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ABSTRACT We propose an enhanced class-specific spatial normalization, a simple yet effective layer to
generate a photorealistic image given a spatial-class map. Under the assumption that pixels belonging to
the same class share the same distribution in the feature space, we intuitively split an image into classes
according to the map. By learning the class-specific distributions, our generator can distinguish one class
from other classes. Further, our spatial normalization combines the spatial-class map and the class-specific
distributions, by which our generator can produce instances in the desired locations. We apply the proposed
normalization not only in semantic image generation but also in object transfiguration. The experimental
results demonstrate that the spatial-class map can be efficiently utilized with our proposed method, which
results in competing performances with much fewer parameters.

INDEX TERMS Semantic image synthesis, object transfiguration, image translation, image generation,
class-specific spatial normalization.

I. INTRODUCTION
Conditional image generation aims to produce photorealistic
images given conditions. Seminal works synthesize images
from conditional images, called image translation (I2I)
[5], [13], [18], [19], [25]. Current works can produce images
from labels or sentences [22], [31], [32]. Conditional image
generation allows the output to be controlled, and this process
has witnessed profound improvements in recent years.

We focus on a specific form, spatial-class conditional
image generation, in which the generated image is expected
to be aligned with the spatial-class map where every pixel is
assigned to its corresponding class. This form owns a wide
range of applications, such as semantic image generation
[7], [11], [18], [19], [33], layout image generation [10], [29],
and object transfiguration [12], [14], [16]. While the
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output image in the previous two cases is expected to have
the same class as the input semantic segmentation [19] or
bounding box [10], object transfiguration splits the image
into two parts, foreground and background, according to a
binary mask. The first part is desired to be translated from
one domain to another domain, such as a horse to zebra.
In contrast, the second part is just expected to be the same as
the input image. Since the conditions used in the three cases
are spatial-class maps, we refer to spatial-class conditional
image generation.

Compared to other conditions, using the spatial-class
conditional map efficiently is still a challenge. Although
pix2pixHD [19] managed to translate a semantic segmen-
tation into a photorealistic image, the ‘‘wash-away’’ issue
exists [7]. To address the issue, Park et.al introduced a
spatially-adaptive normalization (SPADE) layer [7] in which
three convolution layers are adopted to encode the spatial
segmentation to scale and shift. The scale and shift latter
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are utilized to rescale and reshift the input feature map,
by which the spatial segmentation is embedded into the input
feature map. Though the SPADE discards the encoder in the
pix2pixHD, its computation is still huge, because of the three
convolution layers with large channel sizes. In addition, how
the SPADE contributed is still vague.

In this paper, motivated by adaptive instance normaliza-
tion [8], [9], which assumes that all pixels in one image share
the same distribution in the feature space to perform style
transfer, we propose class-specific spatial normalization to
perform conditional image generation on the assumption that
the pixels belonging to one class share specific distribution.
Under the generalized assumption, models can learn the spe-
cific distributions for each class from a semantic-class map.
Moreover, we find that our method explains the SPADE [7]
but we can achieve the same idea with many fewer parame-
ters. To be specific, we analyze the process of the SPADE,
and find that the SPADE implicitly embraces our generalized
assumption. Extensive ablation studies validate our proposed
class-specific spatial normalization layer. Further, we extend
this idea from semantic image synthesis to object transfigu-
ration [12], [14], [16]. Experimental results on horse2zebra
collected from COCO-Stuff [3] demonstrate that our method
outperforms the state-of-the-art by a clear margin.

To sum up, our contributions are as follows:
• We declare explicitly a generalized assumption, from
adaptive instance normalization [8], [9] that the pixels
belonging to each class share specific distribution, which
unveils the SPADE [7];

• We propose class-specific spatial normalization to per-
form spatial-class conditional image generation and
achieve competing performance with less parameters
than the state-of-the-art (our basic method uses only
around 76% of the parameters and 40% of the FLOPs
of the SPADE);

• Our extensive ablation studies give understanding
towards semantic image generation, including that the
learned distribution spaces in conditional normalization
are evolving over layers, independent scale and shift
inside a layer contribute better performance, and con-
text further contributes to the quality of the generated
images;

• We extend our generalized assumption from semantic
image synthesis to object transfiguration, proving that
our proposed class-specific spatial normalization is suit-
able to utilize the spatial-class map in different applica-
tions, which gives us an integrated viewpoint for both
applications.

