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ABSTRACT
This paper presents an analytical design for a microstrip parallel-
coupled line bandpass filter (BPF) with arbitrary termination and 
image impedances. Using the proposed design formulas, multistage 
arbitrary termination impedance BPFs can be designed with a very 
high impedance transforming ratio (r). The fractional bandwidth and 
return losses are maintained even though the r and image impedance 
are varied. To validate the design formulas, two- and three-stage BPFs 
are fabricated and measure at the center frequency (f0) of 2.6 GHz. 
The filter 1 and filter 2 are designed with termination impedances of 
50–300 Ω and 20–50 Ω, respectively. The measured results of both 
filters show a good agreement with the simulations. The measured 
passband insertion and return losses of filter 1 are better than 0.8 and 
19.6 dB, respectively. Similarly, the measured passband insertion and 
return losses of filter 2 are better than 1.5 and 19 dB, respectively.

1.  Introduction

The bandpass filter (BPF) with an arbitrary termination impedance was analyzed and 
designed to use in modern wireless communication systems in order to reduce the circuit 
size, loss, complex circuit, and provide an out-of-band suppression. The general parallel-cou-
pled line BPFs were analyzed and designed with equal termination impedances (i.e. 50–50 
Ω) [1–5]. In [1], the first parallel-coupled line BPF was synthesized by S.B. Cohn for the 
Chebyshev and Butterworth responses. The design formulas were derived and applicable 
for equal termination impedance coupled resonator filters. In [2,3], an analysis and optimi-
zation of parallel-coupled line BPF were derived for an arbitrary characteristic image imped-
ance of coupled lines, but the arbitrary termination impedance of source and load impedance 
was not discussed. The modified parallel-coupled line BPFs by adding defected ground 
structure (DGS) and shunt stubs were discussed in [4] and [5] with wide-stopband charac-
teristics. In [6], a new design formulas of wideband parallel-coupled line BPF was derived 
up to nine stages (n = 9) based on a composite ABCD matrices. The BPF with alternative J/K 
inverters was proposed in [7] with wide stopband characteristics. However, these conven-
tional design equations were only applicable for even-order Chebyshev responses BPF with 
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equal termination impedances. Wideband and balanced BPFs using multiple stub TLs and 
coupled lines were presented in [8]. Moreover, substrate integrate waveguide and microstrip 
line dual-band BPFs were presented in [9,10], respectively, with equal termination imped-
ance. The general design formulas of equal termination impedance of wideband, single-band, 
and dual-band BPFs have been derived, but the general solutions for unequal termination 
impedance BPFs were not solved.

An impedance transformer (IT) is one of the arbitrary termination impedance circuits. 
Indeed, a quarter-wavelength IT was widely used; however, this network has some limitations 
such as difficulty in realization for very high impedance transforming ratio (r) [11] and poor 
out-of-band suppression [12]. To overcome such limitations, various types of coupled line 
ITs have been proposed [13–20]. In [13], a single open-circuit coupled line with a predefined 
coupling coefficient was introduced as the IT. In [14]-[16], a coupled line IT with a shunt stub 
TL and its application with a power divider and power amplifier were demonstrated. The 
shunt open-circuit stub TL was used to produce transmission zeros in the stopband and to 
enhance the passband bandwidth. In [17], a dual-band filtering power divider with unequal 
termination impedance was designed based on the matching ladder network of [18] with 
a limited of r (i.e. 0.5 < r < 2). To enhance selectivity and r, two cascade parallel-coupled line 
IT was proposed in [19]. In [20], a multi-section parallel-coupled line BPF with unequal ter-
mination impedance was presented, and times consuming is needed for the optimization 
process. Furthermore, the impedance transforming ratio is low.

Another application of unequal termination impedance filters were presented in [21–26]. 
In [21], the input- and output-matching networks of the amplifier were designed in microstrip 
line by optimizing from the low-pass filter of [22]. Moreover, the BPFs with one [23], two [24], 
and three [25] poles were analyzed from the coupling matrix to directly match with the 
output impedance of the amplifier. The power amplifier was designed on the microstrip line; 
however, the filter was designed with evanescent-mode cavities resonator. The co-design 
method might reduce the circuit size and obtained a high efficiency. Furthermore, the syn-
thesis approach of the coupling matrix with arbitrary termination impedance was briefly 
explained in [26] without any fabrication of the validations.

