# 주파수 하향 변환을 이용한 전력 증폭기의 선형화기 설계 

Popovic， han 0 ． ter for
MTT，

설계 기
3003 년

## John

on of a
mpro－
2．IEEE
）3，Jan．
dfor－
rkshop

# A Design of Linearization HPA using Frequency Down－Converting Mixing Operation 

Ki－Kyung Jeon，Eel－Kou Kim，Young Kim，＊Yong－Chae Jeong
Dept．Radio Communication Eng．，Kumoh National Institute of Technology
＊Dept．of Electronics \＆Information Engineering，Chonbuk National University
E－mail：jkk1225＠hotmail．com


#### Abstract

In this paper，a linearization method of HPA using frequency down－converting mixer operation is proposed． The harmonic generator which is used input signals generates the second high frequency intermodulation distortion signals．To generate IMD signals，we are used the extracted signal as mixing signal source． These signals are combined main signals with 180 degree phase difference．To show validity of proposed method，we tested for CW 2－tone signals and CDMA IFA signals．The test results show that the third order IMD is improved about 2 JdB for CW 2 －tone signals． Also，for CDMA 1FA signals，the improvements of adjacent channel power ratio（ACPR）are 7.5 dB and 6.4 dB at $\pm 750 \mathrm{KHz}$ and $\pm 1.98 \mathrm{MHz}$ offset points．


## 서론

처근 이동 퉁신 시스템이 발달함에 따라 다양한

디지털 변조방식들이 사용되고 있다．이러한 변조방 식들은 정보가 신호의 진폭과 위상에 실려서 전송 되며，신호 진폭의 최대값 과 평균값의 비 （peak－to－average）가 큰 것이 특징이다．따라서 선 형성이 큰 전력 증폭기를 요구하게 된다．지금까지 비선형성이 강한 전력 증쪽기의 선형성을 높이기 위해 많은 선형화 방식들이 제안되었다．［1］［2］［3］ 이러한 여러 가지 선형화 기법 중에서 본 논문에서 는 전치왜곡 선형화 방식을 사용하여 전력 중폭기 의 선형성을 높이는 방법을 제안하였다．전치 왜곡 선형화 기법은 RF 전력 증폭기의 선형화 기법 중 가장 광범위하게 사용되는 방법 중 하나로 비선형 성의 개선효과는 feedforward 방법에 미치지 못하지 만 소형 및 경량으로 구현 가능하며，광대역 동작 픅성 때문에 많이 사용되고 있다．전치 왜곡 선형화 기법은 전력 증폭기에서 신호 중폭 중에 생기는 비 선형 왜곡 성분에 대하여 크기는 갈고 위상이 반대 가 되는 비선형 성분을 전력 중폭기 입력에 만들어 주어 그것들을 제어하는 것이 핵심이라 할 수 있다． 본 논문에서는 주파수 하향 혼합기를 사용하여 전 치 왜곡 신호들을 발생시키고，그 신호들을 제어합 으로써 전력 중폭기에서 생기는 혼변조 왜곡 신호

들을 호과적으로 억압할 수 있는 선형화 기법을 제 안하였다．

## 본론

I．제안한 회로의 동작원리
아래의 그림 1 은 주파수 하향 변환기를 이용한 선 형화기를 포함한 전력 중폭기의 블록 다이어그램이 다．
여기에서 사용된 회로는 3 dB 전력 분배기， 10 dB 하 이브리드 결합기，가변 위상 변환기［4］，가변 감쇠기 ［5］，자동 레벨 조절기（Automatic Level Control： ALC ）， 2 차 고주파 신호 발생기，혼합기，고역 통과 펼터（High Pass Filter），지연 선로 등으로 이루어진 다．


