● 2024
102. Y.J. Kwak, M.Y. Song, and K.T. Lee, “Improvement in the hydrogen-storage properties of Mg2Ni by adding LiBH4,” Korean J. Met. Mater., 162(4) (2024) 1-6.
101. Y.J. Kwak, M.Y. Song, and K.T. Lee, “Improvement in the hydrogen storage properties of MgH2 by adding NaAlH4,” Metals, 14 (2024) 227.
100. W.Y. Park, Y.T Park, B.G. Ahn, and K.T. Lee, “Effects of deposition of an ultra-thin Al2O3 layer via atomic layer deposition on electrochromic property, self-discharge, and discharge capacity of photoelectrochromic devices,” J. Ceram. Process. Res., 25(1) (2024) 34-40.
● 2023
99. W.Y. Park, Y.T. Park, and K.T. Lee, “Systematic analysis of TiO2 compact layer effect on the performance of dye‑sensitized solar cells,” J. Kor. Ceram. Soc., 60(6) (2023) 905-917.
98. Y.J. Kwak, M.Y. Song, and K.T. Lee, “Conversion of CH4 and hydrogen storage via reactions with MgH2-12Ni,” Micromachines, 14 (2023) 1777.
97. S.H. Lee, Y.J. Kwak, J.W. Park, and K.T. Lee, “Systematic study on the Ni exsolution behavior of NiAl2O4 catalysts for steam methane reforming,” J. Kor. Ceram. Soc., 60(3) (2023) 536-546. (Journal Cover)
● 2022
96. C. Sohn, H. Kim, J. Han, K.T. Lee, A. Sutka, and C.K. Jeong, “Generating electricity from molecular bonding-correlated piezoresponse of biodegradable silk nanofibers,” Nano Energy, 103 (2022) 107844.
95. J.S. Park, Y.-W. Lim, S.Y. Cho, M.H. Byun, K.-I. Park, H.E. Lee, S.D. Bu, K.T. Lee, Q. Wang, and C.K. Jeong, “Ferroelectric polymer nanofibers reminiscent of morphotropic phase boundary behavior for improved piezoelectric energy harvesting,” Small, 18(15) (2022) 2104472.
94. W.Y. Park and K.T. Lee, “Quenching process effects on the performance of a TiO2 photoelectrode for dye-sensitized solar cells,” J. Ceram. Process. Res., 23(2) (2022) 199-207.
● 2021
93. W.Y. Park and K.T. Lee, “Effect of TiO2 photoelectrode thickness on the performance of dye-sensitized solar cells,” J. Ceram. Process. Res., 22(5) (2021) 584-589.
92. J.-H. Noh, S. Radhakrishnan, K.T Lee, T.H. Ko, and B.-S. Kim, “Preparation and electrochromic properties of flexible transparent WO3/AgNW-decorated nanofiber composite film,” Funct. Compos. Struct., 3 (2021) 045004.
91. Y.T Park and K.T. Lee, “Characterization of nanoparticulated WO3 electrochromic thin films prepared via precipitation reaction of peroxotungstic acid solution,” Optical Mater., 121 (2021) 111577.
● 2020
90. Y.T. Park, S.Y. Lee, and K.T. Lee, “Electrochromic properties of silver nanowire-embedded tungsten trioxide thin films fabricated by electrodeposition,” Ceram. Int., 46(18) (2020) 29052-29059.
89. S.H. Lee and K.T. Lee, “Steam methane reforming performance of Ni/Al2O3 composite catalysts prepared via a hydrothermal-infiltration method,” J. Ceram. Process. Res., 21(3) (2020) 296-301.
88. J.H. Hwang and K.T. Lee, “Characterization of NiFe2O4/Ce0.9Gd0.1O1.95 composite as an oxygen carrier material for chemical looping hydrogen production,” J. Ceram. Process. Res., 21(2) (2020) 148-156.