II. RELATED WORK
A. DEEP GENERATIVE MODELS
can be adopted to generate images. Our work is established
in generative adversarial networks [17], but aims at image
generation task given a semantic-class map. The GANs can
be split into a generator and a discriminator, in which the
generator is to create realistic images so that the discriminator

cannot distinguish the generated image from the real image.
In this paper, we propose a class-specific spatial normaliza-
tion layer for the generator to align the generated images to
the given spatial-class map.

B. CONDITIONAL IMAGE GENERATION
appears in a great many forms that differ from the kinds of
condition. For example, label-conditional networks produce
an image from a given label [21], [22], [32]. Except for
labels, words and sentences have been explored as condi-
tional input [31]. Images translation [5], [12], [14]–[16], [23]
focuses on synthesizing an image from another image in
which object transfiguration requires an extra input, the loca-
tion of the object to be translated. Similar to object trans-
figuration, image generation from semantic segmentation
requires the generator to synthesize fake images accord-
ing to spatial condition [7], [11], [18], [19], [33]. In this
paper, we are especially interested in how to use the
spatial-class map efficiently and propose a class-specific spa-
tial normalization layer. Resorting to the normalization layer,
our generator obtains better results with less parameters in
semantic segmentation-based image generation and object
transfiguration.

C. CONDITIONAL NORMALIZATION LAYERS
is developed from the unconditional normalization method
in which input is first converted to a standard normal distri-
bution, and then recast into another norm distribution with
learned scale and shift [20]. Unconditional normalization
can be categorized by one factor, along which dimension(s)
the normalization and recast are performed. For example,
batch normalization [20] is along all mini-batch and spatial
pixels, while layer normalization [34], is along all channels
and spatial pixels. But they both compute the shift and scale
unconditionally. In contrast, conditional normalization layers
learn the scale and shift from conditional input. Apart from
dimension, conditional normalization can also be classified
by the types of conditional input. Conditional batch normal-
ization is widely deployed in label condition, in which we
wish the label of the generated image to be controlled by the
input label [21], [22] and conditional instance normalization
is developed for style transfer, in which the produced image
is expected to have the given global style [8], [9]. While
successfully letting the generator use the condition, neither
of them can be leveraged for a semantic-class map, since
they assume that all pixels share the same label or same
style. To address this challenge, we propose a class-specific
spatial normalization layer, in which the condition is taken to
compute the scale and shift. To be specific, we loosen the
assumption to become that an image can be grouped into
classes, and all pixels in a class share the same distribution,
such as scale and shift. Two recent works are related to
ours. The spatially-adaptive normalization layer [35] is firstly
adopted to achieve image super-resolution, but we focus on
image generation given a spatial-class map. Although the
SPADE [7] is designed for semantic image synthesis, two
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distinct points exist. First, we explain the function of the
SPADE and achieve the core idea, but with fewer parame-
ters. Second, we extend the idea from semantic image syn-
thesis to a sub-field of image translation, namely, object
transfiguration.

III. CLASS-SPECIFIC SPATIAL NORMALIZATION LAYER
A. GENERAL IDEA
We aim to perform spatial-class conditional image gener-
ation, in which conditions are spatial-class map, such as
semantic segmentation in semantic image generation [7].
To achieve this, we propose class-specific spatial normaliza-
tion inspired by adaptive instance normalization [8], [9] and
conditional batch normalization [21], [22]. While adaptive
instance normalization has been utilized to perform style
transfer and assumes that all pixels in one image share the
same style distribution in the feature space, conditional batch
normalization has been leveraged to perform image genera-
tion from noise. Inspired by them both, we use a generalized
assumption that pixels belonging to each class share spe-
cific distribution and embrace the conditional normalization
paradigm, learning the scale and shift in the normalization
layer to control the feature distribution.

