부하 변조 및 위상 보상 DGS 마이크로스트립 선로를 이용한 도허티 증폭기

최흥재 ${ }^{\circ}$ ，박상근，$*$ 임종식，정용채，$* *$ 김철동
전북대학교 정보통신공학과 및 IDEC WG，＊순천향대학교，＊＊세원텔레텍（주）
전화：（063）270－2458，팩스：（063）270－2461

Doherty Amplifier using Load Modulation and Phase Compensation DGS Microstrip Line

ed．

I．서 론

무선 퉁신 시스탬의 중요한 부분을 차지하고 있는 전 폏표국기의 성능 향상에 대한 연구가 굲임없이 진형되 ㄹㅇㅇㅆㄷㅏ．이러한 연구는 주로 전력 증폭기의 성능율 나歺는 출력전력，선형성，전력부가효율（Power Added

Efficiency：PAE）등을 향상시키는데 집중되고 있으며， 이를 위해 다양한 방법이 시도되고 있다．

도허티 증폭기는 이러한 일련의 시도들 가운데 전력 증폭기의 PAE 성능을 향상시키기 위한 대표적인 방법 중 하나로서，최근 많은 관심을 모으고 있다 ${ }^{[1]}$ ．

또한 쵸율과 선형성의 개선 방법으로 전력 증쪽기의 출력 단 전송선로에 PBG와 DGS를 적용하여 비선형성 과 쵸율을 개선하는 연구가 활발하게 이루어지고 있다．

종전에도 도허티 중폭기의 출력 단에 PBG 를 적용하 여 쵸율과 비선형성을 개선시키는 방법을 시도하였다． 그러나 실제 제작했을 때 PBG 전송 선로의 큰 삽입 손실 때문에 대전력 중폭기에 적용하기에 적당하지 않 고，PBG를 적용하기 위하여 매칭 회로 내에 추가적인 길이의 전송 선로를 삽입했기 때문에 크기가 커지게 되 며，쵸율과 비선형성의 개선 효과가 작은 단점이 있다 ［2］．또한 부하 변조 동작을 최적화하기 위한 도허티 증 폭기의 설계 기법이 보고되었지만，능동 로드풀 개념의 기본 가정인 이상적인 고조퐈 단락에 대해서는 고려하 지 않았다 ${ }^{[3]}$ ．

본 논문에서는 도허티 중폭기를 설계할 때 간과하고 있는 이상적인 고조퐈 단락을 도허티 중폭기의 동작에 펀요한 출력 단 전송선로에 DGS를 적용함으로써 만족 시키고，그로 인해 효율과 비선형성을 개선시킴과 동시 에 최대 출력 전력을 중가시킬 수 있는 방법을 제시하 였다．

II．DGS 도허티 증폭기의 설계 및 제작

1．능동 로드풀 회로
능동 로드쭐 개넘은 RF부하의 저항（resistance）값 또는 리역턴스（reactance）값이 두 번째 신호원 전류 의 영향을 받아서 변할 수 있다는 개념이다．로드풀 방 법을 적용하여 회로를 해석할 때에는 이상적인 고조파 단락을 가정하고 기본파 신호에 대해서만 고려함으로써 부하변조에 대한 해석을 할 수 있다．그림 1 은 고조파 단락을 가정한 능동 로드쭐 회로를 보이고 있다．

그림 1．고조하 단락을 가정한 능동 로드풀 회로

2．DGS 주 증폭기

그림 2 는 DGS 주 중폭기의 회로도를 보이고 있는데， DGS를 적용하기 위하여 주 증폭기의 출럭 단에 추가 적인 전송 선로를 추가하는 것이 아니라 도허티 증폭기 의 임펴던스 변조동작을 위혜 플수적인 $\lambda / 4$ 임펴던스 변환 전송선로에 DGS를 두었다．DGS의 군속도 지연 효과로 인하여 같은 물리적인 길이에 대해서 전기각이 증가하므로，물리적 길이를 줄일 수 있는 장점도 있다．

3．DGS 보조 증폭기

주 증폭기와 마찬가지로 보조 중폭기 출력단의 DGS 전송 선로 또한 DGS 를 적용하기 위해 추가적인 전송 선로를 달아준 게 아니라 도허티 동작에 기본적으로

그립 2．DGS 주 증폭기의 회로도

그립 3．DGS 보조 증폭기의 회로도

필요한 길이，즉，보조 증폭기 미동작 시에 출력 저항 값을 최대로 만드는 전송선로에 적용을 혔다．그로 인 해 외관상 추가적인 장치 없이 쵸율과 선형성의 증가를 가져올 수 있었다．

4．DGS 도허티 증폭기

본 논문에서는 그림 4 와 같이 일반적인 도허티 중폭 기를 제작한 후，주 증폭기와 보조 증폭기의 출력 타 전송선로에 DGS를 적용한 도허티 증쪽기를 졔작하유 이러한 고조파 단락에 대한 가정을 만족시키면서 효율 과 비선헝성의 개선을 얻고자 하였다．