87. J.H. Hwang and K.T. Lee, “Development of MgFe2O4 as an oxygen carrier material for chemical looping hydrogen production,” J. Ceram. Process. Res., 21(1) (2020) 57-63.
● 2019
86. J.H. Hwang and K.T. Lee, “Effect of Ce0.9Gd0.1O1.95 as a promoter upon the oxygen transfer properties of MgMnO3-δ-Ce0.9Gd0.1O1.95 composite oxygen carrier materials for chemical looping combustion,” J. Ceram. Process. Res., 20 (2019) 18-23.
● 2018
85. J.H. Hwang, J.I. Baek, H.J. Ryu, J.M. Sohn, and K.T. Lee, “Development of MgMnO3-δ as an oxygen carrier material for chemical looping combustion,” Fuel, 231 (2018) 290-296.
84. J.H. Hwang and K.T. Lee, “Development of promotors for fast re-dox reaction of MgMnO3 oxygen carrier material in chemical looping combustion,” J. Ceram. Process. Res., 19 (2018) 372-377.
83. Y.T. Park and K.T. Lee, “Electrochemical performance of amorphous carbon coated α-Fe2O3/expanded natural graphite composites as anode active materials for lithium ion batteries,” J. Ceram. Process. Res., 19 (2018) 347-354.
82. S.H. Lee and K.T. Lee, “Fabrication of a symmetrical microtubular SOFC single cell with catalyst-impregnated YSZ scaffold using an electrophoretic deposition process,” J. Ceram. Process. Res., 19 (2018) 285-289.
81. Y.T. Park and K.T. Lee, “A comparative study on low-purity natural graphite with various metal oxide impurities as an anode active material for lithium ion batteries,” J. Ceram. Process. Res., 19 (2018) 257-264.
80. Y. Ko, J. Shim, C.H. Lee, K.S. Lee, H. Cho, K.T. Lee, and D.I. Son, “Synthesis and characterization of CuO/graphene (Core/shell) quantum dots for electrochemical applications,” Mater. Lett., 217 (2018) 113-116.
79. J.H. Hwang, E.N. Son, R. Lee, S.H. Kim, J.I. Baek, H.J. Ryu, K.T. Lee, and J.M. Sohn, “A thermogravimetric study of CoTiO3 as oxygen carrier for chemical looping combustion,” Catal. Today, 303 (2018) 13-18.
78. M.K. Rath and K.T. Lee, “Characterization of novel Ba2LnMoO6 (Ln = Pr and Nd) double perovskite as the anode material for hydrocarbon-fueled solid oxide fuel cells,” J. Alloys Compd., 737 (2018) 152-159.
● 2017
77. S.H. Lee and K.T. Lee, “Fabrication of symmetrical La0.7Ca0.3Cr0.8Mn0.2O3-δ electrode scaffold-type micro tubular solid oxide fuel cells by electrophoretic deposition,” J. Ceram. Process. Res., 18 (2017) 854-857.
76. J. Shim, Y. Ko, K.S. Lee, K. Partha, C.H. Lee, K. Yu, H.Y. Koo, K.T. Lee, W.S. Seo, and D.I. Son, “Conductive Co3O4/graphene (core/shell) quantum dots as electrode materials for electrochemical pseudocapacitor applications,” Composite Part B, 130 (2017) 230-235.
75. S.H. Lee and K.T. Lee, “Fabrication of an La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte-based symmetrical microtubular SOFC single cell with Sr2Fe1.5Mo0.5O6-δ electrodes via electrophoretic deposition,” J. Ceram. Process. Res., 18 (2017) 580-583.
74. Y.T. Park, Y.K. Hong, and K.T. Lee, “Effect of amorphous carbon coating on low-purity natural graphite as an anode active material for lithium-ion batteries,” J. Ceram. Process. Res., 18 (2017) 488-493.
73. J.W. Park and K.T. Lee, “Electrochemical properties of Ca1-xLaxTiO3 anode materials for solid oxide fuel cells,” J. Ceram. Pro. Res., 18 (2017) 336-340.
