
2012년도 존계

마이크로파및전파전파학술대회

▶장소 : 2층 210A

·	3	8 8	3	0	~	1	5	10 10	3	0	
---	---	-----	---	---	---	---	---	-------	---	---	--

좌장: 김태욱 (연세대학교)

		. O . D . J / L	7
01-1-1	13:30~14:00	[초청 논문] 고주파 증폭기에서 트랜스컨틱턴스 비선형성 상쇄를 이용한 선형화 방법의 최근 연구 동향 소개······· 김태욱(연세대)	83
01-1-2	14:00~14:30	[초청 논문] GaN 소자를 이용한 X-band Radar용 SSPA(Solid State Power Amplifier) ········ 유찬세, 박준철, 김동수, 이우성(전자부품연구원), 이태경, 박재웅, 임창석((주)RFHIC)	84
01-1-3	14:30~14:45	능동혼합기를 이용한 디지털 RF수신기의 Dynamic Range 개선 방안····································	85
01-1-4	14:45~15:00	이중대역 부고조파 자가 발진 믹서 설계 ······ 오택근, 이용식(연세대)	86
01-1-5	15:00~15:15	751 MHz 10 W급 3단 Doherty 전력증폭기 설계····································	87
01-1-6	15:15~15:30	계환저항과 가변 능동저항을 이용한 가변 능동 인덕터 박성두, 박민혁, 정용채(전북대)	88

15:30~15:50

Coffee Break

Ordi Presentation Session II

전자파이론

▶장소 : 2층 210A

15:50~17:50	좌장: 이재욱 (한국항공대학	性型)
02-1-1 15:50~16:20	[초청 논문] 두께가 없는 도체 스크린과 도파관내의 횡단면 위치한 두 가지 경우의 투과 공진 개구를 통한 전자기 산란····································	91
02-1-2 16:20~16:35	전자파 잔향실 내 다양한 크기의 교반기 효율에 관한 연구 김정훈, 양성일(한양대)	92
02-1-3 16:35~16:50	모멘트 법을 이용한 침투 가능한 산란체의 전자파 산란 해석 및 가속화에 대한 연구	93
02-1-4 16:50~17:05	수정된 HHT기법을 이용하여 회전하는 프로펠러 날개에 의한 마이크로 도플러 신호의 해석 박지훈, 명로훈(한국과학기술원), 최익환(국방과학기술연구소)	94
02-1-5 17:05~17:20	자기공명방식 무선전력전송 시스템의 유전알고리즘을 이용한 매개변수 추출 및 최적화 방법······ 김영담, 한정훈, 명로훈(한국과학기술원)	95
02-1-6 17:20~17:35	MEG에 영향을 주는 환경 요인 분석····································	96
02-1-7 17:35~17:50	New Current Profile 모델링····································	97

궤환저항과 가변 능동저항을 이용한 가변 능동 인덕터

박성두, 박민혁, 정용채 전북대학교 전자정보공학부 psd2325@jbnu.ac.kr

I. 서론

초고주파 집적회로(RFIC)에서 사용되는 인덕터는 주로 사용한다. 인덕터를 용이한 나선형 생 점유 면적이 크고, 기 시에 어려움이 있다. 이러한 문제점을 자이레이터-C 구조를 이용한 능동 이루어지고 있다. 본 논문에서는 궤환 활발히 저항과 가변 능동저항을 이용한 새로운 구조의 가변 동 인덕터 구조를 제안하였다.

Ⅱ. 설계 이론 과 측정결과

그림 1은 자이레이터-C 구조에 궤환 저항과 가변 능동 저항으로 구성된 능동 인덕터의 구조를 보여준다. 궤환저항 R_f 는 M_1 의 출력저항을 증가시키기 사용되었으며, M_1 의 게이트에 연결된 저항을 트랜지스터로 등가 저항을 조절함으로써 높은 Q지수를 갖고 인덕턴스를 변화시킬 수 있다.

