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ABSTRACT Timely harvesting and disease identification of strawberry fruits is a major concern for
commercial level cultivators. Failing to harvest the grown strawberries can result in the fruit rotting which
makes their damaged tissues more prone to grey mold pathogens. Immediate removal of the overgrown or
diseased strawberries is inevitable to curb the mass spreading of the pathogen. In this paper, we propose a
deep learning-based framework to identify three different strawberry fruit classes (unripe, partially ripe and
ripe), as well as a class of overgrown or diseased strawberries. We equip the proposed convolutional encoder-
decoder network with three different modules. One for adaptively controlling receptive filed size of the
network to detect objects of multiple sizes. Second for controlling the flow of salient features (information)
to the deeper layers of the network and the other for controlling the architecture’s computational complexity.
These modules combined, outperform the previous state-of-the-art semantic segmentation networks on the
task of strawberry fruit phenotyping. We also introduce a dataset collected from different farms to evaluate
the performance of the network. Quantitative and qualitative results show that notwithstanding heterogeneity
in the data and the effect of the real-field variations, our approach produced remarkable results with a 3%
increase in mean intersection over union as compared to the other state-of-the-art networks and was able to
recognize diseased fruits with a precision of 92.45%.

INDEX TERMS Deep learning, strawberries fruit recognition, segmentation, classification, disease

phenotyping, smart farming, precision agriculture.

I. INTRODUCTION

Smart farming is a recently coined terminology to solve the
problems in agriculture, related to production, environmental
impact, and sustainability. With an increase in the global
population, food demand is growing monotonically. The
goal now is to produce plentiful quality nutritious food in
a timely manner while at the same time protecting our
ecosystem. To overcome these challenges, it is necessary
to understand the complex and unpredictable agricultural
ecosphere. Machine vision systems are therefore gradually
being adopted in smart farming to automate agricultural
tasks: from sowing to harvesting, with a minimum cost of
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production. The purpose is to raise the quality products by
maintaining healthy environmental conditions. Strawberry is
one of the major crops of Korea and the country exports
a part of its production. Now with the advancements of
the technology, labor-intensive tasks are being replaced by
automated solutions as the young generation has less interest
in agriculture labor. Therefore, the available manpower is
insufficient with the high labor cost. Moreover, harvesting
of the strawberry is also time taking and burdensome task
since strawberries have no specific time to grow and they
need to be harvested as soon as they are ripe. In the meantime,
strawberries need to be continuously checked to see if they are
ripe or not unless they will overgrow and start to rot.
Botrytis fruit rot (Gray Mold) is a common disease
found in Strawberries. It affects not only the fruits but also
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flower stalks, petals, and crowns of the strawberries and
therefore causing a huge loss to the commercial production
economically. In symptoms of this disease, there appears
velvety grayish fungus on the fruits, which slowly covers
the whole fruit and mummify it. Biologists claim that
under wet conditions if not sprayed with fungicides, there
could be an 80% loss of fruits and flowers [1]. Dam-
aged/senescing tissues and those which deteriorate with age
create a favorable environment for the gray mold. Therefore,
overgrown strawberries that were not harvested on time are
prone to this pathogen easily [2]. These old and overgrown
strawberries infected with gray mold are responsible for
transferring fungi to the healthy partially ripe and full ripe
strawberries.

In the current decade, deep learning has revolutionized the
artificial intelligence (AI) realm and continues to do so. Deep
learning algorithms have shown remarkable performance
practically, especially in computer vision [3]-[6]. In this
context, machine vision approaches are a hot research
area where robotic solutions are developed to automate
the processes [7]-[13]. In this paper, we aim to develop
a deep learning based semantic segmentation solution for
identifying the 3 healthy and 1 disease category which
will aid the autonomous robot to take the decision in
real time for strawberry harvesting and disease monitoring.
These four categories are unripe, partially ripe, ripe (full)
and overgrown/disease. Now although there have been
previous attempts for strawberry fruit segmentation, they
have some limitations. For example, the segmentation issue
was tackled using old image processing techniques which
often require manual parameters tuning for each different
set of images. These experiments were carried out in a
controlled environment instead of the real field environment
where lighting, varying background, and occlusion are the
big issues. These techniques are also not robust as they
were not aimed for the real time applications in the field.
Furthermore, the existing literature [4] on strawberries does
not discuss the gray mold disease problem which spreads
heavily from the overgrown strawberries, which motivated us
to investigate this problem. Since the proposed study is for the
real-field scenarios, therefore we consider the following few
challenges.

1. Varying field conditions: Every field has a different
environment setup and light intensity conditions. All objects
under consideration are not of the same size. For the data
acquisition, images are not collected by the camera having
the same specifications and resolution. Besides, cluttered
background, varying illumination, low contrast between
leaves and fruits are also among a few challenges.

2. Imbalance dataset: Deep learning algorithms essentially
require large training data and there is never enough training
data. Also, data annotation for segmentation takes a lot
of time and therefore data is limited. Having imbalance
distribution (not equal representation of the different classes)
can make the learning process biased towards the other
classes having a greater number of samples.
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3. Non-uniform data distribution: Deep Learning algo-
rithms learn upon the pattern of the distribution of the
dataset. Whereas this dataset belongs to two different
strawberry farms where images of diseased strawberries
are altogether captured from a different form, which adds
different distribution to the dataset.