● 2016
72. Y.T. Park and K.T. Lee, “Degradation mechanism of the complementary electrochromic devices with WO3 and NiO thin films fabricated by RF sputtering deposition,” J. Ceram. Process. Res., 17 (2016) 1192-1196.
71. J.H. Koo and K.T. Lee, “Effect of Pd-impregnation on the electrochemical performance of Sr0.8La0.2TiO3-Ce0.9Gd0.1O1.95 composite anodes for solid oxide fuel cells,” J. Ceram. Process. Res., 17 (2016) 965-968.
70. M.K. Rath, J.H. Koo, and K.T. Lee, “Electrochemical performance and redox stability of Sr0.8La0.2TiO3-Ce0.9Gd0.1O2-δ composite anodes for solid oxide fuel cells,” J. Ceram. Process. Res., 17 (2016) 837-839.
69. S.M. Yu and K.T. Lee, “Fabrication of La0.8Sr0.2Ga0.8Mg0.2O3-δ-based micro-tubular SOFC single cells via electrophoretic deposition,” J. Ceram. Process. Res., 17 (2016) 672-675.
68. M.K. Rath and K.T. Lee, “Superior electrochemical performance of non-precious Co-Ni-Mo alloy catalyst-impregnated Sr2FeMoO6-δ as an electrode material for symmetric solid oxide fuel cells,” Electrochim. Acta, 212 (2016) 678-685.
67. C.H. Lim and K.T. Lee, “Characterization of core-shell structured Ni@GDC anode materials synthesized by ultrasonic spray pyrolysis for solid oxide fuel cells,” Ceram. Int., 42 (2016) 13715-13722.
66. Y.T. Park and K.T. Lee, “Evaluation of low-purity natural graphite as a cost-effective anode active material for lithium ion batteries,” J. Ceram. Process. Res., 17 (2016) 348-351.
65. S.M. Yu and K.T. Lee, “Fabrication of GDC-based micro tubular SOFC single cell using electrophoretic deposition process,” J. Ceram. Process. Res., 17 (2016) 290-294.
64. J.H. Koo and K.T. Lee, “Percolation effect on electrical, mechanical, and electrochemical properties of Sr0.8La0.2TiO3-Ce0.9Gd0.1O1.95 composite anodes for solid oxide fuel cells,” J. Alloys Compd., 667 (2016) 69-75.
63. M.K. Rath and K.T. Lee, “Properties and electrochemical performance of Sr0.8La0.2TiO3-δ-Ce0.8Gd0.2O2-δ composite anodes for intermediate temperature solid oxide fuel cells,” J. Alloys Compd., 655 (2016) 537-545.
62. J.H. Koo and K.T. Lee, “The effect of firing conditions on electrical conductivity and electrochemical properties of Sr0.8La0.2TiO3-Ce0.9Gd0.1O1.95 composite anodes for solid oxide fuel cells,” Ceram. Int., 42 (2016) 2209-2231.
61. Y.T. Park and K.T. Lee, “Electrochemical properties of low-purity natural graphite as an anode active material for lithium-ion batteries,” J. Ceram. Process. Res., 17 (2016) 1-4.
● 2015
60. M.K. Rath, T. Sahoo, and K.T. Lee, “Catalytic activity of morphology-tailored NiO-Ce0.8Gd0.2O2-δ synthesized by a hexamethylenetetramine (HMT)-assisted solvothermal process,” Ceram. Int., 41 (2015) 12742-12750.
59. M.K. Rath and K.T. Lee, “Investigation of aliovalent transition metal doped La0.7Ca0.3Cr0.8X0.2O3-δ (X=Ti, Mn, Fe, Co, and Ni) as electrode materials for symmetric solid oxide fuel cells,” Ceram. Int., 41 (2015) 10878-10890.
58. S.M. Yu and K.T. Lee, “Fabrication of YSZ-based micro tubular SOFC single cell using electrophoretic deposition process,” J. Kor. Ceram. Soc., 52 (2015) 315-319.
