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ABSTRACT: This article presents a novel approach to the design of a
compact wideband negative group delay (NGD) network using cross cou-
pling between open stubs. The NGD time can be controlled by external

series resistors, whereas the NGD bandwidth can be controlled by the
coupling coefficient between open stubs. To verify the design concept, the

NGD network operating at center frequency of 1.96 GHz was designed
and fabricated. From the measurement results, a maximum achievable
NGD time of 21.1 6 0.2 ns was obtained over a 410 MHz BW with a

maximum signal attenuation of 29.23 dB. VC 2014 Wiley Periodicals, Inc.

Microwave Opt Technol Lett 56:2495–2497, 2014; View this article

online at wileyonlinelibrary.com. DOI 10.1002/mop.28627
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1. INTRODUCTION

In recent years, there has been an increasing amount of research

on negative group delay (NGD) networks due to their interesting

characteristics of time advancement in wave propagations [1–7].

The NGD, being a counterintuitive phenomenon; can be

observed in certain materials as well as artificial structures

within limited frequency bands under a signal attenuation (S21)

condition/negative refractive index [2], where it is equivalent to

an increasing phase with frequency. The NGD networks have

been implemented in electronic circuitry and have been applied

to various practical communication systems [3–7].

Recently, a new and interesting application of the NGD net-

work for the realization of non-Foster reactive elements, such as

a negative capacitance or inductor, has been reported in [8]. It

has opened a door for new application fields of NGD networks,

and can also be extended to electromagnetic (EM) applications

such as increasing the bandwidth of artificial magnetic conduc-

tors by loading them with NGD networks as non-Foster ele-

ments. In RF and microwaves, the series and parallel resistor-

inductor-capacitor (RLC) resonators are widely used to design

active/passive NGD networks [3–7, 9]. To overcome the limited

availability problem of lumped elements in RF and microwave,

NGD networks using distributed elements have also been pre-

sented in literature [3, 7]. However, these conventional NGD

networks suffer from a narrow NGD bandwidth. Recently, a

passive NGD network with an enhanced bandwidth based on

asymmetrical directional coupler has been reported [10]. How-

ever, this structure requires optimization methods to get the cou-

pling coefficients of multisection directional couplers.

In this article, a novel method to design a distributed trans-

mission line NGD networks with enhanced bandwidth is pre-

sented. The bandwidth of the proposed network can be

controlled by a coupling coefficient between open stub

resonators.

2. PROPOSED STRUCTURE OF TERMINATION NETWORKS

Figure 1(a) shows the conventional structure of NGD networks,

which do not have coupling between two open stub resonators

[6]. Figure 1(b) shows the proposed structure of NGD networks,

which consists of resistor-connected stubs with a characteristic

impedance Z2 and an electrical length h2, a coupled line with

characteristic impedances Z0e and Z0o and electrical length h3,

and through line with a characteristic impedance Z1 and electri-

cal length h1. As the proposed NGD structure is symmetrical

with respect to the center through line, odd- and even-mode

analyses can be applied to find the performance of proposed

circuit.

Under the odd-mode excitation, the proposed NGD structure

can be represented as the equivalent half circuit shown in Figure

2(a). The odd-mode input impedance is given as shown in (1).

Zin odd5
Z1tan ðh1=2Þ A1jRBð Þ

RB1j Z1Btan ðh1=2Þ2Að Þ (1)

where

A5Z2Z0ocot h32Z2
2tan h2 (2a)

Figure 1 Structure of NGD networks: (a) conventional [6] and (b)

proposed structure of wideband NGD network
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B5Z21Z0ocot h3tan h2 (2b)

Under the even-mode excitation, the proposed NGD network

can be represented as the equivalent half circuit shown in Figure

2(b). The even-mode input impedance is given as shown in (3).

Zin even5
Z1cot ðh1=2Þ C2jRDð Þ

RD2j Z1Dcot ðh1=2Þ2Cð Þ (3)

where

C5Z2
2tan h22Z2Z0ecot h3 (4a)

D5Z21Z0ecot h3tan h2 (4b)

Using these odd- and even-mode impedances [11], the S-

parameters of the proposed circuit are given as shown in (5).