B. CLASS-SPECIFIC SPATIAL NORMALIZATION (CSN)
Let s ∈ SH×W be a spatial-class map where S is a range of
integers indicating classes, and H and W denote the input
image height and width, respectively. Each entry in sh,w
gives the class for the pixel with spatial coordinate (h,w) in
one-hot manner. We aim to learn a normalization layer that
can combine the spatial-class map to a feature efficiently and
synthesize a photorealistic image aligning the map in the end.

Fig. 1 shows that the CSN layer consists of four stages.
Below we show how to execute the class-specific spatial
normalization, taking the learnable scale γ as an example
(learnable shift β is executed in the same way). In the first
stage sa, class embedding stage, the one-hot label l ∈ LN×N
(N is the total number of labels) is embedded into vector
zγ ∈ ZN×M (M is a hyper-parameter), and we expect that the
network can learn the representation for each label. Formally,
given the one-hot label l, the class embedding stage can be
formatted as follows:

zγ = ReLU (FC(l)), (1)

where the FC is a fully connected function and ReLU is an
activation function. Here, we use only one FC and ReLU , but
we can employ more stacks of them. With this class embed-
ding process, one-hot labels are encoded into a new space in
which the connections between each pair of classes can be
learned, instead of being equal in the one-hot label space as
the SPADE adopted [7]. We expect that better connections
make learning easier.

The second stage sb is a sampling step according to the
input spatial-class map s and the vectors zγ . Specifically,
if sh,w is label c, then γ ′h,w = zγc . In other words, we get the

feature γ ′ by selecting zγ according to spatial-class map s.
Therefore, we easily arrive at the following theorem:
Theorem 1: ∀h1, h2 and ∀w1,w2, if sh1,w1 = sh2,w2 ; then

γ ′h1,w1
= γ ′h2,w2

.
We emphasize that the second stage shows the generalized

assumption, that pixels belonging to the same class share
specific distribution in the feature space. Before introducing
the third stage, we point out a requirement that the learned γ
and β should have the same number of channels as the input
feature f i and in the beginning stage of image generation,
the channel number of f i are very high. Although it can
be omitted, the third stage sc is employed to balance the
model’s capacity and the number of parameters. In our basic
version, sc employs two 1×1 convolution layers, while in our
developed version, sc employs two 3 × 3 convolution layers
with a lesser number of channels to use the context, followed
by a 1× 1 convolution to keep the same number of channels
as the input feature. In contrast, two 3× 3 convolutions with
the same number of channels as the input feature are used to
utilize the context information which increases the number
of parameters. Hence the third stage sc achieves a balance
between using context information and light architecture and
therefore, is called the balance stage. The ablation study in
the next section validates that stage sc dedicates the model’s
performance yet asks for much fewer parameters.

Finally, the normalized input feature are rescaled and
reshifted in the last stage sd with the learned γ and β. Let
f i ∈ FB×C i×H i

×W i
be the feature of the i-th layer of a

deep neural network with B batch samples. C i denotes the
number of channels in the layer and H i andW i are the height
and width, respectively. In the last stage, the input feature
is firstly normalized over channels and then is rescaled and
reshiftedwith the learned values γ and β. Mathematically, the
value of the output feature of the CSN layer with coordinate
(b, c, h,w) is:

γc,h,w(s, l) ∗
f ib,c,h,w − µ

i
c

σ ic
+ βc,h,w(s, l), (2)

where, µic and σ
i
c are the mean and variance of the input over

the channels:

µic =
1

B · H i ·W i

∑
b,h,w

f ib,c,h,w, (3)

σ ic =

√√√√ 1
B · H i ·W i

∑
b,h,w

(f ib,c,h,w)
2 − (µic)2. (4)

Fig. 1 (b) shows our CSN ResBlk (CSN residual block)
that the CSN can be deployed in ResNet block [6]. Since we
only use the CSN among the features with the same height
and width, plain input is directly used in this paper, while a
more complex version is still possible.