To overcome these challenges, we propose a deep con-
volutional based encoder-decoder network for reliable and
precise classification of strawberry fruits into specified cat-
egories. Unlike previous approaches which design attention
mechanism for channel or spatial attention [4], [14], [15]
only. We also focus on designing an attention mechanism
for dynamically changing the receptive field (RF) size of
neurons depending upon the size of the object. To be specific
we design two modules responsible for learning the dynamic
receptive field sizes, channel, and spatial attention, as well
as a third module for controlling network’s computational
complexity. These three modules working together enable the
convolutional neural network (CNN) to learn both channel
and spatial correlations while dynamically changing the RF
of neurons for aggregating better multi-scale context and
more robust features. We evaluate the performance of our
proposed network quantitatively using benchmark metrics
and qualitatively using Grad-CAM [4], [16]. Our main
contributions can be described as:

« We propose an adaptive receptive field module (ARFM)
for dynamically changing the receptive field (RF) size
of neurons which helps in better multi-scale context
aggregation.

o We design a bottleneck block (BB) to learn channel
and spatial interdependencies allowing the network to
extract more robust features.

o To reduce the computational complexity and memory
footprint of the network we use dilated residual blocks
(DRB).

o A new dataset for strawberry fruit segmentation is
constructed, having 4 classes based on the ripeness and
health of the fruit (see section II “Dataset Construction”
for details).

II. LITERATURE REVIEW

The development of a reliable segmentation and detection
system is no doubt a challenging task, especially in the real
field environment. The need for a robotic system nowadays
is inevitable since the agriculture industry is shifting towards
technology-intensive from a labor-intensive marketplace.
Many attempts have been made via traditional machine
learning algorithms in accurately detecting the objects in the
agriculture industry [17]. Nguyen et al. [18] used RGB-D
camera to detect and locate the apples using a color threshold-
based technique. They encoded the appearance of red apples
using color and geometric features. Further, a Euclidean
distance-based clustering algorithm was developed to seg-
ment in the feature space. Zhou et al. [19] applied the
image processing technique in an apple orchard by taking
the difference of various color channels. McCool et al. [20]
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used the Local Binary Patterns in a new way to detect
the sweet peppers. Lin et al. [21] presented a technique
for 3D fruit detection. They represented data into a point
cloud and developed a global descriptor vector to capture the
important features. Later, an SVM based classifier is utilized
to eliminate false positive.

One important problem in agriculture is disease control in
an open environment. Strawberries are also prone to pests
attack. Ebrahimi er al. [22] detected pests in strawberry
flowers using SVM based classifier. Huang et al. [23]
detected insect-damaged samples in Soybeans which uti-
lized multiple statistical image features. Further support
vector data descriptor classified the damaged samples.
Chung et al. [24] pushed forward this research in detecting
disease in rice seedlings which is responsible for the healthy
growth of rice crops. They developed a Support Vector
Machine based classifier which we can say was very popular
for building a classifier for classifying the hand engineered
features. They also utilized a genetic algorithm to effectively
select the optimal parameters. Wheat is one of the most
important staples in the world whose health is a big concern
in agriculture. Pantazi et al. [25], [26] studied the growth
cycle and identified biotic and abiotic stresses in wheat crop.
These above approaches rely on hand engineered approaches,
where classifiers are carefully designed for the task specific
problem.

Bosilj et al. [27] proposed an image processing based
technique for the classification and segmentation in the
onion and sugar beet crop. This approach segments the
plant regions locally with fine details which is required
for the efficient solution. But this technique is relatively
slow and does not generalize if a little bit of illumination
changes. Potena et al. [28] made a robotic system for
automatic weed detection as an application in an unmanned
ground vehicle. They utilized convolutional neural networks
first as a shallow network and then as a deeper network
for binary segmentation. Reina et al. [29] studied a novel
application of terrain assessment in precision agriculture.
They not only estimated the terrain using appearance-based
features but also physics based features were extracted.
Hernandez-Hernandez et al. [30] utilize color models and
spaces to eliminate the dependence on illumination condi-
tions to segment the plant and soil. They applied different
probability density models to segment the regions and
developed their own software tool for the deployment. This
approach is relatively easier since there is a significant
contextual difference between soil and plant.

Mohanty et al. [31] prepared a large repository of plant
diseases and work on the identification of various diseases.
They utilized existing deep learning architectures from
AlexNet and GoogLeNet and produced state of the art
results. Sladojevic ef al. [32] worked on 13 different types of
leaf diseases and recognized the diseased samples from the
healthy ones. They designed their own network architecture
based on CNNs and it was among the first of its kind in terms
of the application. Bargoti and Underwood [33] detected
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location of the fruits classes namely mangoes, almonds,
and apples in the orchards. They utilized existing two stage
pipeline of famous Faster RCNN for this purpose. But this
approach is too slow to be applied with any autonomous
vehicle. Another approach of plant phenology was carried
out by Yalcin [34] where they collected data of different
classes. They utilized pre-trained model of AlexNet and
fine-tuned the weights with their newly collected dataset
and transformed the learned features for their specific task.
Chen et al. [35] proposed a fruit counting algorithm by
designing their own convolutional neural network for fruit
counting. McCool et al. [36] segmented the data of crop and
weeds for an agricultural robot by designing a lightweight
architecture with fewer parameters. Mortensen et al. [37]
proposed an application of segmentation of mixed crops and
weeds dataset. Images were taken by a camera mounted on
tractor which moved through the land. A review paper by
Kamilaris and Prenafeta-Boldu [38] encompasses the broad
vision of the different deep learning approaches used in the
agriculture domain. The paper divides the approaches in
different sections and gives a brief overview of datasets and
the technical details of the contemporary architectures.
Arsenovic et al. [39] constructed a largescale plant disease
dataset. They proposed a two-stage plant disease net (PD-
Net) which further consists of two sub-networks PD-Net1 and
PD-Net2. PD-Netl uses YOLO [40] algorithm to detect
plant leaves and PD-Net 2 classify the leaves into different
categories. Under real-field condition their method was able
to achieve 91.6% mean average precision (mAP) for detection
task. Jiang et al. [41] proposed a real-time system for
apple plant disease and pest recognition. By incorporating
InceptionModule [42] and rainbow concatenation (for better
multi-scale feature aggregation) with single-stage object
detector (SSD) [43]. They were able to achieve 78.8%
mAP, with a detection speed of 23.13 frames per second
(FPS). Chen et al. [44] addressed limitations of classical
SLAM (simultaneous localization and mapping) pipeline by
proposing a new 3D global mapping system which integrates
SLAM and eye-in-hand stereo vision systems. This way
their system was able generate a detailed 3D orchard map
which can be used for flexible and large-scale orchard
picking systems. Nie er al. [45] proposed unique method
for detecting strawberry verticillium wilt. Instead of directly
classifying the whole plant as having verticillium wilt or
not, they first classify and detect young petioles and leaves
in the image and then used the detected components to
decide whether the whole plant is infected or not. They
further improve their accuracy by adding a channel attention
mechanism in Faster-RCNN’s [12] backbone and was able
to achieve mAP of 77.54%. Tian et al. [46] made substantial
changes in YOLO-v3 [47] architecture to detect anthracnose
damage in apple plant. They were able to achieve 95.57%
mAP by changing the backbone of YOLO-v3 with Dense-
Net [48] and optimizing feature extraction layer of YOLO-v3.
Chen et al. [49] proposed a multi-vision system for per-
forming multi-view 3D perception of orchard banana central
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stock. They installed multiple cameras at different angles to
increase framework’s field of view (observable scene/ visible
view) for better detection results.