● 2014
57. S.W. Seo, J.H. Park. M.W. Park, J.H. Koo, K.T. Lee, and J.S. Lee, “Effects of gallia addition on sintering behavior and electrical conductivity of yttria-doped ceria,” Electron. Mater. Lett., 10 (2014) 791-794.
56. C.H. Lim and K.T. Lee, “Characterization of spherical NiO-YSZ anode composites for solid oxide fuel cells synthesized by ultrasonic spray pyrolysis,” J. Kor. Ceram. Soc., 51 (2014) 243-247.
55. H.L. Kim, S. Kim, K.H. Lee, H.L. Lee, and K.T. Lee, “Oxygen ion conduction in barium doped LaInO3 perovskite oxides,” J. Power Sources, 167 (2014) 723-730.
54. S.W. Seo, M.W. Park, S.M. Yu, K.T. Lee, and J.S. Lee, “Effects of strontium gallate addition on sintering behavior and electrical conductivity of yttria-doped ceria,” Electron. Mater. Lett., 10 (2014) 213-216.
53. M.K. Rath, B.H. Choi, M.J. Ji, and K.T. Lee, “Eggshell-membrane-templated synthesis of hierarchically-ordered NiO-Ce0.8Gd0.2O1.9 composite powders and their electrochemical performances as SOFC anodes,” Ceram. Int., 40 (2014) 3295-3304.
52. M.K. Rath, M.J. Lee, and K.T. Lee, “Preparation of nano-structured Ni-Ce0.8Gd0.2O1.9 anode materials for solid oxide fuel cells via the water-in-oil (W/O) micro-emulsion route,” Ceram. Int., 40 (2014) 1909-1917.
● 2013
51. C.H. Lim, B.H. Choi, and K.T. Lee, “Synthesis and characterization of conjugated core-shell structured YSZ@Ni-GDC anode materials for solid oxide fuel cells,” J. Ceram. Process. Res., 14 (2014) 689-693.
50. Y.T. Park and K.T. Lee, “Effect of annealing on the electrochromic properties of WO3 thin films fabricated by electrophoretic deposition,” J. Ceram. Process. Res., 14 (2013) 632-635.
49. Y.T. Park Y.K. Hong, and K.T. Lee, “Characterization of electrochromic WO3 thin films fabricated by an RF sputtering method,” J. Ceram. Process. Res., 14 (2013) 337-341.
48. M.K. Rath, B.H. Choi, and K.T. Lee, “Synthesis and characterization of morphologically tailored NiO-Ce0.8Gd0.2O2-δ anode materials for solid oxide fuel cells: A micro-emulsion followed by solvothermal approach,” Ceram. Int., 39 (2013) 8467-8473.
47. M.K. Rath, B.G. Ahn, B.H. Choi, M.J. Ji and K.T. Lee, “Effects of manganese substitution at the B-site of lanthanum-rich strontium titanate anodes on fuel cell performance and catalytic activity,” Ceram. Int., 39 (2013) 6343-6353.
46. C.K. Cho and K.T. Lee, “Characterization of Ni1-xCux-Ce0.8Gd0.2O1.9 composite anodes for methane-fueled solid oxide fuel cells,” J. Ceram. Process. Res., 14 (2013) 59-64.
45. C.K. Cho, B.H. Choi, and K.T. Lee, “Electrochemical performance of Ni1-xFex-Ce0.8Gd0.2O1.9 cermet anodes for solid oxide fuel cells using hydrocarbon fuel,” Ceram. Int., 39 (2013) 389-394.
● 2012
44. Y.T. Park and K.T. Lee, “Fabrication and characterization of WO3 films by an electrophoretic deposition method,” J. Ceram. Process. Res., 13 (2012) 607-611.
43. C.K. Cho, B.H. Choi, and K.T. Lee, “Effect of Co alloying on the electrochemical performance of Ni-Ce0.8Gd0.2O1.9 anodes for hydrocarbon-fueled solid oxide fuel cells,” J. Alloys Compd., 541 (2012) 433-439.