1) RELATION TO THE SPADE
Although SPADE [7] showed a decent performance, its func-
tion has not been explained but we find that our motivation
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FIGURE 1. (a) The class-specific spatial normalization (CSN) layer takes a one-hot label l and
semantic-class map s as input. It consists of four stages, class embedding stage sa, sampling stage sb,
balance stage sc and normalization stage sd to perform rescale and reshift, in which sc in the dotted line is
not necessary but contributes. The second stage suggests the generalized assumption that pixels belonging
to the same class share specific distribution in the feature space. S denotes the sampling process. (b) CSN
ResBlk: ResNet block with the CSN layer.

unveils it. In the SPADE, semantic segmentation firstly under-
goes a convolution layer to a middle feature map, followed by
two specific convolution layers to form the learned shift and
scale. As the convolution layer embraces local connection and
sharing parameters, pixels in the same class result in the same
output (except the boundary where the convolution kernel
sees more than one class). In this way, we can understand the
SPADE which embraces the same assumption.

However, our proposed CSN is different from the SPADE
in three ways. First, γ and β are more independent than in
the SPADE where they share the first convolution layer, the
ablation study showing that the independence leads to slightly
better performance. Second, we use the class embedding and
sampling stage to learn the relationships among classes and
combine the spatial-class map. In contrast, the SPADE adopts
an equal relation among all classes because of the one-hot
label space. Finally, our stage sc makes the model achieve
a balance between context information and less learnable
parameters. The ablation study in the next section provides
extensive insights.

2) CSN GENERATOR FOR SEMANTIC IMAGE GENERATION
Semantic image generation requires semantic segmentation
as input and outputs images aligning the segmentation. The
segmentation is commonly taken as the input of a neural net-
work and undergoes a stack of convolution layers, nonlinear
function, and normalization. Since the CSN can merge the

segmentation to features, we cast the segmentation encoder
away and down-sample the semantic segmentation as input
to the generator. In contrast, the spatial-class map is fed to
the generator immediately, which results in a much lighter
network.

Fig. 2 illustrates the generator with CSN for seman-
tic image generation where several ResNet blocks and
up-sampling layers are employed. Similar to SPADE, the
semantic segmentation is downsampled into a fixedwidth and
height to be the input of the generator and also downsampled
to match the spatial resolution of the feature maps in each
scale as the width and height are increased. The generator
undergoes stacks of CSN blocks and upsampling layers.
Specifically, one convolution layer is adopted to the input
semantic segmentation to increase the number of channels,
which is followed by a CSN block. As the CSN block does
not change the size of the feature map, an upsampling layer
is leveraged to increase the size and reduce half the number
of channels. According to the output size of the generated
images, the stacks of CSN and upsampling layers are utilized
four or five times, which is followed by another convolution
layer to reduce the number of channels and a Tanh func-
tion to form an RGB image. The generator is trained with
multi-scale discriminator and the loss functions leveraged in
pix2pixHD [19] except for two settings, two discriminators
with different scales and replacing the least square GAN
loss [24] with hinge loss. Simultaneously, feature matching
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FIGURE 2. The architecture of the generator for semantic image
generation. We downsample the semantic segmentation as input and
employ the CSN in every feature scale until an image is formed. While the
first Conv layer in the figure is utilized to increase the number of
channels, the last Conv layer is leveraged to reduce the number of
channels to three, which is followed by a Tanh function to form an RGB
image.

loss and VGG loss are adopted to train the generator [7], [11]
and we refer the readers to SPADE [7] for the details as we
do not change them.

3) CSN GENERATOR FOR OBJECT TRANSFIGURATION
Object transfiguration is located in image-to-image (I2I)
translation [12], [14] which takes a conditional image and
binary mask. The binary mask splits the holistic image into
two parts, a foreground to be translated and a background to
be retained. Fig. 3 shows that the generator is expected to
translate the foreground, corresponding to the white area, into
the target domain and retain the background, corresponding
to the dark area.