그림 4．DGS 도허티 중쪽기의 최로도

III．제작 및 측정 결과

1．DGS 전송 선로

DGS를 이왕한 고조파 단락 전송 선로를 제작하기 위해 Ansoft사의 HFSS v9．2를 사용하여 시뮬레이션율 했다．시뮬레이션에 사용된 기퐌은 유전율이 2.20 이 두꼐가 31 mil 인 Rogers사의 RT／duroid 5880이다．시 뮬레이션에서 통과대역인 $2.11 \sim 2.17 \mathrm{GHz}$ 에서 약 0.27 dB 의 삽입 손실을 갖고， 2 차， 3 차 고조퐈 대역어서는 약 30 dB 이상의 차단 륵성을 갖는 것을 알 수 있다． 실제 제작했을 때，시뮬레이션과 거의 유사한 0.26 dB 의 삽입 손실과 차단 픅성을 학인하였다．

（a）시뮬레

（b）측정 결과（＠2

（c）측정 결과（＠
그림 5．DGS 전송선로의

2． DGS 주 증폭기 그림 6 은 일반적인 주 증 의 효율 개선량을 보이고 오 력 전력 레낼에 따라 최대 것을 볼 수 있다．

그림 6．DGS 주 쿠

（a）시뮬레이션 결과

（b）측정 결과（＠2．11GHz～2．17 GHz ）

（c）측정 결과（＠ $50 \mathrm{MHz} \sim 8 \mathrm{GHz}$ ）
그립 5．DGS 전송선로의 시뮬레이션 및 측정 긴과

2．DGS 주 증폭기

그림 6은 일반적인 주 증폭기 대비 DGS 주 증폭기 의 쵸율 개선량을 보이고 있다．전체 영역에 대하여 출 려 전력 레벨에 따라 최대 9.4% 까지 효율이 증가하는 것을 불 수 있다．

그림 7．DGS 주 중폭기에 WCDMA 1carrier를 인가했을 경우 ACPR 개선량

그림 8．DGS 주 증폭기에 WCDMA 1 carrier를 인가했을 경우 ACPR 믁성비교（＠ $\mathrm{P}_{\text {out }}=29 \mathrm{dBm}$ ）

그림 7은 DGS 주 증폭기의 WCDMA 1 FA 신호에 대한 ACPR 개선량을 나타내고 있다．출력 전력 레벨 이 높아질수록 개선 쵸과가 뚜렷이 나타나며，최대 6.1 dB 의 개선 효과를 얻었다．그림 8 은 출력 전력이 29 dBm 일 때 DGS 주 증폭기와 기존 주 증폭기의 WCDMA 1 FA 스팩트럼을 보여준다．

3．DGS 보조 증폭기

그림 9는 일반적인 보조 증폭기 대비 DGS 보조 증 폭기의 쵸율 개선량을 보인 것으로，최대 19.8% 증가 한 결과가 나타나 있으며，그림 10 은 WCDMA 1 FA 에 대한 선형성 개선 정도가 나타나있다．

그림 9．DGS 보조 증폭기의 효율 개선량

그림 10．DGS 보조 증폭기에 WCDMA 1carrier를 인가했을 경우 ACPR 개선량

4．DGS 도허티 증폭기

기존 도허티 증폭기에 대한 DGS 도허티 증푹기의 고조파 륵성이 그림 11 에 나타나 있다． 2 차， 3 차 고조 파는 각각 $44.92 \mathrm{dBc}, 23.77 \mathrm{dBc}$ 차단되었다． 3 차 고조 파는 노이즈 레벨 아래에 있기 때문에 실제로는 23.77 dBc 이상 차단되었을 것이다．

그림 11．DGS 도허티 증폭기의 고조파 특성

$$
\left(@ \mathrm{P}_{\text {out }}=38 \mathrm{dBm}\right)
$$

차단뎐 고차 고조파 성분들이 지닌 전력 성분은 기본 주파수의 전력 성분으로 변환되면서 나타난 효율의 개 선량이 그림 12 에서 보여지고 있고，WCDMA 1 FA 에 대한 ACPR 개선 특성이 그림 13 에 나타나 있다．전체 영역에 대하여 DGS 도허티 증폭기의 효율은 최대 $6.4 \%, \mathrm{ACPR}$ 은 최대 5.4 dBc 개선된 것을 볼 수 있다．

IV．결 론

본 논문에서는 일반적인 도허티 증폭기에 DGS를 적 용하여 부가적인 전송 선로의 추가 없이 효율과 선형성 을 향상시킬 수 있는 구조에 관해 논의 하였다．이를 실험적으로 증명하기 위해 기존 도허티 증족기를 제작 하고，출력 단의 전송 선로에 DGS 를 적용한 DGS 도 허티 증폭기를 제작 하였다．

Carrier Cc 위성

전북대학교 정보

K－Band Analog

Hee－Young Jeo Dept．of Informat

Abs

We propose the nel which can reduce nonling tube amplifiers（TWTA： transfer characteristics （HPA）are analyzed us series．Inverse comp predistortion linearizer inverse nonlinear distot obtained with reflect resistive terminated measured improvement to－PM characteristics proposed linearizer or 4.09^{*} ，respectively．

1.

위성 통신 시스템에서 이크로파 전력증폭기가 템에서는 높은 출력 레 중폭기（Traveling Wave 사용－하고 있다．이러한 전력 레벨을 얻기 위해 어 출력의 크기（AM－to 비선형 왜곡 륵성이 쳔 은 효율과 선형 증폭이 능을 저하시키는 주요 력 증폭기의 비선형 전＇

