

by on the six of an Artificial High Effective Permittivity Medium in a SIW Periodically Loaded with Metallic Cylinders	
Gaspar Vicent, Angela Coves Soler, Enrique Bronchalo, German Torregrosa-Penalva,	1668
Number of Calibration Loads and Degree of Freedom of Fixture's T -parameter for Indirect S -parameter	
Estimation	
Yuya Kojima, Toshikazu Sekine, Yasuhiro Takahashi,	1670
Design of Compact Strip-line Directional Couplers for High Power Operation within Frequency Band $4-12\mathrm{GHz}$	
Mikhail G. Pischenko, Dmitry G. Pischenko, Mikhail B. Manuilov,	1671
A Design of 180° Coupler with Predefined Negative Group Delay Characteristics	
Girdhari Chaudhary, Boram An, Phirun Kim, Jongsik Lim, Yongchae Jeong,	1672
Application of Transmission Line-based Inductors to Dual-band Branch Line Couplers	
Jongsik Lim, Boram An, Yongchae Jeong, Sang-Min Han, Dal Ahn, Kwansun Choi,	1673
Full Wave Analysis and Design of Waveguide Diplexer with Ridged Sections and Diaphragms	
Mikhail B. Manuilov, K. V. Kobrin,	1675
On the Complexity of Randomly Overlapped Subarray Feeding Networks	
Davide Bianchi, Simone Genovesi, Agostino Monorchio,	1676
Compact Microstrip Feed Networks for Low-impedance Quadrifillar Helix Antennas	
$Dmitriy\ Aleksandrovitch\ Dyomin, Nikolai\ Petrovitch\ Chubinskiy, Evgeniya\ Sergeevna\ Stukalova,$	
Ivan Vasilevitch Filatov,	1678
Multiphysics Analysis of High Power CW Ferrite Phase Shifter Designs for Application in Circulators	
Harish V. Dixit, Aviraj R. Jadhav, Yogesh M. Jain, Alice N. Cheeran, Vikas Gupta, Pro-	1.050
mod K. Sharma,	1679
Design of Wideband Lumped Element Circulator Mrunmay Mahesh Sahasrabudhe, Parth Shah, Arun C. Nambiar, Shreya Shah, Neha Gharat,	
Vikas Gupta, Harish Dixit,	1680
Design of a High Power Junction Circulator	1000
Arun C. Nambiar, Shreya Shah, Mrunmay Mahesh Sahasrabudhe, Parth Shah, Vikas Gupta,	
Neha Gharat, Harish Dixit,	1681

Application of Transmission Line-based Inductors to Dual-band Branch Line Couplers

Jongsik Lim¹, Boram An², Yongchae Jeong², Sang-Min Han¹, Dal Ahn¹, and Kwansun Choi¹

¹Soonchunhyang University, Republic of Korea ²Chonbuk National University, Republic of Korea

Abstract— In many cases, arbitrary lumped element values are required for refined performances with a good improvement of RF and microwave circuits. However in practice, predefined or quantized lumped elements such as chip capacitors and inductors are provided because of some industrial-background reasons like cost, mass production, and industrial standard system. So compromised lumped element values are adopted by designers with a trade-off between required ideal performances and practically obtainable ones. In this work, a method is discussed to overcome this problem by focusing on the realization of arbitrary inductance values with highimpedance transmission line and capacitors. An inductance L shown in Fig. 1(a) can be replaced by a transmission line at the design frequency with the line impedance of Z_{c1} and electrical length of θ_1 as in Fig. 1(b). In addition, when a capacitor (C) is connected to a transmission line with Z_{c2} and θ_2 as in Fig. 1(c), this combination also acts like a inductor at the design frequency. Calculating and comparing three input impedances $(Z_{in}, Z_{in1}, \text{ and } Z_{in2})$, it is clear that an arbitrary inductance value can be obtained by selecting proper line impedances (Z_{c1} and Z_{c2}), length $(\theta_1 \text{ and } \theta_2)$, and capacitor value (C). Furthermore, this arbitrary inductance value can be controlled continuously by adjusting Z_{c1} , Z_{c2} , θ_1 , θ_2 , and C. Fig. 2 shows an example of the calculated equivalent inductance values of Fig. 1(b) by adjusting θ_1 , for a fixed Z_{c1} . It is well understood that arbitrary inductance values can be provided with a good continuously-varying property. In this work, this property is applied to design of dual-band stubs, and further, dualband branch line couplers using CRLH (composite right/left handed) transmission lines. Fig. 3(a) and Fig. 3(b) illustrate the dual-band study composed of ideal CRLH sections and practically realizable high impedance lines. Fig. 3(c) proves that the required dual-band properties are well

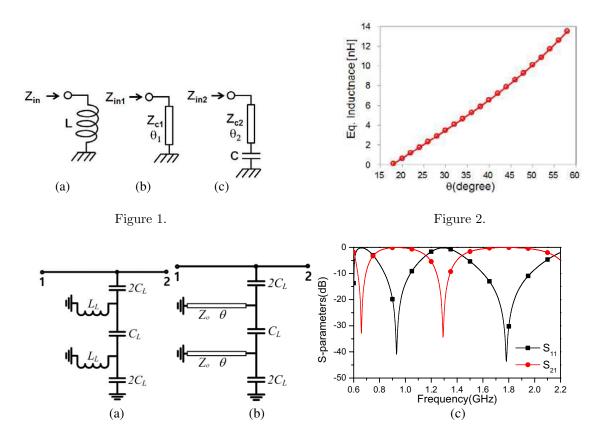


Figure 3.