As shown in Fig. 3, our generator to perform image to
image translation consists of three main parts, encoder, resid-
ual block, and decoder, which is similar to CycleGAN [13].
The residual blocks are leveraged to make rich features and a
high receptive field. While the encoder is used to extract the
necessary features from the conditional image, the decoder
is employed to synthesize a photorealistic image given a
specific feature map. The CSN block is supposed to enable
the encoder to extract the foreground and background sep-
arately and enable the decoder to know where to translate
and where to reconstruct. The literature commonly employs
concatenation to combine the conditional image and the
mask, which possibly leads to losing the spatial relation, and
incurs more parameters, but in our paper, the operation is
replaced with the CSN module without losing the spatial
relation. Besides, our algorithm can not only perform object
transfiguration, translating all instances belonging to the one
object, but also instance transfiguration, only translating part
of the instance(s), as shown in Fig. 3.

To train the generator, we employ three kinds of losses.
Firstly, mask-guided discriminator, taking as input the multi-
plication of images and binary mask, is borrowed [5] which
forces the discriminator to focus on the assigned content.
A similar idea appears in AGGAN [12] in which attention
to be translated object is produced by a sub-module, and the
discriminator takes as input the multiplication of image and
the attention after threshold. Secondly, background consistent
loss is borrowed from InstaGAN [16] and Ref [5]. The loss

FIGURE 3. The architecture of the generator for object transfiguration.
This consists of a CSN-based encoder, residual blocks, and a CSN-based
decoder, which are shown in green, yellow, and blue, respectively. The
CSN block is supposed to enable the encoder to extract the foreground
and background separately and enable the decoder to know where to
translate and where to reconstruct.

tries to let the generator retain the background of the original
image but allows the generator to smooth the margin of the
translated area to make the synthesized image nature. Thirdly,
we also adopt identity loss to ease the training process as
CycleGAN [13] does.

IV. EXPERIMENTS
A. SEMANTIC IMAGE GENERATION
Implementation details: We apply the spectral normaliza-
tion [26] in both generator and discriminator. The learning
rates for updating generator and discriminator are different,
at 0.0001 and 0.0004 respectively. We select Adam [28] as
optimizer with β1 = 0 and β2 = 0.900. We borrow syn-
chronized BatchNormwhere mean and variance are collected
from all GPUs.
Datasets: We design our experiments on two datasets.

Cityscapes [1] gives 2,975 images for training and 500 images
for testing with 35 labels related to street scenes. ADE20K [2]
contains 20,210 training and 2,000 validation images,
with 150 semantic classes. We directly use the original train-
ing and validation dataset to train and validate all methods.
Baselines: We compare our algorithm to three leading

models using neural networks: pix2pixHD [19], SPADE [7]
and SEAN [11]. Pix2pixHD is the state-of-the-art model with
encoder and decoder, while the SPADE and SEAN are the
current state-of-the-art models with conditional normaliza-
tion layer. The SPADEuses two convolution layers to produce
scale and shift from semantic mask starting from the ’wash-
away’ problem [7]. Based on the SPADE, SEAN assumes that
different areas in one image have their style, and hence has
designed a joint-conditional normalization layer.
Evaluation metrics: We take the evaluation metrics from

the literature. To be clear, we adopt a pretrained semantic
segmentation model on the generated images and compare
the results with the semantic input for the generator. Intu-
itively, if the generator uses the semantic input correctly
to produce natural images and the segmentation model is
trained very well, the predicted segmentation will match well

VOLUME 10, 2022 6573



M. Xu et al.: Enhanced Class-Specific Spatial Normalization for Image Generation

with the input segmentation. By matching the segmenta-
tion, we adopt pixel accuracy (accu) and mean Intersection-
over-Union (mIoU). The bigger the accu and the bigger the
mIoU, the better the generator. Apart from accu and mIoU
from semantic segmentation metrics, we compute the Frechet
Inception Distance (FID), a distance between the feature
distribution of generated images and real images.