S115S225
Zin evenZin odd2Z2

0

Zin even1Z0ð Þ Zin odd1Z0ð Þ (5a)

S215S125
Zin even2Zin oddð ÞZ0

Zin even1Z0ð Þ Zin odd1Z0ð Þ (5b)

where Z0 is the port impedance. The group delay (GD) of the

proposed circuit can be obtained using the following well-

known relation.

sg52
d/S21

dx
52

d

dx
tan 21 Im S21ð Þ

Re S21ð Þ

� �
(5)

where Im(S21) and Re(S21) are the imaginary and real parts of

the transmission coefficient (S21), respectively. The coupling

coefficient of the coupled line in the proposed circuit is defined

as shown in (7).

Ceff5
Z0e2Z0o

Z0e1Z0o

(6)

For the design graph, the GD, magnitude, and phase charac-

teristics of the transmission coefficient (S21) are plotted in Fig-

ure 3 for different values of Ceff. For this purpose, the circuit

elements of the proposed circuit are assumed to be Z1 5 Z2 535

X, R 5 3.5 X, h1590�, and h2 5 h3 5 45� at the center frequency

(f0) for simplicity. The different values of Ceff according to the

combination of Z0e and Z0o are given in Table 1. As seen in Fig-

ure 3(a), the NGD bandwidth can be enhanced by increasing

Ceff of the coupled lines. As compared to the NGD network

without coupling, the proposed network has two poles in the

NGD time, which helps to enhance the NGD bandwidth. How-

ever, the flatness of NGD is degraded. Therefore, there is a

trade-off between the NGD magnitude flatness, S21 magnitude

flatness, and the NGD bandwidth. Figure 3(b) shows the phase

characteristics of the proposed wideband NGD network under

the different values of Ceff. As seen from this figure, the slope

of S21 is positive over a wide frequency range, which signifies

the presence of NGD over a wide bandwidth.

3. EXPERIMENTAL VERIFICATION

To verify the design method of the proposed structure, the NGD

network with a GD of 21.2 ns operating at f0 5 1.96 GHz was

Figure 2 The equivalent half circuits under odd- and even-mode exci-

tations: (a) odd-mode excitation and (b) even-mode excitation

Figure 3 Simulated results of proposed NGD network: (a) GD/magni-

tude characteristics and (b) phase characteristics of S21. [Color figure

can be viewed in the online issue, which is available at wileyonlineli-

brary.com]

TABLE 1 Odd- and Even-Mode Impedances of the Coupled
Lines

Z0e (X) Z0o (X) Ceff

35 30 0.076

35 32 0.045

35 34 0.014

35 35 No coupling
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designed and fabricated. The EM simulation layout of the proposed

network is shown in Figure 4(a). The circuit was fabricated on a

Rogers RT/Duroid 5880 substrate with a dielectric constant (er) of

2.2 and a thickness (h) of 31 mils. The EM simulation was per-

formed using HFSS v15. The parameters of the fabricated circuit

after the EM simulation are given as: R 5 3.5 X, W0 5 2.4, L0 5 5,

W1 5 4.20, L1 5 28, W2 5 4.2, L2 5 4.4, L3 5 11, L4 5 6.30, and

g1 5 1.8 (unit: millimeter). A photograph of the fabricated circuit is

shown in Figure 4(b) and the overall circuit size is 40 3 35 mm2.

Figure 5(a) shows the simulation and measurement results of

the proposed NGD network. As seen in these figures, the measure-

ment results are in good agreement with the simulation results.

From the measurements, a maximum achievable NGD value of

21.1 6 0.1 ns over the frequency range of 1.7622.75 GHz was

obtained, which shows the widest bandwidth as compared to pre-

vious works [2, 6, 7]. Therefore, NGD-bandwidth product of the

proposed circuit is given as 0.451. The maximum signal attenua-

tion (S21) was found to be 29.30 dB at f0 5 1.96 GHz. Figure 5(b)

shows the measured phase characteristics of S21, where the phase

slope is positive over a certain frequency range which can be used

for the wideband phase compensation.

4. CONCLUSION

In this article, the design of a compact wideband NGD network is

presented. The NGD bandwidth can be controlled by the changing

coupling coefficient between open stubs. For the experimental veri-

fication, the NGD network operating at a center frequency of

1.96 GHz was designed and fabricated. The measurement results

were in good agreement with the simulations. The proposed net-

work can provide a wideband NGD, is simple to design and is

expected to be applicable for wideband communication systems.
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Figure 4 (a) EM simulation layout and (b) photograph of fabricated

wideband NGD network. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com]

Figure 5 Simulation and measurement results: (a) GD/magnitude char-

acteristics and (b) phase characteristics of S21. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com]
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