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Abstract—In this paper, a novel vector modulator (VM) that
precisely controls the magnitude and phase of input signals
simultaneously is proposed. The proposed VM consists of low phase
deviation attenuators, a 90◦ hybrid splitter, and Wilkinson power
combiner. In order to overcome the phase deviation characteristics
found in the conventional attenuators, the novel phase compensation
technique has been adopted and mathematically analyzed. Linear
vector arrays along the center point with large signal magnitude
variations in a full 360◦ phase control are achieved on a polar plane by
the proposed VM.

1. INTRODUCTION

Multiple input multiple output (MIMO) systems can provide a higher
spectral efficiency and higher effective signal to noise ratio (SNR), so
consequently a higher data throughput [1]. However, the performance
of MIMO systems is severely affected by an imprecise magnitude and
phase control of the signals in each antenna path [2–4]. Recently,
various methods such as genetic algorithms and adaptive theory are
applied to antenna array for beam-forming and sidelobe rejection [5–
11].

The VM is an RF or microwave circuit which can control both the
magnitude and phase of transmitted signal simultaneously. With the
proper magnitude and phase control obtained by using the VM, the
precise beam-forming and unwanted antenna sidelobe rejection can be
obtained. The VM is one of key circuits in the radar and linearized
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power amplifier systems using a feedforward technique in modern
wireless communication systems [12]. The VM is also applicable
to different applications such as cancellation of unwanted jamming
signals, nulling of antenna reflections in monostatic radar systems,
linear filter equalizer, quadrature amplitude modulation and so on.

Several approaches have been proposed in the VM design
including variable phase shifter, attenuator [13, 14] and gain controlled
amplifiers [15, 16]. These VM designs exhibit some drawbacks,
such as the difficulties found in designing high performance variable
attenuators with a low phase deviation and variable phase shifters
with a constant output signal magnitude. The VM presented
in [13] has a huge footprint due to the required phase shifters
and attenuators. Another approach is based on reflection-type
balanced modulators [15, 16], but it requires a large number of
passive distributed combining components, leading to large circuit
size requirements even for high operating frequencies. Recently,
various studies and researches are going on the field of high frequency
(THz) metamaterials which can be used to design in VM for THz
applications [17–20].

This paper presents a VM using low phase deviation attenuators.
A novel phase compensation method is used in the attenuator to
reduce the large phase deviation characteristics found in conventional
attenuators. The conventional attenuator with the large phase
deviation usually requires the additional phase compensation circuit.

2. MATHEMATICAL ANALYSIS

Figure 1(a) shows the structure of the proposed VM. It consists of a
90◦ hybrid splitter, low phase deviation attenuators, and Wilkinson
power combiner. The 90◦ hybrid splitter divides the input signal into
the in-phase (I, 0◦) and quadrature (Q, −90◦) components. The
low phase deviation attenuators control the signal magnitude and
polarity in each I and Q path. The attenuated orthogonal I and Q
signals are constructively combined by the Wilkinson power combiner.
Mathematically, the output of the VM is:

RFout = αI∠−90◦ + βQ∠−180◦ (1)
where α and β are less than 1.

Figure 2 shows the equivalent circuit of the conventional and
proposed low phase deviation attenuators. The input impedance ZL of
conventional attenuator looking into PIN diode as shown in Fig. 2(a)
is given as:

ZL = Rs +
Rj

1 + (ωRjCj)
2 + jω

(
Ls −

CjR
2
j

1 + (ωRjCj)
2

)
(2)
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Figure 1. The proposed structure of vector modulator.
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Figure 2. Equivalent circuit of (a) conventional attenuator and
(b) proposed the low phase deviation variable attenuator.

Similarly, as described in [21], the input impedance Zin when
looking into the transmission line terminated with a PIN diode as
shown in Fig. 2(b) is given as:

Zin = ZcA
(Zc + B tan θ) − (B − Zc tan θ) tan θ

(Zc + B tan θ)2 + (A tan θ)2

−j
(Zc + B tan θ) (B − Zc tan θ) + A2 tan θ

(Zc + B tan θ)2 + (A tan θ)2
(3)

where the values of A and B are:

A = Rs +
Rj

1 + (ωRjCj)
2 , B =

ωCjR
2
j

1 + (ωRjCj)
2 − ωLs (4)

In order to obtain the zero input reflection coefficients on Smith
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chart, Zin must be matched with Z0 + j0Ω by:

− (AZ2
c −Z0A

2−Z0B
2
)
tan2 θ−2Z0ZcB tan θ+AZ2

c +Z0Z
2
c =0 (5)

−BZc tan2 θ +
(
B2 − Z2

c + A2
)
tan θ + BZc = 0 (6)

With these conditions, the characteristic impedance and electrical
length of transmission line at the zero crossing point on Smith chart
can be found by simultaneously solving (5) and (6).

