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Abstract — This paper presents a design of microstrip balun
bandpass filter (BPF). Since the quarter-wavelength (1/4) stepped
impedance resonators (SIRs) in the proposed balun BPF are
oppositely coupled to the main line of open-circuited half-
wavelength (4/2) microstrip transmission line, the same
magnitude and out-of-phased signals can be obtained at two
output ports of the balun BPF. The balun BPF is designed with
two stage SIRs to achieve wide stopband attenuation. The balun
BPF operated at 2 GHz with fractional bandwidth of 5%
Chebyshev response was designed, fabricated, and measured.
The measured magnitude and phase imbalances within the
passband of 1.95 to 2.05 GHz are obtained + 0.3 dB and 180 +
3.5° respectively. The measured input return loss is higher than
17 dB within the same passband. Indeed, the stopband
attenuation is higher than 25 dB from DC to 1.72 GHz of the
lower stopband and from 2.48 GHz to 6.58 GHz of the higher
stopband.

Index Terms — Balun bandpass filter, coupled line, stepped
impedance resonator, transmission zero.

1. INTRODUCTION

The balun bandpass filter (BPF) is an essential component

to divide input signal into two output signals with equal power,

filtering response, and out-of-phased. The marchand balun and
branch line baluns can provide a good passband response.
However, the stopband characteristics are poor [1]-[2]. Thus,
the BPF was needed to improve stopband characteristics. This
technique causes a large circuit size, high cost, and high
insertion loss.

Accordingly, the balun BPFs have been studied with many
significant features such as size and cost reductions, and good
performances [3]-[8]. In [3], a wideband marchand balun with
filtering response was proposed using additional slotlines in
the ground plane with a limited stopband suppression. The
slotlines required an extra gap from the ground to avoid
electrical coupling effect. Meanwhile, a dual-mode ring
resonator was used to design balun BPF with a high loss and
limited stopband suppression [4]. To improve stopband
suppression, a single open-circuited stub connected at the
corner of the ring resonator was needed to produce a
transmission zero in the stopband [5]. In [6], planar type balun
BPFs for single and dual bands operations were proposed
using dual-mode resonators. To improve selectivity and
stopband characteristics, the same resonators of [6] were used
to couple with microstrip-to-slotline transition in the ground
plane [7].

In this paper, a balun BPF is proposed using quarter-
wavelength (1/4) stepped impedance resonator (SIR). Two 1/4
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Fig. 1. Proposed balun BPF structure.

SIRs are coupled oppositely with the open-circuited stub half
wavelength (4/2) transmission line (TL). The proposed balun
can provide a bandpass filtering response with identical
magnitude and out-of-phase. To verify the design network, the
proposed balun BPF is designed, simulated, and fabricated in
a single layer microstrip line. Moreover, the measured results
show a good passband performance and high stopband
attenuation with wide spurious frequency.

II. DESIGN EQUATIONS

Fig. 1 shows the proposed structure of microstrip balun
BPF. The proposed circuit consists of two 4/4 SIRs coupled to
the main line of open-ended 4/2 TL at end arms. The SIR is
used to enhance the spurious frequency of the balun. Two
route paths of balun can provide filtering responses of
identical magnitude and out-of-phase in the passband. The
coupling lengths of the SIRs are set to be §. The balun is
divided into two parts, namely, types A and B as shown in
Fig. 2. The type A is composed of an antiparallel coupled line
with its coupled port terminated by an open-circuited stub,
whereas type B is composed of a TL cascaded with the
parallel coupled line sections. For type A, the antiparallel
coupled line and the open-circuited stub with a total length of
A2 TL can produce transmission zeros in the stopband.

A. Design variables

The balun is designed to divide equally power at two
output ports. Thus, the source impedances of two type
networks (types A and B) are two times of the source
impedance of balun. For the proposed balun, the designed
variables can be derived easily from type B prototype. The
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Fig. 2. Two types of balun filter: (a) type A and (b) type B networks.
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Fig. 3. Equivalent circuit of type B network.

equivalent circuit is shown in Fig. 3 by assuming Yy = Y>. The
type B prototype cannot produce transmission zero in the
stopband. The A/2 TL is terminated with the source admittance
of Yo/2. Thus, the input admittance of Y, is the same as the
source admittance and can be found as (1).

y, =20 )

The J- and K-inverters of parallel coupled lines can be
derived as (2).

