2005年度 春季 마이크로波 및 電波傳播 學術大會 論文集 Vol.28 No.1 2005/5/21

180° 위상반전을 이용한 소형화된 CPW 윌킨슨 발룬

*임종식 ⁰, **김동주, ***정용채, *안달

*순천향대학교 정보기술공학부 **에이스 테크놀로지 ***전북대학교 전자정보공학부

A Size-Reduced CPW Wilkinson Balun using the 180° Phase Inverting Structure

*Jong-Sik Lim⁰, **Dong-Joo Kim, ***Youg-Chae Jeong, and *Dal Ahn *Division of Information Technology Engineering, Soonchunhyang University ** Ace Technology Inc.

***Division of Electronics and Information Engineering, Chonbuk National University

Abstract

Anovel sized-reduced CPW(Coplanar Waveguide) balun is proposed. It has a 180° phase inverting structure between signal line and ground planes of CPW transmission line. A $3\lambda/4$ CPW transmission line can be reduced to $\lambda/4$ in physical length while the dectrical length is preserved to 270° by inserting a 180° phase inverting structure. The previous wilkinson balun shown in [1] has a lng $3\lambda/4$ transmission section to form the wilkinson structure having out of phase performance between output ports. The large wilkinson balun is quite reduced by adopting the CPW phase inverting structure.

I. 머리말	매우	커지게	되므로	큰	단점이	될	수	있다.
발룬(balun)은 초고주파 회로 및 시스템 응용에 널리		저주파에서도		효과적으로		제안한		윌킨슨
이는 회로 소자 가운데 하나이다. 여러 가지 회로에	발룬	이 사용될	수 있도	록 2	하기 위하여	며 본	논문	에서는

Chung, nplitude 'ement",

vedance uctures.

rowave 992.`

n for

시더 가지 외도에일문이 지정될 수 있도록 하기 위하여 큰 근단에지는의 형태도 매우180° 위상반전부를 3λ/4 전송선로에 삽입한다. 이로써의 원킨슨 분배기3λ/4 의 전기적 길이를 유지하고 동시에 물리적 실제일킨슨 발문으로길이는 $\lambda/4$ 에 해당하도록 소형화한다. 180° 위상비단순성과 설계난전부의 구현을 위해서 CPW 의 중심신호선과 주변대문에 선호되는접지선을 상호 X-형태로 교차시키는 구조를 취하였다.2 사이, 그리고II. 소형화된 CPW 윌킨슨 발문의 구조고립 1(a), (b)는 각각 윌킨슨 분배기의 기본 구조와최근에 제안되고,이미 제안된 E-band CPW 윌킨슨 발문 구조를 보여주고회다. 그림 1(b)는 그림 1(a)에 두 개의 2λ/4 전송선로를산입하면 쉽게 설계가 가능하다. 그러나 이 구조는 3λ/4전송선로 부분을 지니게 되므로 저주파에서는 크기가에서 구현되었을대우 커진다는 단점이 있다. 따라서 이 부분의 실제인하여 회로가길이를 크기 줄이면서도 전기적 길이를 270° 로

2이는 되도 도자 기관에 이어이어, 어어 가지 되도에 응용하는 목적이 다른 만큼 발룬의 형태도 매우 다양하게 존재한다. 그 중에 하나가 윌킨슨 분배기 구조의 발룬인데(본 논문에서는 윌킨슨 발룬으로 명명하기로 함.), 윌킨슨 분배기 구조의 단순성과 설계 및 사용에 있어서의 친밀성 때문에 선호되는 구조이기도 하다.