42. K.W. Song and K.T. Lee, “Characterization of Ba0.5Sr0.5M1-xFexO3-δ (M=Co and Fe) perovskite oxide cathode materials for intermediate temperature solid oxide fuel cells,” Ceram. Int., 38 (2012) 5123-5131.
41. M.K. Rath, B.H. Choi, and K.T. Lee, “Properties and electrochemical performance of La0.75Sr0.25Cr0.5Mn0.5O3-δ-La0.2Ce0.8O2-δ composite anodes for solid oxide fuel cells,” J. Power Sources, 213 (2012) 55-62.
● 2011
40. A. Manthiram, J.H. Kim, Y.N. Kim, and K.T. Lee, “Crystal chemistry and properties of mixed ionic-electronic conductors,” J. Electroceram., 27 (2011) 93-107.
39. J.H. Kim, Y.N. Kimn, K.T. Lee, and A. Manthiram, “Ln(Sr,Ca)3(Fe,Co)3O10 intergrowth oxide cathodes for solid oxide fuel cells,” ECS Transactions, 35 (1) (2011) 2137-2145.
38. J.Y. Yoo, I.J. Shon, B.H. Choi, and K.T. Lee, “Characterization of BaZr0.8Y0.2O3-δ proton-conducting electrolyte material synthesized by pulsed-current activated sintering,” J. Ceram. Process. Res., 12 (2011) 382-386.
37. J.Y. Yoo, I.J. Shon, B.H. Choi, and K.T. Lee, “Fabrication and characterization of a Ni-YSZ anode support using high-frequency induction heated sintering (HFIHS),” Ceram. Int., 37 (2011) 2569-2574.
36. J.Y. Yoo, C.K. Cho, I.J. Shon, and K.T. Lee, “Preparation of porous Ni–YSZ cermet anodes for solid oxide fuel cells by high frequency induction heated sintering,” Mater. Lett., 65 (2011) 2066-2069.
35. M.K. Rath, S.K. Acharya, B.H. Kim, K.T. Lee, and B.G Ahn, “Photoluminescence properties of sesquioxide doped ceria synthesized by modified sol-gel route,” Mater. Lett, 65 (2011) 955-958.
34. J.H. Kim, K.T. Lee, Y.N. Kim, and A. Manthiram, “Crystal chemistry and electrochemical properties of Ln(Sr,Ca)3(Fe,Co)3O10 intergrowth oxide cathodes for solid oxide fuel cells,” J. Mater. Chem., 21 (2011) 2482-2488.
33. K.W. Song, and K.T. Lee, “Characterization of Pb2Ru2-xBixO7 (x = 0, 0.2, and 0.4) pyrochlore oxide cathode materials for intermediate temperature solid oxide fuel cells,” J. Ceram. Process. Res., 12(1) (2011) 30-33.
32. K.W. Song, and K.T. Lee, “Characterization of NdSrCo1-xFexO4+δ(0≤x≤1.0) intergrowth oxide cathode materials for intermediate temperature solid oxide fuel cells,” Ceram. Int., 37( 2) (2011) 573-577.
● 2009
31. H.K. Park, J.H. Park, J.K. Yoon, K.T. Lee, and I.J. Shon, “One step synthesis and densification of nanocrystalline TaSi2-Si3N4 composite from mechanically activated powders by high-frequency induction-heated combustion,” J. Electroceram., 23 (2009) 542-547.
30. B.R. Kim, K.S. Nam, J.M. Doh, K.T. Lee, and I.H. Shon, “Rapid synthesis and consolidation of TiSi2 by pulsed activated combustion,” J. Ceram. Process. Res., 10 (2009) 171-175.
29. K.T. Lee, D.K. Kim, J.H. Park, I.J. Shon, “Effect of Fe2O3 on properties and densification of Ce0.8Gd0.2O2-δ by PCAS,” Ceram. Int., 35 (2009) 1345-1351.