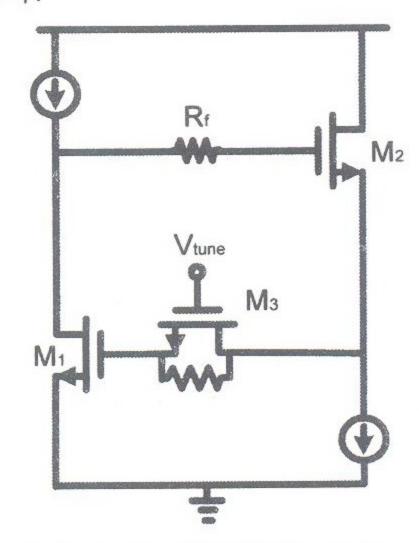
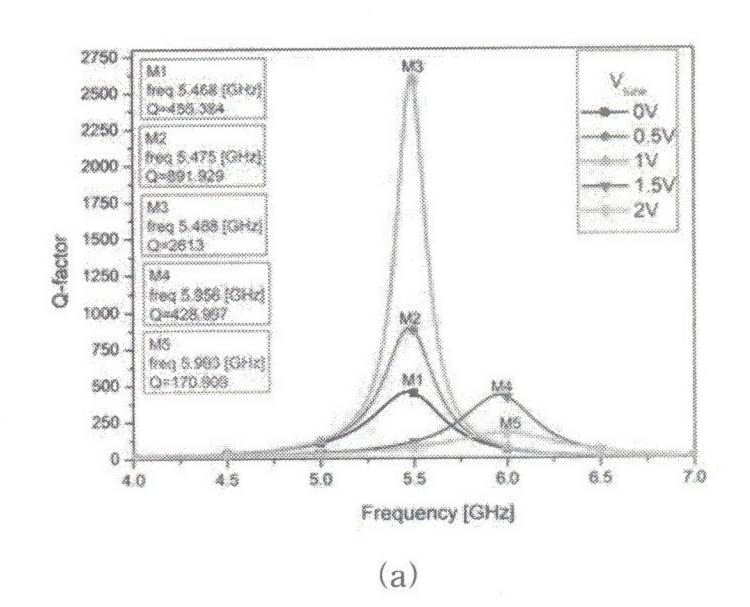



그림 1. 제안한 가변 능동 인덕터의 구조.

그림 2는 제안된 가변 능동 인덕터의 시뮬레이션 결과이다. V_{tune} 의 조정으로 인하여 50이상의 높은 Q지수와 5nH이상의 인덕턴스를 갖는 인덕터를 4.7 GHz에서 6.4 GHz까지 조절할 수 있으며, 제안된 가변 능동 인덕터는 기존에 발표된 논문과 달리 고정전압을 쓰지 않아도 M_3 의 V_{DS} 전압을 '0 V'로 만들어 저항을 최대로 조절할 수 있기 때문에 효율적이고, 동작 주파수 또한 약 2배 정도 증가한 결과를 얻을 수 있었다. [2]

Ⅲ. 결론

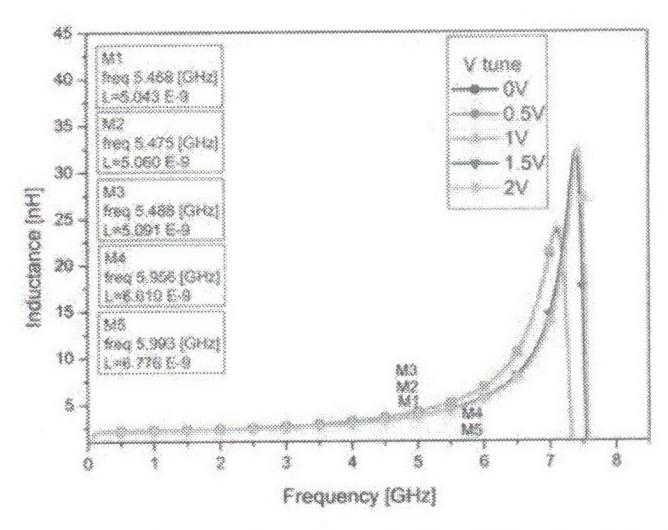


그림 2. 가변 능동 인덕터의 (a) Q지수와 (b Inductance.

본 논문에서 가변 능동 저항과 궤환 저항을 사용하여 높은 Q지수를 갖는 가변 능동 인덕터를 설계하였다. 제작된 가변 능동 인덕터는 50이상의 최대 Q지수를 갖는 주파수 가변 범위가 1.7 GHz이며 각각의 주파수에서 5 nH이상의 인덕턴스를 갖는다. 또한 제안된 가변 능동 인덕터는 5 GHz 이상의 주파수에서 사용하는 시스템에 적용될 수 있을 것이다.

참고문헌

- [1] A. Thanacbayanont and A. Payne, "VHF CMOS integrated active inductor," *IEEE ICAS 2000 Circuits and Systems*, vol. 5, pp. 589–592, 2000.
- [2] Rajarshi Mukhopadhyay "Reconfigurable RFICs in Si-based technologies for a compact intelligent RF front-end," *IEEE Trans. Microw. Theory Tech.*, vol. 53, no. 1, pp. 81–91, Jan. 2005.