Fully Convolution Network (FCN) [50] introduced the
earliest popular pipeline for the semantic segmentation. This
work leaves the mark on the successor architecture for
semantic segmentation and still is relevant. Before FCN,
popular classification models were leading the board which
includes the giants like AlexNet, VGGNet, and GoogleNet.
FCN transformed these architectures into predicting at pixel
level. It utilized the power of transfer learning of these
models and by deleting the last fully connected layer, changed
these models into fully convolution pipeline and predicted
the full resolution mask of the image. It is indeed a great
contribution of its kind which opened a new window in
the segmentation task and scene understanding. Later came
the ParseNet [51] which captured the global information
of the scene instead of the region information. It used global
average pooling to encode the global features by reducing the
feature maps into vectors. This vector which can be said as
context vector is normalized with L2 Norm and later feature
maps are concatenated. All in all, ParseNet emphasized
on the global information such that occluded regions are
also predicted as part of the true object class. In 2015
Ronneberger et al. [52] proposed a similar architecture as
of FCN, which has a contracting and expanding part, called
U-Net. The contracting part called encoder encodes the
feature map into rich features and the expanding part recovers
the spatial information through up-sampling or deconvolu-
tion. One of the main contributions U-Net introduced was
the concatenation of the cropped features from the down-
sampling path to the up-sampling path to avoid losing the
precise spatial information. This pipeline has since been
a benchmark in designing even the latest state of the art
models. At the last stage, 1 x 1 convolution is used to obtain
segmentation output. This pipeline is still very popular since
the author used it on a very small dataset of 30 images with
proper augmentation techniques. It was specially designed
for medical images where it is very difficult to get even
a small chunk of data. Later on, the intermediate layers
were further exploited by Lin ef al. [53] and they proposed
RefineNet. In Refine-Net skip-connections use multipath
refinement via different convolutional modules to obtain
final predictions. Global Convolutional Network proposed
by Peng et al. [54] increased the receptive field (RF) size
of neurons by factorizing the large convolutional kernels
into smaller ones to obtain global contextual embeddings.
Zhao et al. [55] and Chen et al. [56] proposed PSP-
Net and Deeplab respectively. The former used spatial
pyramid pooling at various scales and the later used atrous
convolutions with different dilation rates to exploit multi-
scale information.

Deconvolution [57] is another remarkable contribution to
the segmentation pipeline. It transforms the feature maps
exactly opposite to the convolution operation from the
lower dimension to the higher dimension while keeping the
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same connectivity pattern as of convolution. In transposed
convolution (sometimes also called deconvolution), an orig-
inal size feature map is padded with zeros and the rest of
the kernel operation is the same as the convolution. The
authors of the paper analyzed the deconvolution and observed
that lower-level feature maps attained through deconvolution
preserve the spatial location and higher ones are responsible
for the class assigning. Chen et al. [58] combined dilated
convolution with depth-wise sparable convolution and pro-
posed Deeplab v3+. This way they were able to achieve
a huge performance boost while keeping model complexity
to a bare minimum. Dual attention networks proposed by
Fu et al. [15] modeled the semantic interdependencies via
two-way attention. They designed two bottleneck modules
for their network for improved channel and spatial attention,
namely CAM (channel attention module) and PAM (position
attention module). But did not focus on adjusting the
receptive field size of neurons.

Convolutional neural networks (CNNs) attempt to mimic
the behavior of the human brain, neurons in the human
visual system do not process the entire semantic scene
at the same time. Instead, the neurons attempt to process
the scenery in order, focusing on only the most important
features of the scene in front of them [59]. In contrast to
previous works which either try to aggregate multi-scale
context or to model the semantic interdependencies via
attention mechanism, we propose a new attention mechanism
to improve the representational power of our network. Our
proposed attention mechanism can (a) dynamically change its
receptive filed size to deal with the objects of different scales
and at different resolutions, (b) learn both channel and spatial
interdependencies and can adaptively prioritize or suppress
features according to their significance.