In this paper, the general design formulas of the arbitrary termination impedance BPFs 
are derived using parallel-coupled lines structure. The design formulas provide more accu-
rately and faster design and can be used to calculate the n-resonators, the arbitrary termi-
nation impedances, and the arbitrary characteristic image impedance of the coupled lines. 
Using the proposed design equations, the coupling coefficients of arbitrary termination 
impedance coupled line BPF can be controlled by changing image impedance of coupled 
lines, while the conventional design equations were only applicable for equal termination 
impedance BPF with fixed characteristic image impedance (typically termination impedance 
of 50 Ω). To validate the design formulas, two BPFs with termination impedances of 50–300 
and 20–50 Ω are fabricated on a microstrip line at the design center frequency of 2.6 GHz. 
The measured performances of both filters show very good agreement with specifications. 
For filter 1, the measured passband insertion and input/output return loss are better than 
0.8 and 19.6 dB, respectively. For filter 2, the measured passband insertion and input/output 
return loss are better than 1.5 and 19 dB, respectively.
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2.  Circuit analysis

Figure 1 shows the proposed structure of multi-stage parallel-coupled line BPF with different 
even- and odd-mode impedances, where the termination admittances of source and load 
are GS and GL. The electrical lengths of all coupled lines are set to be θ. Figure 2 shows a 
parallel-coupled line section and its equivalent circuit [27]. By equating the ABCD matrix of 
the parallel-coupled line and its equivalent circuit, the even- and odd-mode characteristic 
impedances are derived as mentioned [27]. In more general, the even- and odd-mode imped-
ances are written as (1):
 

 

From the relationship of Figure 2(a) and (b), the equivalent circuit of Figure 1 is depicted 
in Figure 3(a). From Figure 3(a), in case the GS is not equal to the Y1, the input admittance 
(Y01) looking into the source is obtained as (2). Y1 = 1/Z1 is the image admittance of paral-
lel-coupled line.

 

It is assumed that the angular frequency (ω) is close to ω0. Similarly, the input admittance 
of YA in Figure 3(a) is obtained as (3):
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Figure 1. Parallel-couple line bandpass filter.
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Figure 2. (a) Single parallel-coupled line and (b) its equivalent circuit.
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where
 

Ba is the susceptance of YA and it is combined with the first resonator. The real part of YA 
becomes a source termination conductance of a modified equivalent circuit as shown in 
Figure 3(b). Then, the total susceptance of the first resonator B1 becomes as:
 

where
 

Bb is the susceptance of resonator between inverter J0,1 and J1,2. From (5), the susceptance 
slope parameter is derived in (7):
 

On the other hand, the input admittance (Y1L) looking toward the load is derived in (8):
 

Similarly, the input admittance YAL in Figure 3(a) is given as (9):
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Figure 3. (a) Equivalent circuit of parallel-couple line bandpass filter and (b) modified equivalent circuit 
model of (a).
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where
 

In this case, Bal is the susceptance of YAL and it is combined with the last resonator. The real 
part of YAL becomes a load termination conductance of a modified equivalent circuit as 
shown in Figure 3(b). Then, total susceptance of the last resonator Bn becomes as:
 

where Bbl (ω) = Bb (ω) is the susceptance of the resonator between inverter Jn-1,n and Jn,n+1. 
From (11), the slope parameter of the last resonator is computed as (12):
 

Beside the first and last susceptance resonators, the susceptances of the intermediate res-
onators are equal to Bb and their slope parameters [28] are obtained as (13):
 

Then, the design formulas of J-inverters with arbitrary termination impedances and image 
admittance (Y1) are calculated as (14):
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where g0, g1, …, gn+1 are the prototype low-pass element values, which can be computed 
for either Butterworth or Chebyshev responses [28]. FBW is the fractional bandwidth of the 
passband. b1, bn, and bi are calculated from (7), (12), and (13), respectively.