1) ABLATION STUDY
To understand the CSN better, we design extensive ablation
studies in Cityscapes [1], TABLE 1 showing the results. Since
we found that mIoU and FID are hard to reach the best simul-
taneously, we display two situations for every experiment, the
best mIoU, and the best FID. We set the baseline (Ours-base)
as follows. In stage sa, we adopt a linear and ReLU function
to embed one-hot label l to vectors zγ and zβ with dimension
M = 128. In stage sc, we leverage 1× 1 convolution withM
as the number of channels and ReLU function, followed by
another 1× 1 convolution with the same number of channels
as the input feature. To have a smaller number of parameters,
the number of channels for all experiments is set as M in
the middle layer convolution layer but set as the number of
channels of the input feature only in the last layer.
Our basic assumption is valid: To validate our assump-

tion first, all pixels belonging to one class sharing the same
distribution on the feature space, we use only two linear
functions to form the shift and scale. The decent performance
in index 1 validates that our assumption is reliable. During
the image generation process, the generator should firstly
distinguish each class from other classes and secondly pro-
duce images aligning the input spatial-class map. Learning
class-specific distribution for each class is useful to the first
while spatial normalization is useful for the second. Besides,
one advantage of this setting is fewer computations (FLOPs)),
which may be desirable for mobile devices.
Class embedding stage sa should be independent for each

layer, and big scale one improves the quality of the generated
image: To know the relationship of the learned distribution
space between every layer, we share zγ and zβ for every CSN
layer, but we get lower mIoU yet similar FID as the results
in index 2 show. We infer that for image generation, when
the feature scale increases, the distribution should evolve and
be independent, as suggested in [36] for feature extraction
with convolution layer. To verify the assumption, we further
add one more linear and ReLU function to obtain zγ and zβ .
The result in index 3 suggests that this reduces the FID while
slightly impairs the mIoU.
Independent γ and β dedicate both FID and mIoU:

Thirdly, we try to probe the relation of the shift β and scale γ
by making them less independent by removing the non-linear
ReLU function. The result in index 4 indicates that this harms
the image quality because of the higher FID, which means
that the independent scale and shift result in better-quality
images but slightly result in less mIoU. We found this kind
of independence has not been noticed in the literature, such
as the SPADE [7] or SEAN [11].

FIGURE 4. Visualization of cosine similarities of zγ (first row) and zβ

(second row). Two observations: zγ and zβ are independent in most of
the layers, while similarities between classes tend to be higher in the
latter layers for both zγ and zβ .

The context largely benefits FID yet slightly harms mIoU:
To consider the context impact of semantic labels, we lever-
age 3 × 3 convolution layers. Only one 3 × 3 convolution
layer (index 5) shows its inferiority on almost all metrics
but two 3 × 3 convolutions (index 6) show their superiority
on FID. We infer that the 3 × 3 convolution dilutes and
smooths the boundaries among the class-map, but one 3× 3
convolution could not provide a sufficient receptive field. The
results show that the context slightly harms the mIoU, but
contributes FID, probably because FID scores in a natural
and smooth boundary but mIoU scores in a sharp boundary.
Although the context information have been utilized in the
SPADE [7] and SEAN [11], 3×3 convolution is adopted with
higher channels, resulting in big-scale parameters. We want
to emphasize that we replace the 3×3 convolution with many
fewer channels (the same as M = 128), followed by a 1× 1
convolution with the required channels, which gives the same
receptive field yet many less parameters and computations.
The optimal dimension M could vary in different appli-

cations: In addition, we vary the hyper-parameter M
from 128 to 96 and 256. As displayed in indices 7 and 8 in
TABLE 1, a smaller dimension slightly benefits a lower FID
but harms mIoU. In contrast, a higher dimension impairs both
FID and mIoUmainly because more parameters require more
epochs to train. We conjecture that the best dimension varies
as the complexity of the application changes.
The improved version of our method embraces indepen-

dent and evolving embedding stage and context information:
To have a better quality of generated images, we finally
update our basic version to a powerful version with two linear
functions in the class embedding stage, and two 3 × 3 con-
volution layers to extract context. As suggested in TABLE 1,
this obtains the best FID 49.9 and a competing mIoU, which
proves that the combination of better stage sa and sc improves
the performance further.