IIl. DATASET CONSTRUCTION

We collected 2048 x 2048 resolution images from two
different farms with a camera mounted very close to the
field of view. This data is first of its kind, for firstly there
is no publicly available dataset to work on this problem,
secondly, the already published works on strawberries do
not take account of diseased strawberries. Since our dataset
is from different farms, there is a variety of background,
fruit size, and illumination (sunny, cloudy, etc.). We believe
it will further help in developing autonomous agriculture
applications. Images are taken in the full blossom harvesting
season i.e., between March 2019 to June 2019, in the suburbs
of the Jeollabuk-do province of South-Korea. We collected
more than 700 images and randomly filtered out 410 images
for the experiments. We split the dataset into 3 parts: training,
validation, and testing images. We used 281 images for
training, 55 for validation, and 74 for testing purposes.
Table 1 lists the number of instances present in dataset
belonging to each class. Furthermore, we deploy various
data augmentation techniques to increase the number of
samples in the dataset (see section V “Experimental Setup”
for details). All the comparative experiments on the other
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TABLE 1. Strawberry segmentation dataset.

Classes Train Test Valid Total no. of
Instances
Ripe 405 163 87 655
Partially Ripe 193 50 21 264
Unrip 686 220 101 1007
Diseased/Overgrown 65 52 20 137

Number of Images 281 74 55 -

state of the art algorithms are conducted on the same pattern
of images. There are 4 categories in the dataset which are
unripe, partially-ripe, ripe, and overgrown or diseased. Each
image was later on resized to 512 x 512 pixels resolution.
A subsample of the dataset is shown in Figure 1 (a). We can
observe the cluttered background, multiple fruit overlapping
and high contrast in the data. Figure 1 (a) shows the data
acquired from the different farms varies heavily and colors
of the same class are not consistent. Moreover, the samples
of the diseased strawberries are difficult to obtain, therefore,
we assigned the same class to the overgrown and diseased
category. The diseased or overgrown class data is primarily
collected from another farm which is responsible for adding
an entirely new distribution to the existing dataset. We know
that uniform distribution is highly required for the learning
of convolutional neural networks and such type of data will
make it hard for the weights/learning parameters to adapt
to the representation. Therefore, this change in distribution
makes the task challenging. Lastly, the color pallet used
for representing different strawberry categories is shown in
Figure 1 (b).

\

Ripe

Partially Ripe

Unripe

Disease
Overzrown

FIGURE 1. (a) Subsample of dataset, showing different background,
lighting conditions, multiple fruit overlapping etc. (b) Color pallet used for
labelling pixels of a specific class.

IV. PROPOSED ARCHITECTURE

One of the core purposes of the computer vision approaches
is to build powerful representations that extract only those
salient features and properties from an image that are
suited for the given task and hence improving performance.
We have utilized various properties of the feature representing
modules as per our task’s need. The flow of the complete
network is like a typical encoder and decoder, but each
stage has independent representation during the flow of
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information. Let us take the standard U-Net architecture to
understand our proposed architecture. U-Net down-samples
the input image, with 2 convolutions at each stage, and
keeps on increasing the number of channels until just before
the up-sampling stage. In the decoder part, the number of
stages is the same as the encoder part. Connections from
each corresponding stage across the encoder and decoder are
made to concatenate the feature maps. But this structure was
specially designed for only medical images, which is used
to extract dense information and is transmitted across the
network. Now in our architecture, there is a number of design
changes we have made according to our problem. Since our
input size is 512 x 512 and it does contain contextual RGB
information, so we restrict ourselves to pool (subsample) the
image 4 times only thereby reducing its size to 64 x 64 after
successive down-sampling stages.

feature map in their spatial dimension.

lnéu& lmaée

DRB

)

Downsampling
DRB

e

Downsampling

Upsampling
SE-ResNet

Upsampling

3

ARFM

Upsampling

N

Downsampling

ARFM

——» Upsampli
Upsampling

N

(
L BB

FIGURE 2. Complete architecture of proposed convolutional
encoder-decoder network.

Detailed and complete architecture is represented
in Figure 2. For the first two stages of the encoder part,
we used depth-wise residual blocks instead of the regular
convolution. For the subsequent two stages in the encoder,
we used an ‘“‘adaptive receptive field module’ with two back-
to-back convolution operations before this module. Now later
at the end of the encoder stage, we used the bottleneck
module which is followed by the decoder part. We did not
perform any further pooling operations in the bottleneck
where the core purpose was to capture the rich intrinsic
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representations before entering the decoder part. We kept the
decoder design very plain except for the last two stages. In this
part, the number of stages is the same as the encoder. In each
stage, a simple bilinear operation is performed to up-sample
the feature map in their spatial dimension.

At each stage, the spatial dimension matches the dimension
of the corresponding stage in the encoder part, and feature
maps of each stage are concatenated. This concatenation
is very important as the feature maps carry the spatial
location of the objects. For the last two stages, we used SE-
ResNet blocks [14], [60]. The rationale behind is that after
concatenation of the features from the encoder stages and the
up-sampled feature maps from the previous decoder stages
we have to choose those channels which are not correlated
and do not carry redundant information. SE-ResNet blocks
also provide attention to the channels in a class-specific
manner. As the last step, 1 x 1 convolution is applied to match
the number of class categories as an output. Detail analysis,
usage, rationale, and structure are presented individually
in the following subsections. If we talk about the network
complexity, then there are parameters comparative to the
existing state of the art.