In case of n = 2, the first and last J-inverters are the same for (14a) and (14e), respectively; 
however, the J1,2 is found as (15):

 

where n is number of stages. From (14) to (15), the J-inverter values can be calculated for 
either Butterworth or Chebyshev responses with arbitrary real termination and image imped-
ances of parallel-coupled lines. Then, the even- and odd-mode characteristic impedances 
of parallel-coupled lines are computed using (1).

3.  Design examples

The design procedures of proposed filter are summarized with design flowchart as shown 
in Figure 4.

Design examples including different n, image impedance, and termination impedances 
are presented to verify the design formulas. The filters are designed for FBW = 5% and pass-
band ripple (LAr) of 0.0434 dB (S11 = –20 dB). Using the above design steps, the calculated 
circuit parameters with the Chebyshev response are given in Table 1. In these simulations, 
ideal elements are used in advance design system (ADS) to simulate the theoretical perfor-
mances of the proposed BPF.

Figure 5(a) shows the S-parameter and equal ripple characteristics with different n. As 
shown in the figure, the numbers of transmission pole are proportional to the n. The stop-
band attenuation become steeper as the n increases. Moreover, the magnitudes of equal 
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Figure 4. Design flowchart of proposed bandpass filter.
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ripples are maintained even though n vary from 2 to 4 and RS is not 50 Ω. Figure 5(b) shows 
the S-parameter and passband ripple characteristics with different Z1. The S-parameter char-
acteristics and equal ripples are maintained for all Z1; therefore, the changing Z1 does not 
affect the filter response. Figure 5(c) shows the S-parameter and passband ripples charac-
teristics with different r. r is defined as the ratio of source to load termination impedances 
(r = RS/RL). The passband characteristics were still maintained with the changing r; however, 
the stopband attenuation is more attenuated when the r is very small.

4.  Measurement results

For the experimental validation, two BPFs with different termination impedances and n were 
designed, simulated, and fabricated at center frequency (f0) of 2.6 GHz. The filter 1 is designed 
with RS = 50 Ω, RL = 300 Ω, n = 2, Z1 = 60 Ω, FBW = 5%, and LAr = 0.0434 dB. The calculated 
element values of filter 1 are Z0e1 = 84.36 Ω, Z0o1 = 47.17 Ω, Z0e2 = 70.52 Ω, Z0o2 = 52.26 Ω, 
Z0e3 = 163.64 Ω, and Z0o3 = 54.9 Ω. The filter 2 is designed with RS = 20 Ω, RL = 50 Ω, n = 3, and 
FBW and ripple are the same as those of filter 1. The calculated element values are already 
shown in Tables 1. The proposed circuits were fabricated on an RT/Duroid 5880 substrate 
with a dielectric constant (εr) of 2.2 and a thickness (h) of 0.787 mm. The width, spacing, and 
length of resonators were calculated using LineCalc of ADS tool. The EM simulation was 
performed using the ANSYS HFSS.

The layout and fabricated circuit of filter 1 are displayed in Figure 6. Fabrication data are 
listed in Table 2. The simulated and measured results of narrow and broadband characteristics 
are plotted in Figure 7(a) and (b), respectively, where the measured center frequency is the 
same as those of simulated. The measured passband insertion and input/output return losses 
are better than 0.8 and 19.6 dB, respectively. The spurious response was produced in the 
stopband due to the difference between the even- and odd-mode phase velocities of cou-
pled microstips [29,30].