그림1．주퐈수 하향 변환기를 이용한 선형화기를 포함한 전력 중폭기 블록 다이어그램

입력된 2－톤 신호는 3 dB 전력 분배기에 의해 주 경로와 보조 경로로 나누어진다．주 경로에서의 2 － 톤 신호는 지연 선로 \＃1을 거쳐 전럭 증폭기에 입력 되고，보조 경로의 2 －톤 신호는 다시 3 dB 전력분배 기를 통해서 지연 경로와 주파수 혼합경로로 나누 어진다．지연 경로는 가변 위상 변환기，가변 감쇠 기，지연 선로 \＃2를 거친 후 3 dB 전력분배기에 입럭 된다．주파수 혼합 경로에서 사용하는 주퐈수 혼합 기는 초고주파 다이오드나 트랜지스터를 이용하여 구현하는데，국부 발진기（Local Oscillator ：LO）신 호 전력으로 소자의 비선형성을 발생시키고 이때 입력되는 중간 주파수（IF）신호나 RF 신호가 LO 신호와 혼합하여 주퐈수 상향 또는 주퐈수 하향 변 한 동작을 일으키게 된다．LO 성분은 입력 레별이 변화될 때에도 LO 레뻴이 일정하게 만들어주기 위

해서 10 dB 하이브리드 커플러를 사용한 ALC회로를 퐁해서 하모닉 발생기의 입력레벨이 일정하도록 만 들어줌으로서 가능하였다．ALC회로는 가입자의 사 용 정도에 따라 전력 레벨이 변화되고，하모닉 발싱 기 출럭신호들은 입력 신호 레벨의 변화에 따라 출 력 득성과 정합이 달라지므로，사용자의 입력 레별 이 변화함에 따라 발생할 수 있는 하모닉 발생기의 입력 레뷸의 변화가 없게 합으로서 항상 일정한 출 력을 만들어 준다．주파수 하향 변환의 경우，IF 단 자에서 얻어지는 신호의 주퐈수 성분들은 중폭기가 증폭 과정에서 만들어지는 3 차 혼변조 예곡 성분들 의 주파수와 같다．LO 신호의 2 차 고주퐈 성분퐈 주 신호 성분이 혼합되어서 만들어진 주과수 하향 변환 동작된 신호는 다시 3 dB 전력 결합기의 입력 으로 들어가게 된다．지연 경로를 퉁하여서 들어온 신호는 가변 감쇠기와 가변 위상 변환기를 통과하 며，주파수 변환기를 통해서 들어온 신호와 크기는 동일하고 위상이 반전이 되게 조절을 하여 3 dB 전 력 결합기로 두 신호를 결합하면，주 신호가 억제된 혼변조 신호들만을 얻을 수가 있다．
이 신호를 주 경로를 통하여서 들어온 신호와 역 위상으로 결합하면 주 신호와 혼변조가 역 위상으 로 결합된 신호를 만들 수 있다．또，보조 경로의 가변 위상 조절기，가변 감쇠기는 전력 증폭기에서 발생하는 혼변조 왜곡 성분을 제거하기 위해서 역 위상으로 만들어진 신호의 크기와 위상을 미세 조 정하여 전력중폭기에서 생기는 혼변조 왜곡 신호들 을 효과적으로 억압하게 된다．

## I．실험 결과

이 선형화기 구성의 타당성을 보이기 위하여 주퐈 수 하향 변환기를 이용한 선형화기를 졔작하였다． 이 실험에서 사용된 전력 중폭기는 왓킨 존슨 사의 $\mathrm{AH1}$ 과 모토률라사의 MHL9838을 직렬로 연걸하였 다．여기서 왓킨 존슨 사의 AH 1 은 입력 드라이브 증폭기로 사용 하였고，모토률라사 MHL9838 전력 증폭기의 이득과 PldB 는 각각 31 dB 와 $39 \mathrm{dBm} /$ tone 이었다．
하모넉 발생기로써 사용한 트랜지스터는 왓킨 존 슨 사의 $\mathrm{AH1}$ 을 사용하였으며，바이어스 전압을 가 변하여 최적의 혼변조 신호률 만들어 내었다．그립 2 는 입력 신호 레벨이 일정한 하모닉 발생기에서 반송퐈 2 －톤 880 MHz 와 $881 \mathrm{MHz}(\Delta \mathrm{f}=1 \mathrm{MHz})$ 를 입력 챘을 경우 출력되는 2 차 고주파 성분을 보여준다．