A. DEPTH-WISE RESIDUAL BLOCK (DRB)
For the first two stages in the encoder (left half) in Figure 2,
we used depth-wise residual blocks instead of regular
convolution. In regular convolution 1 filter having the depth
of the input tensor is convolved on the input tensor. So, to get
the required number of channels in the output, we have to use
the same number of filters each having the same depth as the
input tensor. Whereas, in depth-wise convolution, each filter
having the depth of 1 is convolved with its corresponding
feature map only and the resultant feature map is spatially
enhanced. Now, these spatially enhanced feature maps of
distinct filters are stacked to get the final output. This is very
cheap in terms of computation than the regular convolution.
The number of distinct filters is the same as the number of
feature maps in the input tensor.

In our architecture, we use depth-wise residual blocks with
2 depth-wise convolution operations in each block in the
encoder part. As compared to the standard U-net stage in the
encoder part, we used this block to get the distinct feature map
with less floating point (addition and subtraction) operation.
It computes two depth-wise convolutions back-to-back in
each block with kernel size 3. Later we add the resultant
feature map with the input feature map to compute the final
output. There are two stages in the encoder part where depth-
wise Residual block is used. Both stages end with a pooling
operation.

B. ADAPTIVE RECEPTIVE FIELD MODULE (ARFM)

Neuroscience has greatly inspired the design of convolutional
neural networks. In neuroscience, the receptive field size
depends on the stimulus received by neurons [61], [62].
So, the neurons adapt to the receptive fields itself through
the stimulus [59]. This has been unexplored in the
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FIGURE 3. Depth-wise residual block for initial layers of encoder as a
replacement to the dense regular convolution.

CNN architectures. Many of the approaches starting from
the inception module by GoogLeNet and later versions have
considered the variable size receptive field for aggregating
distinct features captured by the customized kernel size.
Similarly, ResNext introduces cardinality for group con-
volution which characterizes both depth and width. Addi-
tionally, Xception network introduces depth-wise separable
convolution which is composed of depth-wise convolution
and pointwise convolution. This proves its effectiveness
in reducing parameters yet with extracting good features.
Likewise transpose convolution which raise the receptive
field exponentially by keeping parameters constant. Addi-
tionally, although we can get a larger receptive field but this
sometimes comes with gridding effect. Therefore, instead of
using custom designed kernels with their linear aggregation
of feature maps, we utilize ““adaptive receptive field module”
in our network. The module was originally introduced by
“Selective Kernel Networks™ [63] for classification purpose,
but we introduce this in the semantic segmentation pipeline
and determine its best position for adopting it in the encoder
decoder architecture. As described earlier, the main purpose
of the module is to learn to adapt to the receptive field based
on the stimulus received.

This module receives deep tensor as an input and outputs
a feature map which contains more distinct features selected
by an adaptive mechanism. The module performs three basic
operations: Split, fuse and select. First part of the module
splits features maps by different kernels. These number of
kernels can vary but we choose two here. In the next step,
these computed feature maps are linearly added, and global
average pooling is performed. This global average pooling
transforms the feature maps into fully connected neurons.
This first fully connected layer further connects to another
fully connected dense layer which has number of neurons as
the fraction of the first layer numbers.

C. BOTTLENECK BLOCK (BB)

In semantic Segmentation pipeline, bottleneck block is very
important stage since it controls the flow of information
from continuous down-sampling part to the up-sampling part.
Contrary to the ASPP block of the DeepLab architecture [56],
we have used the bottleneck block. The purpose of this block
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is to pass the rich extracted features from first part of the
network to the second. Successive down-sampling produces
feature maps of reduced spatial dimension with large number
of channels. This block computes the distinct features from
the encoder part and does not down-sample any further as we
restrict ourselves to 4 times down-sample w.r.t the input size.
It propagates those features which has less correlation with
each other.

/ FCl FC2 \

Elementwise
Addition

| J

Depthwise Depthwise !
Convolution  Convolution Squeeze Excitation Block
3x3 3x3

Ix1
Convolution

FIGURE 5. Bottleneck block used at the junction of encoder and decoder
part.

The block consists of two back-to-back depth-wise con-
volutions (for enhancing feature maps spatially) followed
by a squeeze excitation sub block (for remodeling channel
interdependencies). So, this overall block is the modified
form of the SE blocks. A skip connection adds the input
tensor elementwise with the aggregated output of the squeeze
excitation sub block. Depth-wise convolutions computes
features which rely only on the respective filters and do not
attribute to the features present in the depth. These responses
are enhanced by the squeeze and excitation module which
provides adaptive recalibration to the channels. This module
mitigates the response maps which are highly correlated, and
the module also works as an attention module to emphasize
the strong individual features.

D. SQUEEZE EXCITATION RESNET BLOCKS

In the decoder part, we have used the Squeeze Excitation
ResNet (SE-ResNet) blocks originally used in the paper
for classification tasks [14]. We reuse this module for
the segmentation purpose. We use a specific property of
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SE-ResNets in our task. The author of SE-Net claims that
in the later layers of the network SE blocks very much
work in class specific manner such that they adaptively learn
to respond to the inputs. Attention mechanism is another
essential property of the SE-ResNet blocks which guides our
choice to use these blocks in the later layers of the decoder
part. This block is inevitable in our decoder choice. In the
decoder part, the feature maps output of the bottleneck block
is up sampled directly two times to match the dimension
from its counterpart in the encoder part which are then
concatenated. Afterwards for the last two stages, we up
sampled and concatenated the feature maps, same as the
previous two stages but here we applied SE-ResNet Blocks.
Since, until this stage, many feature maps are redundant
and carry similar information across the depth, therefore
this block adaptively selected those channels which are not
correlated. It also gives attention to the feature map with
respect to each class category.

FC1 FC2
X U
’— , B_,

FIGURE 6. Squeeze and excitation ResNet (SE-ResNet) block to select the
important channels and to give attention.