원킨슨 분배기의 단자 1 과 단자 2 사이, 그리고 단자 2 와 격리저항 사이에 2\\4 전송선로를 각각 삽입하여 구성한 윌킨슨 분배기가 최근에 제안되고, 실제로 제작 및 측정되었다 [1]. 이 회로는 E-band 에서 CPW MMIC (Monolithic Microwave Integrated Circuits) 기술로 구현되었으므로 그 크기에 있어서 큰 문제가 되지 않았으나, 만약에 낮은 주파수에서 구현되었을 경우에는 추가적인 2\\4 전송선로로 인하여 회로가

- 299 -

2005年度 春季 마이크로波 및 電波傳播 學術大會 論文集 Vol.28 No.1 2005/5/21

유지시키면 발문의 동작에 해를 끼치지 않아서 바람직한 해결방향이 될 것이다. 그림 1(c)는 이를 위해서 270° 전송선로 부분에 180°의 위상반전 구조를 넣어서 실제 길이를 크게 줄인 회로의 구조를 보여주고 있다.

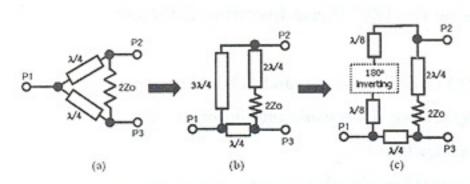
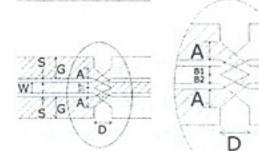
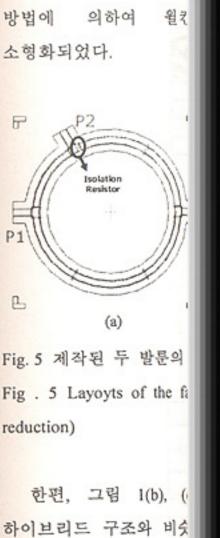



그림 1 소형화된 CPW 윌킨슨 발문의 설계 과정 (a) 표준 윌킨슨 분배기 (b) 기존에 제안된 윌킨슨 발룬 (c) 본 논문에서 제안하는 윌킨슨 발룬 Fig. 1 Step for the proposed size-reduced CPW wilkinson balun (a) A standard wilkinson divider (b) Previously proposed wilkinson balun (c) Proposed size-reduced wilkinson balun



구조는 신호선과 접지선의 선폭 이내 (W,G)에서 형성된다. 기본적인 X-형태 교차 구조를 유지하면서 다양한 치수로의 변경이 가능한데, 예를 들어서 그림 2(c)를 들 수 있다. 어떤 경우이든 "B1+B2≤W"과 "A≤G"의 조건은 필요하다. 한편 D 는 X-형태 교차 구조를 형성시키기 위하여 필요한 간격이다.

3 차원 X-형태 교차는 그림 3 과 그림 4 에 보인 것과 같이 air-bridge 나 또는 bottom-bridge 로 구성할 수 있다. Bottom-bridge 의 경우에는 다수의 비어홀들이 제작되어야 하며, 이를 위하여 바닥면에 일정면적의 금속 패턴 면이 존재하여야 한다.

그림 3 Air-bridge 구조 Fig. 3 Air-bridge structure

2005年度 春季

한편, 그럼 1(b), (하이브리드 구조와 비슷 rat-race 와는 다르다는 ; 4 단자 회로망으로써 격리단자로 사용되어야 발룬은 윌킨슨 분배기로 3 단자 회로망으로써 차이점이 있다.

그리 ((~) (~)는 그리

(a) (b) (c) 그림 2 180° 위상반전을 얻기 위한 X-형태 교차 구조 (a) 윗면 그림 (b) 확대도 (c) 변형된 구조

Fig. 2 The "X"-crossing structure for 180° phase converting in CPW transmission line

(a) Top view (b) Magnified "X"-crossing structure (c) A modified "X"-crossing structure

유한접지면을 지닌 CPW 나 CPS (Coplanar Strip) 구조에 있어서 신호선과 접지선을 서로 X-형태 구조로 교차시키면 180°의 위상반전을 얻을 수 있다는 사실이 알려져 있다 [2-4]. 그림 2(a), (b)는 CPW 전송선로에서 접지선과 신호선과의 X-형태 교차 구조를 확대하여 보여주고 있다. 그림에서 알 수 있듯이 X-형태의 교차

