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Substrate-Integrated Waveguide Impedance Matching Network 

with Bandpass Filtering 

Junhyung Jeong1, Phirun Kim1, Phanam Pech1, Yongchae Jeong1, and Sangmin Lee2 

1Division of Electronics and Information Engineering, Chonbuk National University, Korea 
2Wavice Inc., Hwasung-si, Republic of Korea  

Abstract—A substrate-integrated waveguide (SIW) 
impedance matching network with bandpass filtering 
response is proposed in this paper. The first and last J-
inverters are affected by the termination impedances and its 
effect is proportional to the input or output external quality 
factors of the SIW filter. For validation of the proposed 
analysis, three-stage SIW impedance matching network with 
the 20-50 Ω termination impedances is designed at center 
frequency (f0) of 8 GHz. The measured insertion loss is better 
than 0.9 dB at f0 and better than 1.3 dB from 7.62 to 8.31 
GHz (FBW = 8.6%). The measurement results are in good 
agreement with the simulation results. 

Index Terms—Bandpass filter, impedance matching, 
substrate-integrated waveguide. 

I. INTRODUCTION 

The substrate-integrated waveguide (SIW) impedance 

matching network with bandpass filtering response is very 

useful for modern wireless communication systems to 

reduce a complexity, low insertion loss, low cost, small 

circuit size, and high-power handling. The general SIW 

bandpass filters (BPFs) were analyzed and designed with 

equal termination impedance [1-5]. In [1], the fourth-order 

hybrid non-uniform-Q filter with SIW and microstrip 

elements was proposed in the same substrate. The hybrid 

SIW BPF could provide an improvement of the passband 

flatness. In [2], a negative coupling structure SIW were 

proposed to improve selectivity characteristics by loading 

pair of transmission zeros close to the passband. 

Moreover, the multiple transmission zeros generated by 

the nonphysical cross-coupling of high order modes were 

proposed to improve the higher stopband performance [3]. 

On the other hand, the SIW BPF with partially air-filled 

cavity resonator was designed in [4]. Since the resonance 

frequency of the first cavity modes can be controlled, the 

high selectivity and stopband performance could be 

improved. In [5], even-order Chebyshev response SIW 

BPF was analyzed at mmW using magnetic and electric 

coupling. Although the high selectivity and wide stopband 

could be obtained in the previous works, the source and 

load termination impedances are equal (i.e. 50 Ω). In [6], 

the stepped impedance transformer SIWs were proposed in 

the multi-layer substrate. However, the stopband 

attenuation and insertion loss were poor. 

In this paper, the SIW impedance matching with 

bandpass filtering response is proposed. The source and  
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(b) 

Fig. 1. Topologies of bandpass filter with admittance inverters. 

load termination impedances can be terminated arbitrary 

real impedances and proved a good stopband performance. 

II. DESIGN THEORY 

Fig. 1 (a) shows topology of BPF with parallel LC 

resonators and admittance inverters. In practical, the shunt 

LC resonators can be constructed in various forms, such as 

transmission line (TL) resonators, waveguide resonators, 

or SIW resonators [7]. For generalized networks, the shunt 

resonators are written with the specified susceptance as 

seem in Fig. 1(b).  As can seem in Fig. 1, the BPF is 

terminated with conductance source (GS) and conductance 

load (GL), respectively. Then, the generalized J-inverters 

of the BPF with admittance inverters can be expressed as 

(1). 
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where g0, g1, ∙∙∙, and gn+1 are the low-pass prototype 

element values, which can be defined for either Chebyshev 

or Butterworth responses, and FBW is a fractional 

bandwidth of the passband. GS,L = 1 / RS,L is the 

conductance source and load termination conductances. As 

can be seem in equations (1), the first and last J-inverter 

are strongly affected by the source and load termination 

conductances, respectively.   

For demonstration, the lossless elements are used to 

simulate the proposed impedance matching network using  
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Fig. 2. S-parameter characteristics of proposed SIW impedance 

matching network with different (a) n and (b) termination 

impedances. 

TABLE I 

CALCULATED J-INVERTERS WITH DIFFERENT OF TERMINATION 

IMPEDANCES AND NUMBERS OF STAGE 

Ripple = 0.1 dB, FBW = 8%, Li = 3 nH, Ci = 0.13 pF

J0,1

0.000488

[Ω]RS RL J1,2

5/50

10/150

20/50

0.010142

J2,3

0.003207

J3,4

0.008815 0.002787

stages

3

20/50 0.005609 0.000732 0.003547 2

0.000488 0.000488

0.000488

0.000488 0.000488 0.0032070.005071

 

ADS. Fig. 2(a) and 2(b) shows the S-parameter 

characteristics of the proposed SIW impedance matching 

network with different numbers of stage and termination 

impedances, respectively. The stopband attenuation is 

improved as n increases, but the passband is maintained 

with different termination impedances. Although the 

source and load termination impedances are unequal, the 

passband performance can be maintained. The calculation 

and specifications of Fig. 2 are listed in Table I. 