V. EXPERIMENTAL SETUP

The experimental setup is descried in this section. Then
we describe the evaluation metrics used to evaluate the
performance of proposed framework.

A. IMPLEMENTATION DETAILS
All the experiments reported are carried out with the follow-
ing data splitting of total 410 images. We used 281 images
for training, 55 for validation and 74 for test results. The
experiments are conducted having CPU specification as Intel
Core 19-9940X, 3.3GHz Processor and 128 GB RAM. GPU
utilized is NVIDIA RTX 2080. Since the data is not in a
huge amount, therefore we have trained for 14000 iterations.
To avoid memory exceeding, we used batch size of 2. Adam is
used to optimize the parameters with learning rate 0.0001 and
momentum value of 0.9. We used two different learning rate
schedules to decrease the learning rate after each epoch: time
decay and step decay. Learning rate schedules are used along
with momentum to keep the learning process smooth. This
learning rate changes over the iterations and instantiate the
networks with a new learning rate. In this way although the
network training is not confined to a single learning rate, but
still initial learning rate matters.

To reduce training time and computational requirements,
we resized all the images and segmentation masks to
512 x 512 resolution without preserving the aspect ratio
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before training. During training, we also did substantial
on-the-fly data augmentation (augmenting data at each
iteration) to increase the dataset size and avoid overfitting.
In terms of augmentation techniques, we only used those that
were appropriate for segmentation problems and improved
the network’s robustness. Random cropping and resizing,
random mirroring along the vertical axis, random rotation,
and finally, random brightness and saturation distortion were
all used.

Furthermore, we used early stopping with a condition to
stop the training once a certain condition is met. We used two
different conditions of early stopping: one with the validation
intersection over union and one with validation loss. For
example, if our validation loss does not decrease over the
course of few epochs, the condition stops the training, and
we can analyze which hyper parameter we need to tune in
order to get the training going on.

B. EVALUATION METRICS

1) JACCARD INDEX

For semantic segmentation, Jaccard Index also referred as
intersection over union is the most widely used metric to
evaluate the performance of the network on the dataset.
Semantic segmentation, unlike classification is a dense pixel-
wise prediction, so each of the pixel label contributes in
evaluating. It calculates the degree of overlap between the
ground truth images and predicted masks.

target N prediction

loU ey

 target U prediction

In equation 1, numerator term calculates the common
pixels (intersection) in both target and prediction whereas
the denominator term calculates union of both target and
prediction. In semantic segmentation, it is common practice
to calculate IoU in binary class form. For example, we have
4 object classes and 1 background class. Now our targets and
ground truth both are in 5 different channels. Each channel
in prediction will be compared to its corresponding ground
truth channel to compute individual IoU and then mean over
all the classes will give the resultant value. This metric gives
equal weightage to all the channels.

2) PRECISION, RECALL AND F1 SCORE

Beside the intersection over union, we used Precision, Recall
and F1 Score to evaluate our network performance. Precision
and recall both somewhat explain the evaluation related to
the accuracy but not exactly the same. Precision evaluates
that the how much part of the prediction is relevant while
recall tells us how much percentage of the total relevant
results are correctly classified by the network. Now, network
has to find the tradeoff between precision and recall as per
the given task whether we need to maximize precision or
recall. F1 score calculates kind of harmonic mean of the
precision and recall. We have calculated precision and recall
individually for the 4 class categories whereas to calculate the

124498

F1 Score, we computed the mean of the 4 classes.

o True Positive
Precision = — — 2)
True Positive + False Positive

True Positive

Recall 3)

True Positive + False Negative

Precision x Recall
F1Score = 2

“

¥ Precision + Recall

TABLE 2. Quantitative comparison of results with other state of the art
segmentation networks.

Network mloU F1-Score Param. FPS
Architecture (%) (%) (Million)  (sec)
U-Net 74.52 0.7818 30.9 23.30
SegNet 53.53 0.5137 29.44 9.21
DeepLabv3  78.72 0.7628 3.5 32.67
DeepLabV3+ 76.52 0.7961 3.8 35.21
DAN 59.01 0.5732 1.7 15.27
Proposed 81.94 0.8292 4.6 28.37

VI. RESULTS AND DISCUSSION
In the following Table 2, the network performance can be seen
in terms of the Intersection over Union and F1 score. Number
of parameters are also mentioned against each network.
It can be observed in Table 2 that the proposed architecture
outperforms the current state of the art deeplabv3+ [64]
and dual attention network (DAN) [15] in both mean
Intersection over Union and F1 score. However, there is
a slight increase in the parameters with deeplab variants.
This increase is not even close to the U-Net and SegNet
approaches. With rigorous experimentation of tuning hyper-
parameters in the U-Net and SegNet, the performance could
not increase. We report that this difference is because of
the significant change of data distribution as the datasets
belong to different farms. As we have mentioned in the
preceding section while introducing the dataset that we have
gathered the dataset from two different places with entirely
different camera sensors and changed lightning conditions.
Even the season of the crop was different. 3 classes of
healthy strawberries unripe, ripe and partially ripe belong
to the different dataset while overgrown/disease class has a
different distribution. All these factors contributed to reduce
the performance of the previous state of the art models and
hence pave the way for us to build a new network that can
well handle the changing crop conditions that are real and
varying. By looking at the evaluation metric table, we can
claim that our network performs better than the existing
approaches.

The latency is another important property when it comes
to the deployment. This is essential since decision must be
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TABLE 3. Precision and recall values for individual classes at confidence threshold of 0.5. The bold is used to represent best results.