J =, [FBWG, (2a)
! 28,8

K, ~FBWG,Y, fL (2b)
’ g8

J, . =FBWGY, L (2¢)

gjng

Jo =T, /FB;W% : (2d)

| gngnH

where
6, =tan™ é =tan™ R, - 3)
2

i and j are the odd and even numbers between 1 and n-1,
respectively. The go, g1, 22, and g3 are the prototype low-pass
element values, and FBW is a fractional bandwidth of the
passband. Rz is a ratio of two characteristic admittances of SIR.
The spurious frequency can be controlled by Rz and it had
been studied.

The relative formulas of even- and odd-mode impedances
of parallel coupled lines are derived as (4) for open-circuited
stub and (5) for short-circuited stub [8].

L 1+JZ escO,+J°Z, (4a)
T -2 Z2 cot? 6,
7z 1-JZ,csc O, +J°Z; (4b)

1-J°Z; cot’ 6,

TABLE1
CALCULATED VALUES OF PROPOSED BALUN BPF
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Fig. 4. Balun BPFs with two and four stages: (a) S-parameters and (b)
phase difference between output ports.

_ o 1=KY,cscl, +K*Y) (5a)
0gj — 70
! 1-K*Y; cot’ 6,
2y2
o = 01+KYO CSC90+K12YO , (Sb)

1-K’Y; cot’ 6,
where Yoo, =1/ Zoej and Yoo; = 1/ Zyy,.

B. Design Example

From the above analysis, the balun BPF with two stage SIRs,
FBW = 5% of Chebyshev response, Z; = 90 Q, n = 2 and 4,
and Zy = Z, = 50 Q are designed. From (2) and (4), the even-
and odd-mode impedances of parallel coupled lines are
calculated and listed in Table 1. Fig. 4 (a) shows the
simulation results of balun BPFs with two and four stages
resonators. As shown in the figure, the characteristics of
insertion loss near to the passband are almost the same at the
both outputs ports. However, the transmission zeros are
produced only at the output port 2. These transmission zeros
are produced by A/2 open-circuited TL of the type B
prototype. For output port 3, the network is operated by the
type A prototype and it cannot produce transmission zero in
the stopband. Two and four transmission poles inside the
passband can be obtained by two and four stages SIRs,
respectively. The selectivity and stopband attenuation are
improved by increase number of stages. Fig. 4(b) shows the
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Fig. 5. Two stage balun BPF: (a) layout and (b) photograph of the
fabricated circuit.
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Fig. 6. Simulated and measured magnitude responses of balune BPF.

phase difference between output ports in the passband of
proposed balun with n = 2 and 4. The phase differences are
around 180° within the passband.

III. SIMULATION AND MEASUREMENT

To validate the proposed circuit, two stages balun BPF was
designed and fabricated on the microstrip line of RT/Duriod
5880 substrate with a dielectric constant of 2.2 and thickness
of 0.787 mm.

Fig. 5 shows the layout and photograph of the fabricated
balun BPF. The physical dimensions of the balun BPF are
shown in Table II. The total size of proposed circuit is 48.25
mm X 46.93 mm. The balun BPF is designed to operate at the
center frequency (fo) of 2 GHz with a FBW of 5%. The
simulated and measured S-parameter are shown in Fig. 6. The
measured input return loss is 17.5 dB at f;. The measured S>;
and S3; at the fy are 3.7 dB and 3.75 dB, respectively, showing
a good agreement with the simulation results. Within
frequency range of 1.95 GHz to 2.05 GHz, the measured
power dividings and return loss are better than 3.9 dB and 17
dB, respectively. The transmission zeros of S»; are located at 1
GHz, 2.73 GHz, 4.33 GHz, and 6.13 GHz which provide a
high selectivity and wide stopband characteristics. The
stopband attenuations are more than 25 dB from DC to 1.72
GHz at lower side of operating band and from 2.37 GHz to
6.58 GHz at higher side of the operating band. The spurious
frequency is occurred higher than 7 GHz (< 3.5f)). Fig. 7 show
the simulated and measured magnitude imbalance and phase
differences of the proposed balun. As seen in this figure, the
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Fig. 7. Simulated and measured magnitude imbalance and phase

difference in the passband of the proposed balun.

magnitude imbalance and phase differences between the
output ports are better than £ 0.3 dB and 180 + 3.5° in the
passband of 1.95 GHz to 2.05 GHz, respectively.

IV. CONCLUSION

In this paper, a design of balun BPF with high attenuation
and wide stopband characteristics is presented. The 1/4 SIRs
are used to design the proposed balun BPF and it can improve
the spurious frequency characteristics. To show the validity of
the proposed circuit, a balun BPF is designed, fabricated, and
measured in the single layer microstrip line. Both the
simulation and measurement results agree well with the
analysis. The proposed circuits are simple to design and
fabricate in the single layer microstrip technology.
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