In order to show the validity of the mathematical analysis of
the proposed low phase deviation attenuator, the input reflection
coefficient (Γin) looking into the transmission line terminated with
PIN diode are plotted through MATLAB and compared with the
load reflection coefficient (ΓL) looking into just PIN diode only as like
Fig. 2. The equivalent circuit parameters of Avago HSMP-4810 PIN
diode were used, whose values are given as Ls = 1nH, Rs = 3Ω and
Cj = 0.35 pF. With Z0 = 50Ω, the calculated characteristic impedance
and electrical length of the transmission line at the center frequency
of 2.14 GHz are 87.8 Ω and 62.6◦, respectively.

Figure 3(a) shows ΓL trace of the PIN diode according to the
Rj variation. Although the ΓL trace looks like a straight line passing
through the origin, it does not pass through the center point of Smith
chart shown in the magnified portion of the figure. As a result, the
phase response of the ΓL according to Rj is not constant as shown
in Fig. 4(a). It is due to the parasitic components found in the PIN
diode.

Figure 3(b) shows the Γin trace of the proposed attenuator. The
Γin trace follows a straight line and passes through the center point
of Smith chart, shown in the magnified portion of the figure. The
phase response of the Γin according to Rj is shown in Fig. 4(b), which
is practically constant over all of the variations of Rj . This result
is due to the fact that the transmission line terminated with the PIN
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Figure 3. The simulated reflection coefficient according to the
junction resistance: (a) looking into the PIN diode and (b) looking
into the transmission line terminated with PIN diode.
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Figure 4. The simulated phase response of the reflection coefficient:
(a) the conventional attenuator and (b) the proposed low phase
deviation attenuator.

diode compensates for the effect of the parasitic components of the PIN
diode. An advantage of the proposed attenuator over the conventional
attenuators in [12, 13] is that it can provide dual reverse polarities as
well as the constant phase characteristics.

3. THE EXPERIMENTAL RESULTS

In order to show the validity of the proposed VM, the reflection
type low phase deviation attenuator was designed and fabricated for
frequency band operating at 1.99 ∼ 2.29GHz with a center frequency
of 2.14 GHz and compared with the conventional attenuator. A Rogers
Corporation RT/Duroid 5880 substrate with a dielectric constant (εr)
of 2.2 and a thickness (h) of 31 mils was used.

The measured phase deviation characteristics of the conventional
and proposed attenuators are shown in Fig. 5. The conventional
attenuator has a phase deviation of 86◦ for 22 dB signal attenuation,
whereas the proposed attenuator has only a 2.9◦ phase deviation for
37 dB signal attenuation. The input and output return losses of the
proposed attenuator are better than 27 dB in the overall attenuation
range, respectively.

Based on the novel low phase deviation attenuator presented in
the above section, the VM was designed for frequency band operating
at 1.99 ∼ 2.29GHz. The measured magnitude and phase variation of
the proposed vector modulator in the linear plane are shown in Fig. 6.
The amplitude and the phase variation are constant over the frequency
range of 1.99 ∼ 2.29GHz.
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The measured data arrays from the proposed VM are shown in
Fig. 7 on the polar plane. The constellation states of the VM are
straight lines passing through the center point of Smith chart. These
results were obtained by sweeping the attenuator voltages in the I
and Q paths of the VM. The measured input return loss (S11) and the
output return loss (S22) were better than 27 dB and 20 dB, respectively,
in over all of the control ranges. The photograph of fabricated VM
is shown in Fig. 8. The overall circuit size of the fabricated VM is
6 × 10 cm2.

0 5 10 15 20 25 30 35 40
-15

0

15

30

45

60

75

90

P
ha

se
 D

ev
ia

ti
on

 [
D

eg
re

e]

Attenuation [dB]

 Proposed 
 Conventional

Figure 5. Comparison of phase deviation characteristics of
conventional and proposed attenuators.
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Figure 6. The measured (a) magnitude and (b) phase variation of
the proposed vector modulator in the linear plane over the frequency
range of 1.99 ∼ 2.29GHz.
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Figure 7. The measured array
for the proposed vector modulator
in the polar plane.
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Figure 8. The fabricated vector
modulator.

4. CONCLUSION

In this paper, a vector modulator design employing the novel low phase
deviation attenuators is presented. The proposed low phase deviation
attenuator overcomes the large phase deviation characteristics found in
the conventional attenuators, which is one of the critical design issues in
vector modulator design. The proposed vector modulator contributes
considerably to the precise control of the magnitude and phase of
input signals with large magnitude variations in the 360◦ phase control
range. The proposed vector modulator is expected to be applicable
to multiple input multiple output systems, the linearization circuits
of power amplifiers, jamming cancellation system, monostatic radar
systems, linear filter equalizer, and quadrature amplitude modulation.
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