에서 쵸율은 약 11% 감소를 하여 도허티 중폭기의 전체적인 특성을 떨어뜨 리는 결과를 가져오게 된다．

고온에서 불안정한 특성을 갖는 HBT 증폭기는 회로 의 안정화에 큰 영향을 미치는 ballast 저항을 펄히 사 용하게 된다．주 중폭기에 사용된 트랜지스터를 C 급으 로 동작하여 보조 증폭기로 사용하면 이득이 감소하고 안정도가 증가하는데，이때 내부의 ballast 저항 값을 변화시키고 이에 따른 바이어스 조절을 통해 이득을 향 상시킬 수 있다．따라서 도허티 증폭기의 주 증폭기 및 보조 증폭기에 동일 진폭의 신호가 인가 되었을 때 동 일 최대 출력을 합성하여 최대 츌력을 얻을 수 있게 된 다．

그림 6．보조 증폭기의 ballast 저항 튜닝을 통한 도허티 증폭기의 이득 개선 그래프

그림 6는 ballast 저항 퓨넝 보조 증폭기와 주 증폭기를 연동 동작한 도허티 중폭기의 이득 개선 톡성을 보이고 있다．보조 증폭기의 내부 ballast 저항 값을 튜닝 함으로써 낮은 입력에서 동작하는 AB 급 증쪽기의 동작에는 아무런 영향을 미치지 않고，즉 이득의 감소 없이 C 급 중폭기 동작 부분만의 이득을 증가시켰다．보조 증폭기의 튜넝이 없는 기본 도허티 증폭기 및 $1: 2$ 전력 분배를 적용한 도허티 중폭기 동작과 비교했을 때 P 1 dB 출력 레벨에서의 PAE를 확인하면 기본 도허티 증폭기와 $1: 2$ 전력 분배 도허티 중폭기에 비해 각각 $3 \%, 1.3 \%$ 증가하여 기존의 도허티 증폭기보다 뒤떨어지지 않음을 알 수 있다．그러나 이들의 이득을 비교해보면 높은 입력 레벨에서 기본 도허티 중폭기보다 약 2.5 dB 높았으며 P 1 dB 또한 약 5 dB 정도 개선됨을 확인하였고 $1: 2$ 전력 분배 도허티 중폭기에서는 P 1 dB 는 29.1 dBm 으로 같으나 전제 이득은 약 2 dB 정도 높았다．그림 6 에서는 세 가지 도허티 증폭기들의 효율 및 이득을 그래프 뜩성으로 비교해 보았다．

그림7．제안된 도허티 증폭기의 쵸율 및 이득 그레프

기생 성분들까지 고려한 수동 소자들을 모두 추가째 고 보조 중폭기의 내부 ballast 저항 및 바이어스 튜닝 에 따른 최종 도허티 증폭기는 $P_{1 d B}$ 출력 레쎌에서 $\mathrm{PAE} 64 \%$ 와 이득 14.4 dB 의 이득을 가진다．

본 논문에서 제안한 보조 증폭기의 튜닝을 이용한도 허티 전력 증폭기는 이득 및 최대 출력 파웨의 감소 연 이 우수한 효율을 유지함을 확인 할 수 있었다．

IV．결 론

본 논문에서는 HBT MMIC를 이용하여 On－Chip 도 허티 전력 중폭기를 설계하였다．기존의 도허티 전렴 증폭기에 비해 임의의 종단 임피던스률 갖는 월킨슨 전 력 분배기를 사용하여 정합 소자를 줄여 삽입 손실을 줄였으며，또한 집중소자를 사용하여 하나의 칩 （ $1050 \mathrm{um} \times 2550 \mathrm{um}$ ）안에 모든 소자를 구현하였다．

또한 보조 증폭기의 정합을 전력 중폭기 설계에 있어 꼭 필요한 ballast 저항 값을 조절함으로써 최적화 하 였다．도허티 증폭기는 $\mathrm{P}_{1 d \mathrm{~B}}$ 출력에서 $\mathrm{PAE} 64 \%$ 와 이 득 14.4 dB 의 이득을 가진다．

참고 문현

［1］W．H．Doherty，＂A New High Efficiency Power Amplifier for Modulated Wave，＂Proc．IRE，vol． 24，pp．1163－1182，Sep． 1936.
［2］F．H．Raab，＂Efficiency of Doherty RF power Amplifier Systems，＂IEEE Trans／Broadcast， vol．bc－33，pp．77－83，Sep． 1987.
［3］R．J．McMorrow，D．M．Upton，and P．R．Maloney， ＂The Microwave Doherty Amplifier，＂in IEEE MTT－S Int．Microwave Symp．Dig．，1994，pp． 1653－1656．

A Highly－Lin

 Completely Ir
Abstra

We present the first exat noise amplifier（LNA）u integrated tunable image InGaP／GaAs hetero－junction t technology for the Ku－ba down－converter（LNB）sy condition of 3 V and consum the fabricated LNA produce 6.1 dB and 6.4 dB ，when turns on and off，respectively exhibits a very highly linear an input $1-\mathrm{dB}$ compression at 12.225 GHz ．The image re is obtained at a notch freque ＂ Q －tuning＂current of 0.9 mA performed，the notch respon -65 dB ，which is equivalent ratio greater than above 70 ranges of 250 MHz and 4］ when＂Q－tuning＂and＂$C_{v a}$ respectively．A noise figur measured at 12.225 GHz ．

I．Introdi
With the rapid growth satellite communication techr demand for low powe performance at low cost．Lo by integrating the required possible，thus minimizing components．One of t components is the image fi passive filters，such as （SAW）filters or ceramic fil rejection．These filters impediment to raising the wireless radios，since tl implemented monolithically［ filter on a chip is compl Q －tune it for the best ima various attempts to integrat