Precision at Confidence Threshold 0.5

Recall at Confidence Threshold 0.5

Network
Architecture i i ; .
Pa;;:lally Ripe Unripe Overgrown/Di Pa]:?lally Ripe Unripe Overgrown/Dis
pe sease ipe ease
U-Net 0.7259 0.9228 0.8663 0.9506 0.5839 0.8982 0.7477 0.6191
SegNet 0.4456 0.7288 0.7383 0. 544 0.5064 0.799 0.7051 0.43
DeepLabv3 0.9357 0.8899 0.8564 0.9664 0.4388 0.9593 0.8423 0.3818
DeepLabV3+ 0.7687 0.9179 0.7734 0.9527 0.5036 0.9366 0.9366 0.7435
DAN 0.3964 0.8727 0.4507 0.8549 0.3811 0.8385 0.8462 0.07
Proposed 0.7885 0.9232 0.8873 0.9245 0.5734 0.9282 0.8786 0.7535
taken in the real time. In machine vision tasks, deep learning- Lo
based network will identify the regions of the strawberry e —ommeSSIlllllTT N
class which will further be harvested by the robotic part. | 7T TEeeel ‘\\ %
In Table we report that our network processes 28.37 frames e TSR X l'.
~ A
per second. R
Following Figure 7 shows the precision and recall of 506 ‘\':
T . . a2 \
individual 4 classes. Two classes ripe and unripe show 2 \i
excellent behavior but the two classes partially ripe and =04 ‘:'
disease fall a little short behind. We can explain this o Partially Ripe '
phenomenon as the number of instances in partially ripe ~~" Ripe E
and disease classes are less than the other two (refer to L g‘,“"l’e :
. . . g sease
Table 1 for details). Moreover, apparently, partially ripe class e . s ,S = g 8 8
on one hand resembles with the unripe class slightly whereas s = e e a8 L

it has the features of the ripe class on the other hand. This
phenomenon also is responsible for the confusion between
the classes.

In the same way, we also report the confusion matrix
in Figure 8 which further analyzes the network response to the
individual classes. It is one of the explicit ways to know the
contribution of the individual class in overall decision making
of the network. As the name suggests, confusion matrix tells
us how much network is confused and wrongly predicts the
one class for the other. Diagonal entries correspond to the
True Positive values for each class. For example, 3rd diagonal
entry has the true label “ripe”” on the y-axis and predicted
label “ripe” in the x-axis. Now the value 0.93 tells us that 93
percent pixels of ripe class were truly predicted as ““ripe”, and
in the same row for 1% pixels, network confused “ripe”” with
“diseased’ class. In the same way, for the same ““ripe” class,
network wrongly said that 4% pixels belong to the ““partially
ripe” and 2% were wrongly predicted as background. In the
Figure 8, we can see that, ripe class produces best results.
This class has the least confusion of its pixel percentage with
the other classes. Whereas there is problem with partially ripe
and disease class. In the latter case, number of class instances
(overall pixel representation in the data) are relatively less as
compared to the other classes. Moreover, since all the images
containing the diseased class belong to a different dataset,
therefore having non-uniformity in the dataset caused the
confusion in the prediction.
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FIGURE 7. Precision and recall curve for individual classes.
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FIGURE 8. Confusion matrix of proposed network for individual classes.

Another quantitative analysis of the network performance
is reported in the Table 3 where we statistically show the
precision and recall values for the 4 classes individually.
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Proposed

DeepLabV3  DeepLabV3+

FIGURE 9. Qualitative comparison of results on strawberry segmentation dataset. Whit boxes show the areas of interest (for sake of discussion) in the
ground truth labels. Yellow boxes highlight the areas where proposed network clearly outperforms the previous segmentation works. Green boxes show
one fruit being classified as belonging to two different classes. Red boxes represent partially misclassified instances and false negative instances.

We can see that cumulative effect of our network is
dominant in both recall and precision values that shows
the effectiveness of our network. DeepLabv3 shows good
precision values in partially ripe and diseased classes, but
simultaneously the recall values for the same two classes are
very poor. It is highly likely that for higher precision value,
recall value at the same time could be very value. It depends
upon the application whether we need high recall or high
precision. In this work we try to find a balance between
precision and recall values. As we discussed before about
the varying data distribution particularly in the diseased class
cause the other networks to perform poorly on the recall value
of the diseased category. Therefore, the value for the dual
attention network is very small.

A. QUALITATIVE RESULTS

We evaluate the performance of our network qualitatively
for the semantic segmentation of the strawberry classes.
In the Figure 9, we show a broad qualitative comparison
with other networks. First column represents the original
images whereas target is the ground truth label which the
models try to achieve. Column three to six show the outputs
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of their respective networks as shown in Figure 9. White
boxes in 1% column of Figure 9 shows some areas of interest
that clearly demonstrate our network’s superior performance
when compared to others. Green boxes in columns 4,5 and
6 show that a single strawberry fruit is being detected
as belonging to two different classes. Whereas red boxes
in columns four to six show either partial detection or
misclassification of strawberry fruit instance. In contrast
the yellow boxes in column three show that our proposed
attention mechanism successfully captures the right scene
context and recognizes the objects correctly. Row two of
Figure 9 supports our argument where one fruit instance is
very close to the camera and the other is far away. Even so,
due to the adaptive receptive field of our ARFM module the
fruit instance is correctly classified as comparted to other
networks.

Furthermore, labelling noise (assigning wrong labels while
annotating the data) is also present in the dataset, to avoid
overfitting. An example of labelling noise is shown in last row
of Figure 9. Here, two runners occlude the diseased category
strawberry, but the target label include pixels belonging to
the runners (that should be in background) in the diseased
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category. Here also proposed network sharply detected the
boundaries across the runners by only predicting the pixels
that belong to the diseased category. Other networks also try
to avoid the labelling noise, but they are not very good at it.

