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Abstract — This paper demonstrates a dual-polarized
microstrip patch antenna with high interport isolation for in-band
full duplex transceiver. The proposed antenna consists of four port
linearly polarized signal radiating elements with differential
feedings at input/output ports. The defected ground structure
(DGS) under patch has been adopted for enhancement of antenna
return loss bandwidth. To achieve high isolation, two identical
differential feeding networks using wideband branch-line Balun
have been utilized as a self-interference circuit. The analytical
design equations have been derived for achieving high isolation in
the proposed antenna. For experimental verification, the
prototype has been fabricated at the center frequency of 2.5 GHz.
The fabricated antenna provides more than 47 dB RF isolation
between TX-to-RX port for 100 MHz bandwidth.

Keywords — Branch-line Balun, differential feeding networks,
high RF isolation, in-band full duplex.

I. INTRODUCTION

In recent years, mobile data-traffic has been increasing
rapidly. To achieve demand for high mobile data-traffic, system
capacity enhancement has been regarded the most important
requirement of a next-generation 5SG communication network,
which can be achieved by boosting spectral efficiency. Since
in-band full duplex (IBFD) can simultaneously transmit and
receive signals over the same time and frequency, IBFD can
theoretically double data throughputs and spectral efficiency.
Therefore, the IBFD system is considered as one of the
candidates for next-generation 5G communication systems [1].
The major challenge for implementing IBFD systems is how to
reduce the strong self-interference (SI) imposed on the received
(RX) signals by the transmitted (TX) signals. The amount of
self-interference cancellation (SIC) depends on the TX signal
power, signal bandwidth, and the noise at the receiver [1]-[4].

In order to realize the advantages of the IBFD system, the SI
signal level should be reduced to the same level as the receiver
noise. In recent years, a lot of research has gone toward
different SIC techniques to achieve desired cancellation [5]-[8].
Based on literature reviews, SIC can be achieved in three ways:
cancellation at antenna stage or passive suppression, RF analog
cancellation, and digital cancellation. In addition, the SIC
should achieve higher than 50 dB with passive suppression
(antenna stage) or RF analog stage in order to prevent the
saturation of the receiver building blocks (low noise amplifier,
mixer, and ADC).

978-2-87487-055-2 © 2019 EuMA
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The SIC technique at the antenna stage is the first step to
achieving high levels of SIC, which can prevent saturation of
the receiver. In addition, high RF isolation at the antenna stage
make other stage cancellations easier without the need for
complex RF analog and digital domain SIC techniques. One
approach at antenna stage is to make use of orthogonal
polarization to obtain high isolation between TX-and RX-ports
[9]. In [10], a dual-polarized patch antenna is presented using a
differential feeding network that consists of a power divider
with two meandering strips with a 180° phase difference to
achieve 40 dB isolation between TX- and RX-ports. Similarly,
a dual-polarized patch antenna with the hybrid ring feeding is
present in [11], which provides measured isolation of more than
40 dB. In [12], a patch antenna is fed from the same edge where
the dual-polarization is obtained by differential excitation of the
two side ports with 180° ring hybrid. However, the achievable
isolation is limited because of the strong coupling between the
closely-spaced microstrip feeding the radiating patch from the
same edge. Furthermore, the dual-polarized with differential
feeding patch antennas are presented in [13], [14] based on
three and four ports, respectively. Although high isolation is
obtained in these works, however, the bandwidth is still limited
to 50 MHz at 2.4 GHz center frequency.

In this paper, the dual-polarized antenna with defected
ground structure (DGS) has been demonstrated for IBFD
transceiver using two identical wideband branch-line Balun
feeding networks for achieving high TX-to-RX port isolation
over wide frequency bandwidth. The general design equations
have been derived to assist in the accurate design of the high
isolation antenna.

II. ANALYTICAL DESIGN EQUATIONS

Fig. 1 depicts the proposed structure of the double differential
feeding antenna with wideband high isolation between TX- and
RX-ports. The proposed antenna consists of a square shape
single radiating patch where TX- and RX-operational modes are
excited by the differential mechanism through a pair of
opositively placed ports using Baluns. The DGS has been
utilized at the bottom plane of the antenna for enhancing the
reflection coefficients of the antenna. Signal flow analysis is
applied to derive TX-to-RX isolation. First, input TX-signal is
divided into two out-of-phase signals defined as (1) due to
Balun BI.

1-3 Oct 2019, Paris, France
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Fig. 1. (a) Proposed double differential fed dual-polarized defected ground
(DGS) antenna for in-band full duplex system, (b) top view, and (c) bottom
view of the antenna.
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Secondly, leakage signals generated from TX-antenna will
be coupled with differential feeding network and combined by
Balun B2 at RX-port of the antenna. Therefore, a coupling
between TX-to-RX ports can be calculated as (2).