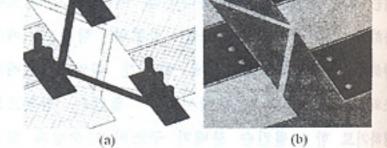


그림 4 Bottom-bridge 구조 (a) 3 차원 투시 그림 (b) CPW 윗면 금속면 레이아웃

Fig. 4 Bottom-bridge structure (a) 3-dimensional projection (b) CPW metal pattern on the top surface

III. 제작 및 측정 그림 5 는 소형화된 CPW 윌킨슨 발문을 중심 주파수 2GHz 에서 제작한 사진을 보여주고 있다. 이 크기는 그림 1(b)와 같은 구조의 레이아웃을 했을 때보다 약 절반의 크기를 갖는다. 따라서 제안한

그림 6(a), (b)는 그루
윌킨슨 발룬의 측정된
크기가 많이 줄었음에도
거의 없음을 알 수 있지
소형화한 발룬이 소형회
출력단자간 격리 특성을
또한 그림 7 에 의하
있어서, 소형화한 발문(
가까운 특성을 지니는
순수하게 270°의 전
주파수에 따른 위상차
180°±10° 의 위상차를
경우와 소형화하기 이전
600 MHz 와 300MHz 로 ·

5/21

이내 (W,G)에서 조를 유지하면서 를 들어서 그림 "B1+B2≤W"과 E X-형태 교차 기다. 그럼 4 에 보인 je 로 구성할 수 :0 비어홀들이 0 일정면적의

2005年度 春季 마이크로波 및 電波傳播 學術大會 論文集 Vol.28 No.1 2005/5/21

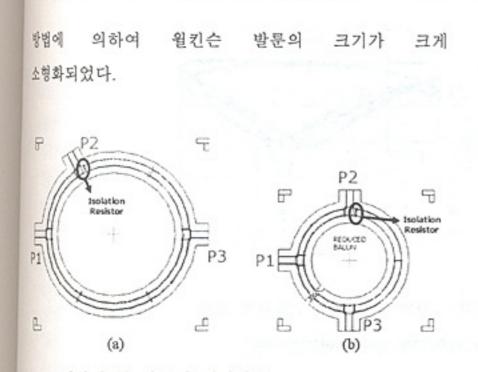


Fig.5 제작된 두 발룬의 레이아웃

Fig. 5 Layoyts of the fabricated baluns (before/after sizereduction)

한편, 그림 1(b), (c)의 레이아웃이 비록 rat-race 하이브리드 구조와 비슷하게 보이기는 하지만, 분명히 natrace 와는 다르다는 점에 주목해야 한다. Rat-race 는 4 단자 회로망으로써 어느 한 단자가 반드시 격리단자로 사용되어야 한다. 그러나 제안한 윌킨슨 발룬은 윌킨슨 분배기로부터 설계가 시작된 구조이며, 3 단자 회로망으로써 격리단자가 없다는 중요한 차이점이 있다.

IV. 맺음말

CPW 의 신호선과 접지선간에 X-형태 교차 구조에 의한 180°위상반전부를 만들어 소형화한 CPW 윌킨슨 발룬이 제안되었다. 소형화한 발룬의 크기는 소형화 이전의 약 절반에 불과하였다. 소형화된 발문의 측정된 S-parameter 는 소형화 이전의 발룬보다 더욱 광대역의 정합, 격리 특성 및 위상 특성을 보여주었다.

감사의 글

이 논문은 순천향대학교 차세대 BIT 무선부품연구센터 의 지원에 의한 것입니다. (R12-2002-052-02004-0)

참고문헌

- J.S. Lim, H.S. Yang, Y.T. Lee, S. Kim, K.S. Seo, and S. Nam, "E-band Wilkinson balun using CPW MMIC technology," IEE Electronics Letters, vol. 40, no.14, Jul. 2004, pp. 879-880.
- [2] T. Wang and K. Wu, "Size-Reduction and Band-Broadening Design Technique of Uniplanar Hybrid Ring Coupler Using Phase Inverter for M(H)HIC's." IEEE MTT Trans. Microwave Theory Tech., Vol. 47, no. 2, pp. 198~206, Feb. 1999.