그림 2．2－톤 입력시

주파수 하향
SYM－25DHW를 사 지연 선로\＃2는 같 7.5 nsec 동축 케이별 로와 정확한 시간 변 감쇠기와 가변 주 경로의 지연 선 을 맞추어주기 위해 하였고，보조 경로응 기는 전력중폭기의 위해서 사용되었다． 그립 3은 반송파 가 $880 \mathrm{MHz}, 881 \mathrm{M}$ 이 $\mathrm{Po}=28.4 \mathrm{dBm} / \mathrm{to1}$ 이다．여기서，측정 신호가 28 dB 개선！ 는 3 차 혼변조 신 3 차 신호만 개선되 알 수 있다．그립 인지에서 출력에서 량을 그래프로 나 있듯이 입력 다인 25 dB 이상 개선되는 또，반송파 2 －폰 5 MHz 일 경우（8 경우 $(875 \mathrm{MHz}$ ， 레인지에서 3 차 것을 확인 하였다．

히로를
록 만
의 사
발생
라 출
레볠
기의
한 출
（F 단
기가
｜분들
분과
하향
입력
어온
과하
기는
3 전
제된


그립 2．2－톤 입력시 하모닉 발생기에서 만들어진 2 차 고주파 특성

주파수 하향 변환기로는 Mini－circuits사의 SYM－25DHW를 사용하였다．제안한 선형화기에서 지연 선로\＃2는 같은 시간을 지연시키기 위해서 7.5 nsec 동축 케이블을 사용하였고，주파수 혼합 경 로와 정확한 시간 지연과 크기를 맞추기 위해서 가 변 감쇠기와 가변 위상 변환기를 사용하였다．또한 주 경로의 지연 선로\＃1은 보조 경로와의 시간지연 을 맞추어주기 위해서 9.5 nsec 의 동축케이블을 사용 하였고，보조 경로의 가변 위상 변환기와 가변 감쇠 기는 전력증폭기의 혼변조 왜곡 신호를 역압하기 위해서 사용되었다．
그립 3은 반송파 2－톤 입력 조건에서 입력 주파수 가 $880 \mathrm{MHz}, 881 \mathrm{MHz}(\Delta \mathrm{f}=1 \mathrm{MHz})$ 일 때，출력 전력 이 $\mathrm{Po}=28.4 \mathrm{dBm} /$ tone에서 측정한 중폭기 츨력 파형 이다．여기서，측정된 파형을 간찰해보면 3 차 혼변조 신호가 28 dB 개선되었음을 알 수 있다．이 실험에서 는 3 차 혼변조 신호의 개선에 중점을 두었기 때문에 3 차 신호만 개선되고 5 차 신호는 거의 변화가 없음을 알 수 있다．그립 4 는 입력 레멜의 10 dB 다이나믹 레 인지에서 출력에서 발생되는 3 차 혼변조 신호의 개선 량을 그래프로 나타낸 것이다．이 그래프에서 알 수 있듯이 입력 다이나믹 레인지에서 3 차 혼변조 신호는 25 dB 이상 개선되는 것을 알 수 있다．
또，반숭파 2－론 신호의 입력 조건을 주파수 간격이 5 MHz 일 경우 $(875.5 \mathrm{MHz}, 882.5 \mathrm{MHz})$ 와 10 MHz 일 경우 $(875 \mathrm{MHz}, 885 \mathrm{MHz})$ 에도 10 dB 입력 다이나믹 레인지에서 3 차 혼변조 신호는 20 dB 이상 개선되는 것을 확인 하였다．

（a）선형화기 사용 전 톡성

（b）선형화기 사용 후 픅성
그립 3．2－톤 입력시 선형화 희로 사용 전과 후의 중폭기 출력 특성 $(\mathrm{Po}=28.4 \mathrm{dBm} /$ tone，$\Delta \mathrm{f}=1 \mathrm{MHz})$