Figure 8 shows the layout and a photograph of fabricated filter 2 in microstrip line. 
Fabrication data are listed in Table 3. The simulated and measured S-parameters of proposed 

Table 1.  Calculated even- and odd-mode characteristic impedances of the coupled line BPF with 
Chebyshev response.

f0 = 2.6 GHz, FBW = 5%, LAr = 0.0434 dB

nRS = 20 Ω, RL = 50 Ω, Ζ1 = 50 Ω

Z0e/Z0o (Ω)

62.33/41.86 56.89/44.61 73.05/38.73 2
60.84/42.52 54.16/46.43 54.37/46.28 69.77/39.43 3
60.34/42.75 53.66/46.81 52.89/47.4 53.83/46.68 68.71/39.7 4

RS = 80 Ω, RL = 50 Ω, n = 4 Z1 (Ω)
52.4/22.5 32.43/27.91 31.74/28.44 32.35/27.96 45.9/22.91 30
75.75/38.28 53.92/46.61 52.89/47.4 53.83/46.67 68.71/39.7 50
98.64/54.97 75.39/65.32 74.06/66.36 75.28/65.41 91.01/57.17 70

RS = 10 Ω, RL = 500 Ω, Ζ1 = 60 Ω n
67.04/54.31 64.09/56.4 63.48/56.88 65.77/55.16 186.41/62.19

4

RS = 50 Ω, RL = 50 Ω, Ζ1 = 60 Ω

79.91/48.37 64.56/56.04 63.48/56.88 64.56/56.04 79.91/48.37

RS = 30 Ω, RL = 90 Ω, Ζ1 = 60 Ω

74.31/50.44 64.45/56.13 63.48/56.88 64.68/55.95 89.55/46.15
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filter are shown in Figure 9(a) and (b) for narrow and broadband characteristic, respectively. 
The measured results are agreed well with those of simulated results. The measured insertion 
and input/output return losses are better than 1.5 and 19 dB within the passband frequency 

(a)

(b)

(c)

Figure 5. S-parameters characteristics of proposed BPF with different: (a) n, (b) Z1, and (c) r.
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of 2.527 to 2.667 GHz (FBW = 5.3%), respectively. The stopband attenuation is better than 
23 dB of the lower stopband from DC to 2.37 GHz and the higher stopband from 2.8 to 7 GHz.

Figure 6. Layout and photograph of the fabricated bandpass filter 1.

Table 2. Physical dimensions of the fabricated bandpass filter 1. (unit: mm).

Wc11 = 1.46 Wc22 = 1.69 Wc33 = 0.4
Sc11 = 0.25 Sc22 = 0.75 Sc33 = 0.2
Lc11 = 20.9 Lc22 = 20.9 Lc33 = 21.4

(a)

(b)

Figure 7. Simulated and measured results of filter 1: (a) narrow band and (b) broadband characteristics.
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The performance comparison of the parallel-coupled line BPFs and ITs are summarized 
in Table 4. The proposed BPF has merits on the numbers of filter stages and arbitrary termi-
nation impedances with high r when compared with others. The structure of the proposed 

Figure 8. Layout and photograph of the fabricated bandpass filter 2.

Table 3. Physical dimensions of the fabricated bandpass filter 2. (unit: mm).

Wc1 = 1.55 Wc2 = 1.63 Wc3 = 1.6 Wc4 = 1.4
Sc1 = 0.65 Sc2 = 1.4 Sc3 = 1.38 Sc4 = 0.35
Lc1 = 21 Lc2 = 21 Lc3 = 20.75 Lc4 = 21.15

(a)

(b)

Figure 9. Simulated and measured results of the filter 2: (a) narrow band and (b) broadband characteristics.
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BPF is comparable with that of [20]; however, the new design formulas have been derived 
for more general, accurate values, and high r. The derived formulas are more advantageous 
and easy to use for the higher stage filters and various r values. Also, the image impedance 
of coupled line might be chosen arbitrary for the design convenience.

5.  Conclusion

This paper has presented an innovative design theory of parallel-coupled line bandpass 
filters with arbitrary real termination and image impedances. The design formulas for the 
proposed filter have been derived using coupled line filter theory. To show the validity of 
the proposed design formulas, two parallel-coupled line BPFs are fabricated and measured 
with Chebyshev responses. The simulated and measured results are agreed well with the 
analysis. The derived formulas are applicable in many applications such as power divider, 
matching network, and power amplifier design with many design advantages. In the future 
work, a wideband BPF with unequal termination impedance is going to study.
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