그림 6(a), (b)는 그림 1(b), (c)의 구조로 제작한 두 [3] C.W. Kao and C.H. Chen, "Miniaturized Uniplanar 180° Hybrid-Ring Couplers With $0.8\lambda_g$ and $0.67\lambda_g$ Circumferences." 2000 Asia Pacific Microwave Conference Proceedings, pp. 217~220, Dec. 2000.

발문을 중심 고 있다. 이 가웃을 했을 누서 제안한

l projection (b)

시 그림

(b)

월킨슨 발룬의 측정된 S-파라미터를 보여주고 있다. 크기가 많이 줄었음에도 불구하고 성능상의 큰 손해는 거의 없음을 알 수 있다. 오히려 제안한 방법에 의한 소형화한 발문이 소형화 이전보다 더 광대역의 정합과 출력단자간 격리 특성을 갖는 것을 알 수 있다.

또한 그림 7 에 의하면, 두 출력간의 위상차 특성에 있어서, 소형화한 발툰이 이상적인 180° 위상차에 더 가까운 특성을 지니는 것을 알 수 있다. 이것은 순수하게 270°의 전기적 길이를 갖는 경우보다 주파수에 따른 위상차 에러가 더 작기 때문이다. 180°±10°의 위상차를 기준으로 했을 때 소형화한 경우와 소형화하기 이전의 경우 주파수 대역폭은 각각 600 MHz 와 300MHz 로 측정되었다.

[4] M.H. Murgulescu, E. Moisan, P, Leguad, E. Penard and I. Zaquine, "New wideband 0.671/2 circumferences 180° hybrid ring coupler." Electronics Letters, Vol. 30, no. 4, pp. 299~300, Feb. 1994.

2005年度 春季 마이크로波 및 電波傳播 學術大會 論文集 Vol.28 No.1 2005/5/21

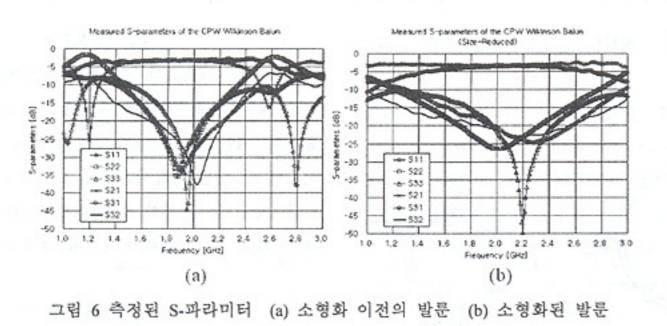


Fig. 6 The measured S-parameters (a) Normal size (b) Size-reduced

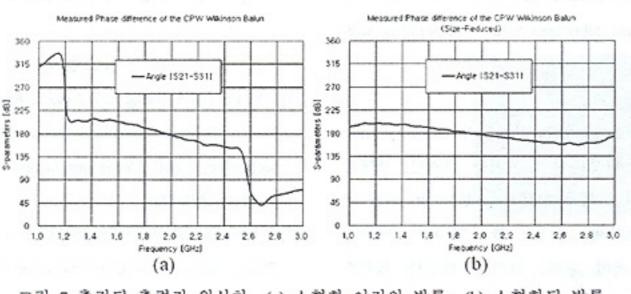


그림 7 측정된 출력간 위상차 (a) 소형화 이전의 발룬 (b) 소형화된 발룬

Fig. 7 The measured phase difference between output ports (a) Normal size (b) Size-reduced

2005年度 春季 마이크

A nev

1

Dong School of Elec

Abs

A new waveguide-to-n slit waveguide is des Ku-band. The height of very small as comp waveguide, and the wa to the coaxial cable, and metallic cone. The trans comprehensively analy Measurem simulators. transition show good Ku-band with bandy measured insertion loss and the return loss is a transition performances parameter variations. utilized for broadband (

최근 다양한 무선통 크로파 및 밀리미터파 는 시스템이 점차 중; 물론 과학 기술 및 군 파를 이용하는 시스템

I

-302 -