Fig. 3 shows the coupling mechanism of the SIW 

impedance matching network with bandpass filtering 

response, where S and L stand for source and load 

terminations, respectively. Moreover, QeS and QeL are the 

external quality factor at the source and load, respectively. 

r1 to rn are the resonators. 

S Lr1 r2 rn
QeS QeLK12

rn-1
Kn-1,n

 

Fig. 3. Coupling mechanism of proposed SIW impedance 

matching network with bandpass filtering. 

Ki,i+1 is the coupling coefficient between i-th and i+1-th 

resonators.  

From [7], the design parameters can be obtained as (2). 
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In practical SIW impedance matching network, the 

QeS,eL and Ki,i+1 can be obtained from the electromagnetic 

(EM) simulation by the following equation [7]. 

0
,

3dB

eS eL

f
Q

f
=


,        (3) 

where f0 is the center frequency and ∆f±3 dB is the 3-dB 

bandwidth. Similarly, the coupling coefficient between 

two resonators (K12 and Kn,n+1) can be extracted from the 

EM simulation by using (4) for asynchronous case. 
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, (4) 

where fRj (j = 1, 2) is the self-resonance frequency and fpj is 

the two split resonant frequencies. Thereafter, the coupling 

coefficient between two intermediate resonators can be 

extracted from the EM simulation by using (5) for 

synchronously tuned coupled resonators.  

2 2

2 1

, 1 2 2

2 1

p p

i i

p p

f f
K

f f
+

−
= 

+
,       (5) 

where i is start from 2 to n-1. 

III. SIMULATION AND MEASUREMENT 

For the experimental verification, the proposed SIW 

impedance matching network was designed to operate at f0 

of 8 GHz with 0.1 dB passband ripple, FBW = 8%, RS = 

20 Ω, RL = 50 Ω, and three-stage resonators. The 

calculated J-inverters values are listed in Table I. From 

(2), the external quality factors at the source and load and 

coupling coefficient between two resonators are found as 

QeS = 12.895, QeL = 5.578, and K12 = K23 = 0.0735. Using 

electromagnetic (EM), the QeS or QeL, and Ki,i+1 can be 
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Fig. 4. Proposed SIW impedance matching network: (a) layout 

and (b) photograph of fabricated circuit. (unit: mm) 
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Fig. 5. Simulated and measured frequency responses of the 

proposed SIW impedance matching network. 

extracted and calculated using (3), (4), and (5), 

respectively, as mentioned in [5] and [7]. 

The layout and photograph of fabricated SIW 

impedance matching network are shown in Fig. 4 with the 

physical dimensions. Since, the QeS and QeL are not the 

same for impedance matching, the input and output via-

hole iris window are not the same. The filter is 

implemented in microstrip substrate with a RT/Duroid 

5880 dielectric constant (r) of 2.2 and thickness (h) of 31 

mils. The overall circuit size of the fabricated network is 

19.8 mm  46.46 mm. The EM simulation was performed 

using Ansys HFSS. The measurement of proposed SIW 

impedance matching has done after TRL calibration 

technique and it has been mentioned in [8]. 

Fig. 5 shows the comparison of EM simulation and 

measurement results of the proposed SIW impedance 

matching network. The measured in-band insertion loss is 

better than 0.9 dB at 8 GHz and better than 1.3 dB from 

7.62 to 8.31 GHz (FBW = 8.6%). The passband has been 

shifted 40 MHz to the low frequency. The shifted 

frequency might be the due to the fabrication error. The 

input return loss within the whole passband are better than 

13.7 dB. Moreover, the attenuations at 400 MHz lower- 

and upper-sides of the passband are better than 15 dB. The 

measured group delay of the passband is lower than 0.8 ns 

at f0 and better than 1.4 ns in the whole passband. 

IV. CONCLUSION 

In this paper, a new designed SIW impedance matching 

network with bandpass filtering response is proposed. The 

source and load termination impedances can be changed 

with arbitrary real impedance. For the validity, three-stage 

SIW impedance matching network is designed, simulated, 

and measured. The proposed SIW impedance matching is 

expected to be advantageous in matching network designs 

of power amplifier and antenna at microwave frequency. 
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