(M

{Sm (f) S, /7 } S0, (/)
IX-RX _ +S50 (/) S (f)eij%u(/) V2 )
T S5 (D8 ]S (f) e

{ Stz (/) Sisa (f )e"¢434(f)}Te

where S, (f) and ¢, (f) are magnitude and phase of
leakage signals generated through TX-mode operation of the
antenna, respectively. Assuming lossless feeding networks (B1
and B2) are lossless and identical, the TX-to-RX ports isolation
can be further simplified as (3) by using (1) and (2).

AIT;((;RX (f) = 2/\/ b12 + bzz
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From (3), it can be concluded that TX-to-RX ports isolation
of antenna depends only antenna leakage signals imbalances but
also depends on feeding networks imbalances. Furthermore, the
TX-to-RX isolation can be simplified as (5) if both feeding

(4c)
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Fig. 6. Simulated TX-to-RX isolation of the proposed antenna with different
differential feeding networks.

networks have perfect magnitude and phase imbalances.

(f) = 2/\/A§A +AL=2A,A, COS(A(PzA _(P4A) ()

As can be seen from (5), the antenna leakage signal
magnitude and phase should be equal to get infinite TX-to-Rx
isolation of antenna. Therefore, these leakage signal magnitude
and phase errors should be minimized for achieving the high
isolation over the wide bandwidth.

For validation of the analytical equations, Figs. 2 and 3 show
the calculated TX-to-RX isolation of IBFD antenna under
different parameters variations. As observed from these figures,
the high isolation over wide frequency bandwidth can be

TX-RX
AISO
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Fig. 7. Measurement setup of the proposed antenna.
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Fig. 8. Measured |S)i], |S22|, and TX-to-RX isolation of fabricated overall
antenna.

achieved if antenna leakage signals amplitude and phase errors
of both feeding networks are minimum. In addition, the TX-to-
RX isolation higher than 60 dB can be achieved if the amplitude
and out-of-phase imbalance errors of feeding networks and
antenna leakage signals are maintained within 0.2 dB and 2°,
respectively.

Fig. 4 shows the characteristics of different feeding networks
for comparison. As seen from this figure, the wideband branch-
line Balun feeding network has superior performances as
compared to the conventional ring hybrid [15]. Therefore, in
this work, wideband branch-line will be utilized to achieve high
isolation over the wide frequency bandwidth.

III. SIMULATION AND EXPERIMENTAL RESULTS

For experimental demonstration, the antenna is fabricated at
the center frequency of 2.5 GHz using a substrate (¢, =2.2, h =
0.787 mm, and tand = 0.0009). The simulation is performed
using ANSYS 2018. The patch size of the antenna is 30 x 30
mm?,

Fig. 5 shows the simulated magnitudes of |Si1| and |S2,| with
and without DGS, where the return loss of the proposed antenna
with DGS is wider than without DGS. Similarly, Fig. 6 shows
the simulated TX-to-RX isolation using different differential
feeding networks. From these results, TX-to-RX isolation is
higher over the wide frequency bandwidth in case of the
wideband branch-line Balun feeding network because the
magnitude and phase responses of Balun are superior to the ring
hybrid.

The measurements were performed in a laboratory
environment and the results were taken directly from a full-
assembled antenna system as shown in Fig. 7. Fig. 8 illustrates
the experimental results of the proposed antenna.
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2.50 GHz and (b) peak realized gain/radiation efficiency.

From measurement, the magnitudes of |Sii| and |[S»| are
determined to be -17.82 dB and -25.77 dB at f; = 2.50 GHz,
respectively, providing the 10-dB return loss bandwidth of 100
MHz. Similarly, TX-to-RX port isolation is greater than 47 dB
for 100 MHz bandwidth.

Fig. 9(a) shows simulated co-polarization and cross-
polarization E-plane gain patterns of the proposed antenna. As
noted from the figure, the antenna provides better than 5.06 dBi
gain and 80° half power beam-width (HPBW) in theta direction
of each port. Similarly, the simulated radiation efficiency of the
antenna is around 96.5% and 96.8 % at 2.50 GHz for TX- and
RX-ports as shown in Fig. 9(b), respectively.

IV. CONCLUSION

In this paper, microstrip patch antenna with defected ground
structure has been demonstrated for in-band full duplex
transceiver by deploying two identical branch-line Balun as
simple self-interference cancellation circuit. The accurate
design equations have been derived to assist in achieving high
TX-to-RX port isolation. For experimental demonstration, the
antenna has been designed and fabricated at a center frequency
of 2.5 GHz. The proposed antenna has achieved higher than 47
dB isolation between TX-to-RX ports with 10 dB return loss of
100 MHz. The easy implementation and good performance
indicate that the proposed method can be a good candidate for
wideband in-band full duplex systems.
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