28. I.J. Shon, I.K. Jeong, J.H. Park, B.R. Kim, and K.T. Lee, “Effect of Fe2O3 addition on consolidation and properties of 8 mol% yttria-stabilized zirconia by high-frequency induction heated sintering (HFIHS),” Ceram. Int., 35 (2009) 363-368.
● 2008
27. I.J. Shon, D.K. Kim, K.T. Lee, K.S. Nam, “Properties and consolidation of nanostructured Ce0.8Gd0.2O1.9 by pulsed-current-activated sintering,” Met. Mater. Int., 14 (2008) 593-598.
26. I.J. Shon, I.K. Jeong, J.H. Park, K.S. Nam, K.T. Lee, and K.D. Woo, “Properties and rapid consolidation of WC-based hard materials with various binders by a pulsed current activated sintering method,” J. Ceram. Process. Res., 9 (2008) 512-516.
25. I.J. Shon, H.K. Park, and K.T. Lee, “Characterization of nanostuctured Ce0.8Sm0.2O2-δ prepared by pulsed current activated Sintering,” J. Ceram. Process. Res., 9 (2008) 325-329.
● 2007
24. K.T. Lee and A. Manthiram, “Effect of cation dopping on physical properties and electrochemical performance of Nd0.6Sr0.4Co0.8M0.2O3-δ (M = Ti, Cr, Mn, Fe, Co, and Cu) cathodes,” Solid State Ionics, 178 (2007) 995-1000.
● 2006
23. K.T. Lee and A. Manthiram, “Electrochemical performance of Nd0.6Sr0.4Co0.5Fe0.5O3-δ-Ag composite cathodes for intermediate temperature solid oxide fuel cells,” J. Power Sources, 160 (2006) 903-908.
22. K.T. Lee, D.M. Bierschenk, and A. Manthiram, “Sr3-xLaxFe2-yCoyO7-δ (0.3 ≤ x ≤ 0.6 and 0 ≤ y ≤ 0.6) intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells,” J. Electrochem. Soc., 153 (2006) A1255-A1260.
21. K.T. Lee and A. Manthiram, “LaSr3Fe3-yCoyO10-δ (0 ≤ y ≤ 1.5) intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells,” Chem. Mater., 18 (2006) 1621-1626.
20. K.T. Lee and A. Manthiram, “Comparison of Ln0.6Sr0.4CoO3-δ (Ln = La, Pr, Nd, Sm, and Gd) cathode materials for intermediate temperature solid oxide fuel cells,” J. Electrochem. Soc., 153 (2006) A794-A798.
19. K.T. Lee and A. Manthiram, “Synthesis and characterization of Nd0.6Sr0.4Co1-yMnyO3-δ (0 ≤ y ≤ 1.0) cathode materials for intermediate temperature solid oxide fuel cells,” J. Power Sources, 158 (2006) 1202-1208.
● 2000 ~ 2005
18. K.T. Lee and A. Manthiram, “Investigation of Nd0.6Sr0.4Co1-yMyO3-δ (M = Fe and Mn) as cathode materials for intermediate temperature solid oxide fuel cells,” Ceramic Transactions: Advances in Electronic and Electrochemical Ceramics (F. Dogan and P.N. Kumta, Eds.), Vol. 179, American Ceramic Society, Westerville, OH, (2005) pp. 131-138.
17. K.T. Lee and A. Manthiram, “Characterization of Nd0.6Sr0.4Co1-yFeyO3-δ (0 ≤ y ≤ 0.5) cathode materials for intermediate temperature solid oxide fuel cells,” Solid State Ionics, 176 (2005) 1521-1527.
16. K.T. Lee and A. Manthiram, “Characterization of Nd1-xSrxCoO3-δ (0 ≤ x ≤ 0.5) cathode materials for intermediate temperature solid oxide fuel cells,” J. Electrochem. Soc., 152 (2005) A197-A204.