2) ANALYSIS OF THE CLASS EMBEDDING STAGE
One of the main difference between our method and the
SPADE [7] is the class embedding stage sa. In this subsection,
we aim to analyze the function of the class embedding stage.
To do so, we compute the cosine similarities between each
pair of label after embedding. Fig. 4 shows the similarities
of the embedded vectors in zγ and zβ . We observe that the
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TABLE 1. Ablation study on the CSN layer. sa and sc are the stages in Fig. 1 and M is a hyper-parameter. n, r and c denote linear, ReLU and convolution.
M is the dimension of the middle layer and is a hyper-parameter. The default number of channels in the linear function is M and # suggests the same
number of channels as the input features since no convolution layer is employed. The value behind c means the kernel size of the convolution layer and
2× suggests using the functions twice. ↑ means that higher is better, while ↓ means that lower is better.

FIGURE 5. Visualization of cosine similarities of zγ in different epochs.
We see that the similarity converges and the change of the similarity is
similar to the change of FID.

similarities between labels change over the layers and become
higher in the latter layers. One of the interesting findings is
that the class embedding layer learns the semantic connec-
tions between semantic labels. For example, the vehicle class
becomes closer to traffic light class and traffic signal class,
but farther from the sky class as training epochs increase.
Another observation is that the similarities of zγ and zβ in
most of the layers are distinct which proves that they are
more independent in our previous case, the result of index 2
in TABLE 1.

While Fig. 4 shows the cosine similarity of the embedding
stage in different layers, figure 5 illustrates the change of
the last layer during the training processes. There are also
two observations. First, the similarity converges in the latter
training stage. For example, the similarity in the sixth layer
varies greatly from epoch 20 to epoch 80 but varies little from
epoch 80 to 200. Second, the convergence of the similarity
resembles the convergence of FID, such as little change of
FID from epoch 80 to epoch 200.

3) COMPARISON TO THE STATE-OF-THE-ART
Quantitative comparison: TABLE 2 shows the three eval-
uation metrics and the number of parameters in different
models. Our algorithm achieves decent performances with
fewer parameters. The comparison suggests that the CSN
reaches a balance between FID and mIoU while the SPADE
sets the highest mIoU but the worst FID and SEAN shows a
different face. Our basic scheme achieves competing results
with few parameters and FLOPs. Cost at big FLOPs, ours-
v2 proves that context impact is useful in the semantic image
generation and achieves the best FID in Cityscapes.
Qualitative results: As shown in Fig. 6, the generator with

ours-v2 CSN can generate decent images with fewer artifacts.
Although the SPADE [7] shows its higher mIoU and pixel
accuracy, its produced images give worse FID. SEAN sets the
best FID but costs at a very heavy architecture. In contrast,
the CSN costs less yet obtains a competitive performance.
As displayed in the figure, the generator with the CSN can
generate photorealistic images aligning to the given semantic
labels.

B. OBJECT TRANSFIGURATION
Implementation details: To train the generator with the CSN,
we use the discriminator in patchGAN [13], [30] with a
70 × 70 receptive field. Least-square loss [24] is leveraged
because it shows stable training for image translation. To fur-
ther ease the training process, a history of fake images is
adopted. Similar to CycleGAN [13], Adam [28] is used with a
learning rate at 0.0002, and is deployed in the first 100 epoch
and linearly decayed to zero in the second 100 epoch.
Datasets: We derive instance mask for horse and zebra

from the COCO [4] dataset. Tiny masks are removed
that the human eyes cannot distinguish. We collect 1,276
and 996 images, split into 80% and 20% for training and
testing, respectively.
Baselines: We compare our algorithm to several image-

to-image algorithms. CycleGAN [13] is one of the sem-
inal works to perform an unsupervised image translation
method applying a cycle-consistent loss. AGGAN [12] aims