그립4．제안한 회로를 사용 전 후의 IMD3 개선을 나타낸 그래프

2005年度 春季 마이크로波 및 電波傳播 學術大合 論文集 Vol． 28 No． 1 2005／5／21

그립 5는 CDMA 1 FA 신호를 입력했을 경우 중심 주퐈수 880 MHz 에서 출력 전력 레벨이 $\mathrm{Po}=32 \mathrm{dBm}$ 상태에서 선형화 전과 후 측정된 퐈형을 나타냈다．

（a）선형화기 사용 전 륵성

（b）선형화기 사용 후 특성

그립 5．CDMA 1FA 신호를 입력했을 경우 선형화 회로 사용 전과 후의 중폭기 출력 특성 $(@ \mathrm{Po}=32 \mathrm{dBm})$

CDMA 1FA 신호를 입력했을 경우，출력이 32 dBm 일 때， 750 KHz 및 1.98 MHz 이격 지점에서 인접 채 널 전력비（Adjacent Channel Power Ratio：ACPR） 를 상펴보면，중심 주퐈수에서 $\pm 750 \mathrm{KHz}$ 와 $\pm 1.98 \mathrm{MHz}$ 지점에서 각각 7.5 dB 와 6.4 dB 개선 특성 을 보이고 있다．

## 결론

본 논문에서는 주퐈수 하향 변환을 이용한 전치 왜곡 선형화기를 졔안하여 전력 증폭기의 선형성을 개선시켰다．본 논문에서는 2 차 고주퐈 혼변조 왜곡

신호를 추출하여 주파수 변환기를 퉁해서 만들어진 3 차 혼변조 왜곡 신호를 만드는 방법을 제안하였다． 이렇게 만들어진 3 차 혼변조 웩곡 신호를 전력 중 폭기 출력에서 발생하는 3 차 혼변조 왜곡 신호의 역이 되게 발생시켜 제거시키는 방법으로 선형성을 높여주었다．본 논문에서 제시한 선형화 방법의 타 당성을 보이기 위해 2－톤 신호와 CDMA 1FA 신호 에 대해서 선형화해 보았다． 2 －톤 신호에 대해서는 3 차 혼변조 신호가 28 dB 개선되는 것을 확인할 수 가 있었고，CDMA 1 FA 신호에 대해서는 $\pm 750 \mathrm{KHz}$ 지점에서 인접 채널 전력비 $(\mathrm{ACPR})$ 가 7.5 dB 개선되 는 것을 확인 할 수 가 있다．

## 감사의 글

본 연구는 산업자원부 지정 대구대학교 RIS사업단 의 지원에 의한 것입니다．

## 참 고 문 현

［1］Peter B．Kennington，High Linearity RF Design，Artech House， 2000
［2］C．S．Aitchison，＂The current status of RF and microwave amplifier intermodulation performance，＂in IEEE Radio Freq． Integrated Circuits Symp．，Boston，MA， pp．113－116，June 2000
［3］H．A．Lee，C．W．Lee，Y．C，Jeong，Y．Kim and C．D．Kim，＂A design of predistortion linearizer using 2nd low frequency intermodulation signal injection＂，The Journal of Korea Electromagnetic Society，Vol． 14 No．9，pp．967－973，Sep， 2003
［4］H．S．Yoon，I．S．Chang，U．H．Park，and S． W．Yun．＂Design of $360^{\circ}$ reflection type variable phase shifter＂，The Journal of Korea Electromagnetic Society，Vol．21，No．1， pp．237－240 ，May， 1998.
［5］M．S．Kang，W．T．Kang and I．S．Chang，＂ Design of reflection type low phase shift attenuator＂，The Journal of Korea Electromagnetic Society，Vol． 34 pp．697－701， 1997

병렬

A Study

In this paper，a sta parallel power amplifor circuit was made inves HPA＇s third order 10 output．So，carrier pert order IM signals are 23 that the third order than 20 dB for CW ： efficiency improved When the input sizal measured ACPR intor offset point．Also，ovia CDMA 1FA signals．

무선 퉁신기술의 붑 기법（QPSK，QAM 조 기법들은 캐리여 변하는데 전력 중푹