15. K.T. Lee and A. Manthiram, “Characterization of Sr-doped neodymium cobalt oxide cathode materials for intermediate temperature solid oxide fuel cells,” Ceramic Transactions: Development in Solid Oxide Fuel Cells and Lithium Ion Batteries (A. Manthiram, P.N. Kumta, S.K. Sundaram, and S. Chan, Eds.), Vol. 161, American Ceramic Society, Westerville, OH, (2004) pp. 3-12.
14. S. Kim, K.T. Lee, and H.L. Lee, “Phase relationship of barium and magnesium doped LaGaO3 oxides,” Materials Letters, 52 (2002) 342-349.
13. K.T. Lee, S. Kim, G.D. Kim, and H.L. Lee, “Electrical conduction behavior of Ba2+ and Mg2+ doped LaGaO3 perovskite oxide,” J. Applied Electrochem., 31 (2001) 1243-1249.
12. J.W. Moon, G.D. Kim, K.T. Lee, and H.L. Lee, “Effect of YSZ particle size and sintering temperature on the microstructure and impedance property of Ni-YSZ anode for solid oxide fuel cell,” J. Korean Ceram. Soc., 38(5) (2001) 466-473.
11. J.D. Kim, G.D. Kim, and K.T. Lee, “Oxygen reduction mechanism and electrode properties of (La,Sr)MnO3-YSZ composite cathode for solid oxide fuel cell (part II: electrode properties),” J. Korean Ceram. Soc., 38(1) (2001) 93-99.
10. J.D. Kim, G.D. Kim, and K.T. Lee, “Oxygen reduction mechanism and electrode properties of (La,Sr)MnO3-YSZ composite cathode for solid oxide fuel cell (part I: oxygen reduction mechanism),” J. Korean Ceram. Soc., 38(1) (2001) 84-92.
9. S. Kim, M.C. Chun, K.T. Lee, and H.L. Lee, “Oxygen-ion conductivity of BaO- and MgO-doped LaGaO3 electrolytes,” J. Power Sources, 93 (2001) 279-284.
8. K.T. Lee and G.D. Kim, “Cathode materials for ceramic fuel cells,” The Monthly Magazine for Ceramics, 14(155) (2001) 77-79.
● ~ 2000
7. J.D. Kim, G.D. Kim, J.W. Moon, H.W. Lee, K.T. Lee, and C.E. Kim, “The effect of percolation on electrochemical performance,” Solid State Ionics, 133 (2000) 67-77.
6. J.D. Kim, G.D. Kim, and K.T. Lee, “Effect of Co dopant on the (La,Sr)MnO3 cathode for solid oxide fuel cell,” J. Korean Ceram. Soc., 37(6) (2000) 612-616.
5. S.M. Choi, K.T. Lee, S. Kim, M.C. Chun, and H.L. Lee, “Oxygen ion conductivity and cell performance of La0.9Ba0.1Ga1-xMgxO3-δ electrolyte,” Solid State Ionics, 131 (2000) 221-228.
4. K.T. Lee, J.D. Kim, and G.D. Kim, “Electrode properties and reaction mechanism of cathode for solid oxide fuel cell,” Ceramist, 3(5) (2000) 56-65.
3. K.T. Lee, S. Kim, and H.L. Lee, “Phase formation and oxygen ion conduction of La(Ba)Ga(Mg)O3-δ perovskite oxide system,” J. Korean Ceram. Soc., 36(10) (1999) 1056-1061.
2. S.M. Choi, K.T. Lee, K.Y. Kim, S. Kim, and H.L. Lee, “Oxygen ion conductivity and power density of LaGaO3 alternative electrolytes for ceramic fuel cell,” J. Korean Ceram. Soc., 36(9) (1999) 909-914.
1. K.Y. Kim, K.T. Lee, S. Kim, and H.L. Lee, “Phase formation and electrical property in La(Sr)Ga(Al)O3-δ perovskite oxide,” J. Engineering Research Institute Yonsei Univ., 31(1) (1999) 25-34.