B. FEATURE VISUALIZATION

The role of convolution neural networks in image recognition
tasks cannot be undermined. Designing of the networks have
become very mature field since the past few years. However,
an interpretation of these network becomes inevitable that
how a certain design is serving our specific task’s needs
and how the neurons in the deeper layers of CNN react
to a particular input. Following [4] we use segmentation
Grad-CAM (SGC) to visualize the activation heatmaps of
neurons in the last layer of proposed network (i.e., after
last SE-ResNet block). Grad-CAM tries to intercept the
rationale behind the decision taken by the convolutional
neural network. Figure 11 shows how the neurons of the
last convolution layer of our proposed CNN react to each of
the class present in the dataset. Our proposed CNN has four
output channels one for each class in the dataset. Given the
inputs shown in column ‘a’ of Figure 11, activation maps of
each channel corresponding to a specific class are shown in
column ‘c’ of Figure 11. The column ‘b’ of Figure 11 shows
the channel activation maps of our baseline model shown
in Figure 10. It can be clearly seen form Figure 11 (last
two rows) that our enhanced attention mechanism refines
the activations of the neurons in each channel allowing the
neuron of each layer to focus on their respective targeted
class.

Convolution
1x1
L3
Encoder  2x Convolution Transpose | Decoder
3x3 Convolution | Stage 4
Stage 1
Encoder 5y | Convolution Transpose | Decoder
Stage 2 3x3 Convolution | Stage 3
Encoder 2% Convolution Transpose Decoder
Stage 3 3x3 Convolution | Stage 2
Encoder Convolution Transpose | Decoder
Stage 4 3x3 Convolution | Stage 1
Encoder
Pooling Stage 5
Convolution
3x3

FIGURE 10. Baseline model for ablation study. This model has four
convolution stages for consecutive down-sampling and sth stage as a
bottleneck. Changes have been made by replacing modules step

by step.

C. ABLATION EXPERIMENTS
The proposed architecture consists of different modules
as shown in Figure 2. We evaluate the performance of
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TABLE 4. Ablation experiments by replacing the modules in the baseline
model.

Network DRB ARFM BB SE-ResNet mloU ?;2;“
Baseline 0.7432 6.52
v 0.7646  5.56
v 0.7457  3.66
v 0.7816  6.52
v 0.7321  3.72
v v 0.7852  6.53
v v 0.7712  6.47
v v 0.7059 176
v v v 0.7632 4.8
Proposed v v v v 0.8194  4.63
Ripe
Unripe
Disease
Partially f.
Ripe

FIGURE 11. Visualization of heatmaps, generated via segmentation
Grad-CAM for displaying effectiveness of attention mechanism.

In heatmaps ‘red’ color means highest activation and ‘blue’ color means
no activation at all. (a) image input to network, (b) heatmaps generated
by baseline network and (c) heatmaps generated by proposed network.

each module in Table 4. Baseline module is the encoder
decoder U-Net like architecture (Figure 10) which has
four stages of convolution blocks for down-sampling and
again a convolution block at the bottleneck 5th stage just
before the decoder part. In ablation experiments, we have
replaced the simple convolution block stages in the baseline
model by gradually replacing our modules. For example,
in first experiment we replace the 1! two convolution blocks
with DRB, in second experiment we replace the next two
convolution blocks with ARFM module and so on. Adaptive
Receptive Field Module (ARFM) is used two times in the
proposed network. Bottleneck block (BB) is used only once
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and squeeze-excitation block (SE-ResNet) is used two times
in the last two decoder stages whereas the first two decoder
stages are replaced with simple bilinear upsampling layers.
In the Table 4, we report the impact of replacing each module
one by one, as well as the effect of combining two or
more modules to draw a comprehensive picture. Replacing
convolution layer at the bottleneck alone improves the mean
ToU by 2%. Replacing the 1% tow encoder stages with DRB
results in decreased parameters but performs stays roughly
same.

When used in conjunction with other modules, the DRB
module performs really well. Like SE-ResNet module, it per-
forms best when used in conjunction with other modules.
Even if all the modules are placed except bottleneck, then
also performance drops significantly. Finally, all the modules
work together to produce better results with controlled
parameters.

VIl. CONCLUSION

In this paper we have proposed a novel and efficient deep
learning approach for the semantic segmentation of healthy
and disease/overgrown strawberries for harvesting purpose
in machine vision tasks. The system introduces adaptive
receptive field and channel selection modules which give
the network ability to tackle the variable sized instances and
correlated feature maps. The bottleneck module computes the
rich feature while transforming the information from encoder
part to decoder part. We present a dataset with a high degree of
non-uniformity in the distribution, as images are from various
environments with varying camera sensors, illumination,
and focal length. The visualization of intermediate layers
in the network shows the effectiveness of the modules
used. We evaluate our network on the proposed dataset.
The network overall achieves 3% increased performance in
Intersection over Union as compared to the modern state of
the art models yet maintaining the real time performance.
It produced great results in coping up with the highly
occluded case scenarios. In addition, proposed network has
the capability of deployment in the real crop condition due
to its performance in varying and dynamic environment.
The system will help prevent the spreading of gray mold
disease by timely identifying and removing the infected
strawberries. As the diseased class data of strawberries is
hard to achieve, so we aim to collect this in our future
work to include more class categories of the different
diseases, hence making dataset more dynamic. Due to the
nature of semantic segmentation task, currently the proposed
network might be unable to isolate individual instances. But
our future work involves integration of proposed method
with depth-estimation and semantic graphics for improve
localization and recognition of individual fruit instances.
Finally, we believe that this work will help taking smart
farming a step further and will also be of great help
for future researchers in harvesting, fighting disease and
surveillance.
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