VOLUME 10, 2022 6575



M. Xu et al.: Enhanced Class-Specific Spatial Normalization for Image Generation

TABLE 2. Our method achieves competing results with much fewer parameters. We retrain for the SPADE and the SEAN but reuse the values from the
SPADE [7] for the pix2pixHD. The red, blue, and green denote the best, second, and third values in each column, except for para and FLOPs.

FIGURE 6. Visual comparison of semantic image generation on the Cityscapes and ADE20K dataset. Our generator with the proposed CSN
produces realistic images aligning the given spatial-class map with fewer artifacts.

to perform object transfiguration and employs additional
sub-modules to predict the area to be translated in the gen-
erated image. InstaGAN [16] directly employs segmentation
as input. For a fair comparison, we adapt AGGAN with a
binary mask as input, and the final compared images take
background from the input image and foreground from the

generator’s output. For InstaGAN, the shape of the instance
to be translated is assumed to be the same as the translated
instance. As it did not perform object transfiguration, the
original SPADE is not compared for this application.
Evaluation metrics: Since object transfiguration requires

no change in the background, we compute mask FID (mFID)
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FIGURE 7. Visual comparison of object transfiguration on horse and zebra translation dataset. Our method
stably produces a decent target instance with the desired background. Other algorithms either change the
background or incur artifacts.
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TABLE 3. Our method outperforms the state-of-the-art in object transfiguration by a clear margin except for mFID in generating fake horses. ↑ means
that higher is better and ↓ means that lower is better. The best results in every column are boldfaced. Since AGGAN adopts the original background, its
PSNR and SSIM are not compared.

to evaluate the generated images. Specifically, we multiply
the input mask by the generated images and the result is
sent to compute FID. In addition, we also use mIoU to
evaluate the translated object and instance, with the same
intuition in semantic image generation [19]. But here we
employ an instance segmentation as prediction model, Mask
R-CNN [27]. To compare the ability to keep the background,
PSNR and SSIM are used [14].
Quantitative comparison:TABLE 3 shows that ourmethod

outperforms the current state-of-the-art method by clear mar-
gins. Our method is the best to maintain the background since
our algorithm achieves the best PSNR and SSIM. We note
that CycleGAN produces the best mFID in translating a
zebra to a horse but they are the worst to maintain the back-
ground. In generating zebra instance, our method achieves
the best mFID and mIoU, which suggests that the CSN lets
the generator know where to be translated and where to be
retained. In contrast, current state-of-the-art models show
their inferiority.
Qualitative results: Fig. 7 shows that our algorithm pro-

duces decent horses and zebras with the desired background,
which is proven in TABLE 3, with much higher PSNR and
SSIM than the current state-of-the-art methods. The results
validate that our generator with the CSN efficiently uses
the condition, input binary mask. Conversely, CycleGAN
and InstaGAN tend to change the background, as shown
in the second and sixth rows, and the horse and zebra are
converted into another domain. Using input background,
AGGAN always leads to the artifact on the boundary of the
translated instance. The qualitative results suggest that our
generator with the CSN outperforms the literature in terms
of using the binary mask, class-conditional map, to perform
object and instance transfiguration.

V. CONCLUSION
We proposed the class-specific spatial normalization (CSN)
layer that efficiently adopts a semantic-class map to gener-
ate a natural image. Theoretically, we leveraged a loosened
assumption, from adaptive instance normalization, that pixels
belonging to each class share specific distribution. The CSN
layer benefits semantic image generation aligning given seg-
mentation, which is verified on the Cityscapes and ADE120K
datasets with a decent performance, but with few parame-
ters and FLOPs. It also contributes to object transfiguration,
translating the given instance and maintain the background

between horse and zebra, surpassing the state-of-the-art by a
clear margin.
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